Passive Molecular Communication Through Absorbers

  • Barış Atakan


In this chapter, passive molecular communication (PMC) is introduced for the cases in which a receiver nanomachine (RN) is assumed to be an absorber to take messenger molecules inside. After the molecule emission process of a transmitter nanomachine (TN) is discussed, the diffusion of the emitted molecules is elaborated by giving the required details of random walk and diffusion equations. Then, the molecule reception process of RN (i.e., an absorber of messenger molecules) is detailed. By incorporating the mathematical models of the emission, diffusion, and reception processes, unified models are introduced for PMC. Finally, communication theories and techniques devised for PMC are introduced.


  1. 1.
    Adam G, Delbrück M (1968) Reduction of dimensionality in biological diffusion processes. Struct Chem Mol Biol 198–215Google Scholar
  2. 2.
    Amirkhizi AV (2010) A model for a class of diffusion-based intercellular communication. Tributes to Yuan-Cheng Fung on his 90th birthday: Biomechanics: from molecules to man, p 167. World Scientific, SingaporeGoogle Scholar
  3. 3.
    Arifler D (2011) Capacity analysis of a diffusion-based short-range molecular nano-communication channel. Comput Netw 55(6):1426–1434CrossRefGoogle Scholar
  4. 4.
    Atakan B (2013) A deterministic model for molecular communication (submitted for a journal publication)Google Scholar
  5. 5.
    Atakan B (2013) Optimal transmission probability in binary molecular communication. IEEE Commun Lett 17(6):1–4CrossRefGoogle Scholar
  6. 6.
    Atakan B, Akan OB (2010) Deterministic capacity of information flow in molecular nanonetworks. Nano Commun Netw 1(1):31–42CrossRefGoogle Scholar
  7. 7.
    Atakan B, Galmés S, Akan OB (2012) Nanoscale communication with molecular arrays in nanonetworks. IEEE Trans NanoBiosci 11(2):149–160CrossRefGoogle Scholar
  8. 8.
    Avestimehr AS, Diggavi SN, Tse DN (2011). Wireless network information flow: A deterministic approach. IEEE Trans Inf Theor 57(4):1872–1905CrossRefMathSciNetGoogle Scholar
  9. 9.
    Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular system for programmed pattern formation. Nature 434(7037):1130–1134CrossRefGoogle Scholar
  10. 10.
    Berg HC (1993) Random walks in biology. Princeton University Press, PrincetonGoogle Scholar
  11. 11.
    Berg HC, Purcell EM (1977) Physics of chemoreception. Biophys J 20(2):193–219CrossRefGoogle Scholar
  12. 12.
    Bergmann S, Sandler O, Sberro H, Shnider S, Schejter E, Shilo BZ, Barkai N (2007) Pre-steady-state decoding of the Bicoid morphogen gradient. PLoS Biol 5(2):e46CrossRefGoogle Scholar
  13. 13.
    Bossert WH, Wilson EO (1963) The analysis of olfactory communication among animals. J Theor Biol 5(3):443–469CrossRefGoogle Scholar
  14. 14.
    Carslaw HS, Jaeger JJC (1959) Conduction of heat in solids. Oxford University Press, OxfordGoogle Scholar
  15. 15.
    Chhikara RS, Folks JL (1989) The inverse Gaussian distribution: theory, methodology, and applications. CRC Press, Boca RatonMATHGoogle Scholar
  16. 16.
    Cover TM, Thomas JA (2012) Elements of information theory. Wiley, New YorkGoogle Scholar
  17. 17.
    Crank J (1979) The mathematics of diffusion. Oxford University Press, OxfordMATHGoogle Scholar
  18. 18.
    Endres RG, Wingreen NS (2008) Accuracy of direct gradient sensing by single cells. Proc Natl Acad Sci 105(41):15749–15754CrossRefGoogle Scholar
  19. 19.
    Fredrickson AG (1966) Stochastic triangular reactions. Chem Eng Sci 21(8):687–691CrossRefGoogle Scholar
  20. 20.
    Gadgil C, Lee CH, Othmer HG (2005) A stochastic analysis of first-order reaction networks. Bull Math Biol 67(5):901–946CrossRefMathSciNetGoogle Scholar
  21. 21.
    Galmés S, Atakan B (2013) Delay analysis for M-ary molecular communication in nanonetworks (submitted for a journal publication)Google Scholar
  22. 22.
    Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361CrossRefGoogle Scholar
  23. 23.
    Gillespie DT (1991) Markov processes: an introduction for physical scientists. Academic, New YorkGoogle Scholar
  24. 24.
    Gillespie DT (2000) The chemical Langevin equation. J Chem Phys 13:297CrossRefGoogle Scholar
  25. 25.
    Jackson JD (1975) Classical electrodynamics. Wiley, NewYorkMATHGoogle Scholar
  26. 26.
    Jahnke T, Huisinga W (2007) Solving the chemical master equation for monomolecular reaction systems analytically. J Math Biol 54(1):1–26CrossRefMathSciNetGoogle Scholar
  27. 27.
    Kadloor S, Adve RS, Eckford AW (2012) Molecular communication using brownian motion with drift. IEEE Trans NanoBioscience 11(2):89–99CrossRefGoogle Scholar
  28. 28.
    Karatzas IA (1991) Brownian motion and stochastic calculus. Springer, New YorkMATHGoogle Scholar
  29. 29.
    Kuran M Ş, Yılmaz HB, Tuğcu T, Özerman B (2010) Energy model for communication via diffusion in nanonetworks. Nano Commun Netw 1(2):86–95CrossRefGoogle Scholar
  30. 30.
    LaVan DA, McGuire T, Langer R (2003) Small-scale systems for in vivo drug delivery. Nature Biotechnol 21(10):1184–1191CrossRefGoogle Scholar
  31. 31.
    Mahfuz MU, Makrakis D, Mouftah HT (2010) On the characterization of binary concentration-encoded molecular communication in nanonetworks. Nano Commun Netw 1(4):289–300CrossRefGoogle Scholar
  32. 32.
    McQuarrie DA (1967) Stochastic approach to chemical kinetics. J Appl Probab 4(3):413–478CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Miorandi D (2011) A stochastic model for molecular communications. Nano Commun Netw 2(4):205–212CrossRefGoogle Scholar
  34. 34.
    Nakano T, Moore M (2010) In-sequence molecule delivery over an aqueous medium. Nano Commun Netw 1(3):181–188CrossRefGoogle Scholar
  35. 35.
    Nakano T, Okaie Y, Liu JQ (2012) Channel model and capacity analysis of molecular communication with Brownian motion. IEEE Commun Lett 16(6):797–800CrossRefGoogle Scholar
  36. 36.
    Pierobon M, Akyildiz IF (2010) A physical end-to-end model for molecular communication in nanonetworks. IEEE J Sel Areas Commun 28(4):602–611CrossRefGoogle Scholar
  37. 37.
    Pierobon M, Akyildiz IF (2011) Diffusion-based noise analysis for molecular communication in nanonetworks. IEEE Trans Signal Process 9(6):2532–2547CrossRefMathSciNetGoogle Scholar
  38. 38.
    Pierobon M, Akyildiz IF (2013) Capacity of a diffusion-based molecular communication system with channel memory and molecular noise. IEEE Trans Inf Theor 59:942–954CrossRefMathSciNetGoogle Scholar
  39. 39.
    Redner S (2001) A guide to first-passage processes. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  40. 40.
    Shoup D, Szabo A (1982) Role of diffusion in ligand binding to macromolecules and cell-bound receptors. Biophys J 40(1):33–39CrossRefGoogle Scholar
  41. 41.
    Eckford A W, Srinivas K V, Adve R S (2012) The peak constrained additive inverse Gaussian noise channel. In: Proceedings of IEEE International Symposium on Information Theory, July 2012, pp 2973–2977Google Scholar
  42. 42.
    Srinivas KV, Eckford AW, Adve RS (2012) Molecular communication in fluid media: the additive inverse gaussian noise channel. IEEE Trans Inf Theor 58(7):4678–4692CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Barış Atakan
    • 1
  1. 1.Department of Electrical and Electronics Engineeringİzmir Institute of TechnologyUrlaTurkey

Personalised recommendations