Passive Molecular Communication Through Ligand–Receptor Binding

  • Barış Atakan
Chapter

Abstract

In this chapter, passive molecular communication (PMC) is introduced for the cases in which the receiver nanomachine (RN) has receptors on its surface and receives molecules by means of the ligand–receptor binding phenomenon. The deterministic and probabilistic models of the ligand–receptor binding are first introduced. Then, PMC in gene regulatory networks is discussed and a unified model incorporating the diffusion and degradation of molecules and ligand–receptor binding is introduced. Accuracies of the concentration and gradient sensing with ligand–receptor binding are also investigated. Finally, the communication theories and techniques are given for PMC with ligand–receptor binding.

References

  1. 1.
    Lauffenburger DA, Linderman JJ (1996) Receptors: models for binding, trafficking, and signaling. Oxford University Press, Oxford (on demand)Google Scholar
  2. 2.
    Bharucha-Reid AT (1960) Elements of the theory of Markov processes and their applications. McGraw-Hill series in probability and statistics. McGraw-Hill, New YorkGoogle Scholar
  3. 3.
    Rhee H-K, Aris R, Amundson NR (1986) First-order partial differential equations. Prentice-Hall, Englewood CliffsMATHGoogle Scholar
  4. 4.
    McQuarrie DA (1963) Kinetics of small systems I. J Chem Phys 38(2):433CrossRefGoogle Scholar
  5. 5.
    Bergmann S, Sandler O, Sberro H, Shnider S, Schejter E, Shilo BZ, Barkai N (2007) Pre-steady-state decoding of the Bicoid morphogen gradient. PLoS Biol 5(2):e46CrossRefGoogle Scholar
  6. 6.
    Crank J (1979) The mathematics of diffusion. Oxford University Press, OxfordMATHGoogle Scholar
  7. 7.
    Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford University Press, OxfordGoogle Scholar
  8. 8.
    Morton KW, Mayers DF, Cullen MJP (1994) Numerical solution of partial differential equations. Cambridge University Press, CambridgeMATHGoogle Scholar
  9. 9.
    Shoup D, Szabo A (1982) Role of diffusion in ligand binding to macromolecules and cell-bound receptors. Biophys J 40(1):33–39CrossRefGoogle Scholar
  10. 10.
    Berg HC, Purcell EM (1977) Physics of chemoreception. Biophys J 20(2):193–219CrossRefGoogle Scholar
  11. 11.
    Bialek W, Setayeshgar S (2005) Physical limits to biochemical signaling. Proc Natl Acad Sci USA 102(29):10040–10045CrossRefGoogle Scholar
  12. 12.
    Kubo R (1966) The fluctuation-dissipation theorem. Rep Progress Phys 29(1):255CrossRefGoogle Scholar
  13. 13.
    Endres R G, Wingreen N S (2009) Accuracy of direct gradient sensing by cell-surface receptors. Progress in Biophysics and Molecular Biology. 100(1): 33–39CrossRefGoogle Scholar
  14. 14.
    Tkačik G, Walczak AM (2011) Information transmission in genetic regulatory networks: a review. J Phys Condens Matter 23(15):153102CrossRefGoogle Scholar
  15. 15.
    Chandler D (1987) Introduction to modern statistical mechanics. Oxford University Press, OxfordGoogle Scholar
  16. 16.
    Hu B, Chen W, Levine H, Rappel WJ (2011) Quantifying information transmission in eukaryotic gradient sensing and chemotactic response. J Stat Phys 142(6):1167–1186MATHGoogle Scholar
  17. 17.
    Fuller D, Chen W, Adler M, Groisman A, Levine H, Rappel WJ, Loomis WF (2010) External and internal constraints on eukaryotic chemotaxis. Proc Natl Acad Sci 107(21):9656–9659CrossRefGoogle Scholar
  18. 18.
    Hu B, Chen W, Rappel WJ, Levine H (2011) How geometry and internal bias affect the accuracy of eukaryotic gradient sensing. Phys Rev E 83(2):021917CrossRefGoogle Scholar
  19. 19.
    Silverman R (1955) On binary channels and their cascades. IRE Trans Inform Theor 1(3):19–27CrossRefGoogle Scholar
  20. 20.
    Tkačik G, Callan CG Jr, Bialek W (2008) Information capacity of genetic regulatory elements. Phys Rev E 78(1):011910MathSciNetGoogle Scholar
  21. 21.
    Pierobon M, Akyildiz IF (2011) Noise analysis in ligand-binding reception for molecular communication in nanonetworks. IEEE Trans Signal Process 59(9):4168–4182CrossRefMathSciNetGoogle Scholar
  22. 22.
    Atakan B, Akan OB (2008) On channel capacity and error compensation in molecular communication. Transactions on computational systems biology X, vol 10. Springer, Berlin, pp 59–80Google Scholar
  23. 23.
    Eckford AW, Thomas PJ (2013). Capacity of a simple intercellular signal transduction channel. Proceedings of IEEE International Symposium on Information Theory (ISIT) pp 1834–1838Google Scholar
  24. 24.
    Einolghozati A, Sardari M, Fekri F (2011) Capacity of diffusion-based molecular communication with ligand receptors. Proceedings of IEEE information theory workshop (ITW), pp 85–89Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Barış Atakan
    • 1
  1. 1.Department of Electrical and Electronics Engineeringİzmir Institute of TechnologyUrlaTurkey

Personalised recommendations