Genomic Applications in Gynecologic Malignancies

  • Sarah Chiang
  • Luciano G. Martelotto
  • Britta Weigelt


To date, genomic approaches implemented in clinical practice for patients with gynecological cancers have been limited to human papillomavirus DNA testing, which is considered the molecular genetic basis of uterine cervical carcinoma, and to the identification of specific gene mutations associated with hereditary gynecological cancer syndromes such as BRCA1 and BRCA2 germline mutations in ovarian cancer patients. Recently, the advent of high-throughput genomic technologies allowed for substantial advances in our understanding of the molecular underpinning of sporadic gynecological malignancies, in particular of ovarian and uterine cancers, the two most frequently diagnosed malignancies of the female reproductive tract in the western world. Genomic approaches applied to the study of these cancers have the potential to not only improve disease classification and diagnostic reproducibility, but may also lead to the identification of novel prognostic and predictive subclasses of these diseases as well as novel therapeutic targets, ultimately providing an opportunity for the realization of precision medicine. This chapter focuses on recent advances in our understanding of endometrial carcinoma and common malignant uterine mesenchymal tumors, which are likely to affect clinical care in the near future, and we discuss the integration of genomic tests in the diagnostic armamentarium of these cancers.


Endometrial Cancer Lynch Syndrome Endometrial Carcinoma Serous Carcinoma Endometrial Cancer Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    American Cancer Society. Cancer facts & figures 2013. Atlanta: American Cancer Society; 2013.Google Scholar
  2. 2.
    Evans T, Sany O, Pearmain P, Ganesan R, Blann A, Sundar S. Differential trends in the rising incidence of endometrial cancer by type: data from a UK population-based registry from 1994 to 2006. Br J Cancer. 2011;104(9):1505–10. doi: 10.1038/bjc.2011.68.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Wartko P, Sherman ME, Yang HP, Felix AS, Brinton LA, Trabert B. Recent changes in endometrial cancer trends among menopausal-age US women. Cancer Epidemiol. 2013;37:374–7. doi: 10.1016/j.canep.2013.03.008.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Boll D, Karim-Kos HE, Verhoeven RHA, Burger CW, Coebergh JW, van de Poll-Franse LV, van Doorn HC. Increased incidence and improved survival in endometrioid endometrial cancer diagnosed since 1989 in The Netherlands: a population based study. Eur J Obstet Gynecol Reprod Biol. 2013;166(2):209–14. doi: 10.1016/j.ejogrb.2012.10.028.PubMedGoogle Scholar
  5. 5.
    Creasman WT, Odicino F, Maisonneuve P, Quinn MA, Beller U, Benedet JL, Heintz AP, Ngan HY, Pecorelli S. Carcinoma of the corpus uteri. FIGO 26th Annual Report on the Results of Treatment in Gynecological Cancer. Int J Gynaecol Obstet. 2006;95 Suppl 1:S105–43. doi: 10.1016/S0020-7292(06)60031-3.PubMedGoogle Scholar
  6. 6.
    Makker V, Hensley ML, Zhou Q, Iasonos A, Aghajanian CA. Treatment of advanced or recurrent endometrial carcinoma with doxorubicin in patients progressing after paclitaxel/carboplatin: memorial Sloan-Kettering Cancer Center experience from 1995 to 2009. Int J Gynecol Cancer. 2013;23:929–34. doi: 10.1097/IGC.0b013e3182915c20.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Carey MS, Gawlik C, Fung-Kee-Fung M, Chambers A, Oliver T. Systematic review of systemic therapy for advanced or recurrent endometrial cancer. Gynecol Oncol. 2006;101(1):158–67. doi: 10.1016/j.ygyno.2005.11.019.PubMedGoogle Scholar
  8. 8.
    Oza AM, Elit L, Tsao MS, Kamel-Reid S, Biagi J, Provencher DM, Gotlieb WH, Hoskins PJ, Ghatage P, Tonkin KS, Mackay HJ, Mazurka J, Sederias J, Ivy P, Dancey JE, Eisenhauer EA. Phase II study of temsirolimus in women with recurrent or metastatic endometrial cancer: a trial of the NCIC Clinical Trials Group. J Clin Oncol. 2011;29(24):3278–85. doi: 10.1200/JCO.2010.34.1578.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Pecorelli S. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int J Gynaecol Obstet. 2009;105(2):103–4.PubMedGoogle Scholar
  10. 10.
    Bokhman JV. Two pathogenetic types of endometrial carcinoma. Gynecol Oncol. 1983;15(1):10–7.PubMedGoogle Scholar
  11. 11.
    Setiawan VW, Yang HP, Pike MC, McCann SE, Yu H, Xiang YB, Wolk A, Wentzensen N, Weiss NS, Webb PM, van den Brandt PA, van de Vijver K, Thompson PJ, Strom BL, Spurdle AB, Soslow RA, Shu XO, Schairer C, Sacerdote C, Rohan TE, Robien K, Risch HA, Ricceri F, Rebbeck TR, Rastogi R, Prescott J, Polidoro S, Park Y, Olson SH, Moysich KB, Miller AB, McCullough ML, Matsuno RK, Magliocco AM, Lurie G, Lu L, Lissowska J, Liang X, Lacey Jr JV, Kolonel LN, Henderson BE, Hankinson SE, Hakansson N, Goodman MT, Gaudet MM, Garcia-Closas M, Friedenreich CM, Freudenheim JL, Doherty J, De Vivo I, Courneya KS, Cook LS, Chen C, Cerhan JR, Cai H, Brinton LA, Bernstein L, Anderson KE, Anton-Culver H, Schouten LJ, Horn-Ross PL. Type I and II endometrial cancers: have they different risk factors? J Clin Oncol. 2013;31:2607–18. doi: 10.1200/JCO.2012.48.2596.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Kurman RJ, Carcangiu M, Herrington CS, Young RH. World Health Organization classification of tumors of female reproductive organs. 4th ed. Lyon: IARC; 2014.Google Scholar
  13. 13.
    Clement PB, Young RH. Atlas of gynecologic surgical pathology. 3rd ed. Philadelphia: Saunders/Elsevier; 2014.Google Scholar
  14. 14.
    Kurman RJ, Ellenson LH, Ronnett BM, editors. Blaustein’s pathology of the female genital tract. 6th ed. New York: Springer; 2011.Google Scholar
  15. 15.
    McCluggage WG. Uterine carcinosarcomas (malignant mixed Mullerian tumors) are metaplastic carcinomas. Int J Gynecol Cancer. 2002;12(6):687–90.PubMedGoogle Scholar
  16. 16.
    McCluggage WG. Malignant biphasic uterine tumours: carcinosarcomas or metaplastic carcinomas? J Clin Pathol. 2002;55(5):321–5.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Announcement. FIGO stages-1988 revision. Gynecol Oncol. 1989;35:125–6.Google Scholar
  18. 18.
    Zaino RJ, Kurman RJ, Diana KL, Morrow CP. The utility of the revised International Federation of Gynecology and Obstetrics histologic grading of endometrial adenocarcinoma using a defined nuclear grading system. A Gynecologic Oncology Group study. Cancer. 1995;75(1):81–6.PubMedGoogle Scholar
  19. 19.
    Alkushi A, Abdul-Rahman ZH, Lim P, Schulzer M, Coldman A, Kalloger SE, Miller D, Gilks CB. Description of a novel system for grading of endometrial carcinoma and comparison with existing grading systems. Am J Surg Pathol. 2005;29(3):295–304.PubMedGoogle Scholar
  20. 20.
    Lax SF, Kurman RJ, Pizer ES, Wu L, Ronnett BM. A binary architectural grading system for uterine endometrial endometrioid carcinoma has superior reproducibility compared with FIGO grading and identifies subsets of advance-stage tumors with favorable and unfavorable prognosis. Am J Surg Pathol. 2000;24(9):1201–8.PubMedGoogle Scholar
  21. 21.
    Prat J. Prognostic parameters of endometrial carcinoma. Hum Pathol. 2004;35(6):649–62.PubMedGoogle Scholar
  22. 22.
    Sorbe B. Predictive and prognostic factors in definition of risk groups in endometrial carcinoma. ISRN Obstet Gynecol. 2012;2012:325790. doi: 10.5402/2012/325790.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Gilks CB, Oliva E, Soslow RA. Poor interobserver reproducibility in the diagnosis of high-grade endometrial carcinoma. Am J Surg Pathol. 2013;37(6):874–81. doi: 10.1097/PAS.0b013e31827f576a.PubMedGoogle Scholar
  24. 24.
    Soslow RA. High-grade endometrial carcinomas – strategies for typing. Histopathology. 2013;62(1):89–110. doi: 10.1111/his.12029.PubMedGoogle Scholar
  25. 25.
    Clarke BA, Gilks CB. Endometrial carcinoma: controversies in histopathological assessment of grade and tumour cell type. J Clin Pathol. 2010;63(5):410–5. doi: 10.1136/jcp.2009.071225.PubMedGoogle Scholar
  26. 26.
    Mittal K, Soslow R, McCluggage WG. Application of immunohistochemistry to gynecologic pathology. Arch Pathol Lab Med. 2008;132(3):402–23. doi: 10.1043/1543-2165(2008)132[402:AOITGP]2.0.CO;2.PubMedGoogle Scholar
  27. 27.
    Delair D, Soslow RA (2012) Endometrial clear cell carcinomas with and without aberrant p53 expression: a study of 16 cases. Laboratory Investigation Meeting abstract; 92 (supp. 1) (101st Annual Meeting of the United States and Canadian Academy of Pathology ):265A.Google Scholar
  28. 28.
    Fadare O, Liang SX. Diagnostic utility of hepatocyte nuclear factor 1-Beta immunoreactivity in endometrial carcinomas: lack of specificity for endometrial clear cell carcinoma. Appl Immunohistochem Mol Morphol. 2012;20(6):580–7. doi: 10.1097/PAI.0b013e31824973d1.PubMedGoogle Scholar
  29. 29.
    Tafe LJ, Garg K, Chew I, Tornos C, Soslow RA. Endometrial and ovarian carcinomas with undifferentiated components: clinically aggressive and frequently underrecognized neoplasms. Mod Pathol. 2010;23(6):781–9. doi: 10.1038/modpathol.2010.41.PubMedGoogle Scholar
  30. 30.
    Simpkins SB, Bocker T, Swisher EM, Mutch DG, Gersell DJ, Kovatich AJ, Palazzo JP, Fishel R, Goodfellow PJ. MLH1 promoter methylation and gene silencing is the primary cause of microsatellite instability in sporadic endometrial cancers. Hum Mol Genet. 1999;8(4):661–6.PubMedGoogle Scholar
  31. 31.
    Dedes KJ, Wetterskog D, Mendes-Pereira AM, Natrajan R, Lambros MB, Geyer FC, Vatcheva R, Savage K, Mackay A, Lord CJ, Ashworth A, Reis-Filho JS. PTEN deficiency in endometrioid endometrial adenocarcinomas predicts sensitivity to PARP inhibitors. Sci Transl Med. 2010;2(53):53ra75. doi: 10.1126/scitranslmed.3001538.PubMedGoogle Scholar
  32. 32.
    Urick ME, Rudd ML, Godwin AK, Sgroi D, Merino M, Bell DW. PIK3R1 (p85alpha) is somatically mutated at high frequency in primary endometrial cancer. Cancer Res. 2011;71(12):4061–7. doi: 10.1158/0008-5472.CAN-11-0549.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Cheung LW, Hennessy BT, Li J, Yu S, Myers AP, Djordjevic B, Lu Y, Stemke-Hale K, Dyer MD, Zhang F, Ju Z, Cantley LC, Scherer SE, Liang H, Lu KH, Broaddus RR, Mills GB. High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cancer Discov. 2011;1(2):170–85. doi: 10.1158/2159-8290.CD-11-0039.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Wiegand KC, Lee AF, Al-Agha OM, Chow C, Kalloger SE, Scott DW, Steidl C, Wiseman SM, Gascoyne RD, Gilks B, Huntsman DG. Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas. J Pathol. 2011;224(3):328–33. doi: 10.1002/path.2911.PubMedGoogle Scholar
  35. 35.
    McConechy MK, Anglesio MS, Kalloger SE, Yang W, Senz J, Chow C, Heravi-Moussavi A, Morin GB, Mes-Masson AM, Carey MS, McAlpine JN, Kwon JS, Prentice LM, Boyd N, Shah SP, Gilks CB, Huntsman DG. Subtype-specific mutation of PPP2R1A in endometrial and ovarian carcinomas. J Pathol. 2011;223(5):567–73. doi: 10.1002/path.2848.PubMedGoogle Scholar
  36. 36.
    Santin AD, Bellone S, Van Stedum S, Bushen W, Palmieri M, Siegel ER, De Las Casas LE, Roman JJ, Burnett A, Pecorelli S. Amplification of c-erbB2 oncogene: a major prognostic indicator in uterine serous papillary carcinoma. Cancer. 2005;104(7):1391–7. doi: 10.1002/cncr.21308.PubMedGoogle Scholar
  37. 37.
    Hetzel DJ, Wilson TO, Keeney GL, Roche PC, Cha SS, Podratz KC. HER-2/neu expression: a major prognostic factor in endometrial cancer. Gynecol Oncol. 1992;47(2):179–85.PubMedGoogle Scholar
  38. 38.
    McConechy MK, Ding J, Cheang MC, Wiegand KC, Senz J, Tone AA, Yang W, Prentice LM, Tse K, Zeng T, McDonald H, Schmidt AP, Mutch DG, McAlpine JN, Hirst M, Shah SP, Lee CH, Goodfellow PJ, Gilks CB, Huntsman DG. Use of mutation profiles to refine the classification of endometrial carcinomas. J Pathol. 2012;228(1):20–30. doi: 10.1002/path.4056.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Salvesen HB, Haldorsen IS, Trovik J. Markers for individualised therapy in endometrial carcinoma. Lancet Oncol. 2012;13(8):e353–61. doi: 10.1016/S1470-2045(12)70213-9.PubMedGoogle Scholar
  40. 40.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52. doi: 10.1038/35021093.PubMedGoogle Scholar
  41. 41.
    Weigelt B, Baehner FL, Reis-Filho JS. The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol. 2010;220(2):263–80. doi: 10.1002/path.2648.PubMedGoogle Scholar
  42. 42.
    Risinger JI, Maxwell GL, Chandramouli GV, Jazaeri A, Aprelikova O, Patterson T, Berchuck A, Barrett JC. Microarray analysis reveals distinct gene expression profiles among different histologic types of endometrial cancer. Cancer Res. 2003;63(1):6–11.PubMedGoogle Scholar
  43. 43.
    Maxwell GL, Chandramouli GV, Dainty L, Litzi TJ, Berchuck A, Barrett JC, Risinger JI. Microarray analysis of endometrial carcinomas and mixed mullerian tumors reveals distinct gene expression profiles associated with different histologic types of uterine cancer. Clin Cancer Res. 2005;11(11):4056–66. doi: 10.1158/1078-0432.CCR-04-2001.PubMedGoogle Scholar
  44. 44.
    Chen Y, Yao Y, Zhang L, Li X, Wang Y, Zhao L, Wang J, Wang G, Shen D, Wei L, Zhao J. cDNA microarray analysis and immunohistochemistry reveal a distinct molecular phenotype in serous endometrial cancer compared to endometrioid endometrial cancer. Exp Mol Pathol. 2011;91(1):373–84. doi: 10.1016/j.yexmp.2011.04.005.PubMedGoogle Scholar
  45. 45.
    Ratner ES, Tuck D, Richter C, Nallur S, Patel RM, Schultz V, Hui P, Schwartz PE, Rutherford TJ, Weidhaas JB. MicroRNA signatures differentiate uterine cancer tumor subtypes. Gynecol Oncol. 2010;118(3):251–7. doi: 10.1016/j.ygyno.2010.05.010.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Moreno-Bueno G, Sanchez-Estevez C, Cassia R, Rodriguez-Perales S, Diaz-Uriarte R, Dominguez O, Hardisson D, Andujar M, Prat J, Matias-Guiu X, Cigudosa JC, Palacios J. Differential gene expression profile in endometrioid and nonendometrioid endometrial carcinoma: STK15 is frequently overexpressed and amplified in nonendometrioid carcinomas. Cancer Res. 2003;63(18):5697–702.PubMedGoogle Scholar
  47. 47.
    Mhawech-Fauceglia P, Wang D, Kesterson J, Syriac S, Clark K, Frederick PJ, Lele S, Liu S. Gene expression profiles in stage I uterine serous carcinoma in comparison to grade 3 and grade 1 stage I endometrioid adenocarcinoma. PLoS One. 2011;6(3):e18066. doi: 10.1371/journal.pone.0018066.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Catasus L, D'Angelo E, Pons C, Espinosa I, Prat J. Expression profiling of 22 genes involved in the PI3K-AKT pathway identifies two subgroups of high-grade endometrial carcinomas with different molecular alterations. Mod Pathol. 2010;23(5):694–702. doi: 10.1038/modpathol.2010.44.PubMedGoogle Scholar
  49. 49.
    Ferguson SE, Olshen AB, Viale A, Barakat RR, Boyd J. Stratification of intermediate-risk endometrial cancer patients into groups at high risk or low risk for recurrence based on tumor gene expression profiles. Clin Cancer Res. 2005;11(6):2252–7. doi: 10.1158/1078-0432.CCR-04-1353.PubMedGoogle Scholar
  50. 50.
    Salvesen HB, Carter SL, Mannelqvist M, Dutt A, Getz G, Stefansson IM, Raeder MB, Sos ML, Engelsen IB, Trovik J, Wik E, Greulich H, Bo TH, Jonassen I, Thomas RK, Zander T, Garraway LA, Oyan AM, Sellers WR, Kalland KH, Meyerson M, Akslen LA, Beroukhim R. Integrated genomic profiling of endometrial carcinoma associates aggressive tumors with indicators of PI3 kinase activation. Proc Natl Acad Sci U S A. 2009;106(12):4834–9. doi: 10.1073/pnas.0806514106.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Fles R, Hoogendoorn WE, Platteel I, Scheerman CE, de Leeuw-Mantel G, Mourits MJ, Hollema H, van Leeuwen FE, van Boven HH, Nederlof PM. Genomic profile of endometrial tumors depends on morphological subtype, not on tamoxifen exposure. Genes Chromosomes Cancer. 2010;49(8):699–710. doi: 10.1002/gcc.20781.PubMedGoogle Scholar
  52. 52.
    Murayama-Hosokawa S, Oda K, Nakagawa S, Ishikawa S, Yamamoto S, Shoji K, Ikeda Y, Uehara Y, Fukayama M, McCormick F, Yano T, Taketani Y, Aburatani H. Genome-wide single-nucleotide polymorphism arrays in endometrial carcinomas associate extensive chromosomal instability with poor prognosis and unveil frequent chromosomal imbalances involved in the PI3-kinase pathway. Oncogene. 2010;29(13):1897–908. doi: 10.1038/onc.2009.474.PubMedGoogle Scholar
  53. 53.
    Le Gallo M, O'Hara AJ, Rudd ML, Urick ME, Hansen NF, O'Neil NJ, Price JC, Zhang S, England BM, Godwin AK, Sgroi DC, Hieter P, Mullikin JC, Merino MJ, Bell DW. Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. Nat Genet. 2012;44(12):1310–5. doi: 10.1038/ng.2455.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Kuhn E, Wu RC, Guan B, Wu G, Zhang J, Wang Y, Song L, Yuan X, Wei L, Roden RB, Kuo KT, Nakayama K, Clarke B, Shaw P, Olvera N, Kurman RJ, Levine DA, Wang TL, Shih Ie M. Identification of molecular pathway aberrations in uterine serous carcinoma by genome-wide analyses. J Natl Cancer Inst. 2012;104(19):1503–13. doi: 10.1093/jnci/djs345.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Zhao S, Choi M, Overton JD, Bellone S, Roque DM, Cocco E, Guzzo F, English DP, Varughese J, Gasparrini S, Bortolomai I, Buza N, Hui P, Abu-Khalaf M, Ravaggi A, Bignotti E, Bandiera E, Romani C, Todeschini P, Tassi R, Zanotti L, Carrara L, Pecorelli S, Silasi DA, Ratner E, Azodi M, Schwartz PE, Rutherford TJ, Stiegler AL, Mane S, Boggon TJ, Schlessinger J, Lifton RP, Santin AD. Landscape of somatic single-nucleotide and copy-number mutations in uterine serous carcinoma. Proc Natl Acad Sci U S A. 2013;110(8):2916–21. doi: 10.1073/pnas.1222577110.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R, Benz CC, Yau C, Laird PW, Ding L, Zhang W, Mills GB, Kucherlapati R, Mardis ER, Levine DA. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73. doi: 10.1038/nature12113.PubMedGoogle Scholar
  57. 57.
    Church DN, Briggs SE, Palles C, Domingo E, Kearsey SJ, Grimes JM, Gorman M, Martin L, Howarth KM, Hodgson SV, Kaur K, Taylor J, Tomlinson IP. DNA polymerase varepsilon and delta exonuclease domain mutations in endometrial cancer. Hum Mol Genet. 2013;22:2820–8. doi: 10.1093/hmg/ddt131.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Gupta S, Ramjaun AR, Haiko P, Wang Y, Warne PH, Nicke B, Nye E, Stamp G, Alitalo K, Downward J. Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell. 2007;129(5):957–68. doi: 10.1016/j.cell.2007.03.051.PubMedGoogle Scholar
  59. 59.
    Oda K, Stokoe D, Taketani Y, McCormick F. High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res. 2005;65(23):10669–73. doi: 10.1158/0008-5472.CAN-05-2620.PubMedGoogle Scholar
  60. 60.
    Jaiswal BS, Janakiraman V, Kljavin NM, Chaudhuri S, Stern HM, Wang W, Kan Z, Dbouk HA, Peters BA, Waring P, Dela Vega T, Kenski DM, Bowman KK, Lorenzo M, Li H, Wu J, Modrusan Z, Stinson J, Eby M, Yue P, Kaminker JS, de Sauvage FJ, Backer JM, Seshagiri S. Somatic mutations in p85alpha promote tumorigenesis through class IA PI3K activation. Cancer Cell. 2009;16(6):463–74. doi: 10.1016/j.ccr.2009.10.016.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Rudd ML, Price JC, Fogoros S, Godwin AK, Sgroi DC, Merino MJ, Bell DW. A unique spectrum of somatic PIK3CA (p110alpha) mutations within primary endometrial carcinomas. Clin Cancer Res. 2011;17(6):1331–40. doi: 10.1158/1078-0432.CCR-10-0540.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304(5670):554. doi: 10.1126/science.1096502.PubMedGoogle Scholar
  63. 63.
    Slomovitz BM, Coleman RL. The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial cancer. Clin Cancer Res. 2012;18(21):5856–64. doi: 10.1158/1078-0432.CCR-12-0662.PubMedGoogle Scholar
  64. 64.
    Tredan O, Treilleux I, Wang Q, Gane N, Pissaloux D, Bonnin N, Petit T, Cretin J, Bonichon-Lamichhane N, Priou F, Lavau-Denes S, Mari V, Freyer G, Lebrun D, Alexandre J, Ray-Coquard I. Predicting everolimus treatment efficacy in patients with advanced endometrial carcinoma: a GINECO group study. Target Oncol. 2012;8:243–51. doi: 10.1007/s11523-012-0242-9.PubMedGoogle Scholar
  65. 65.
    Ray-Coquard I, Favier L, Weber B, Roemer-Becuwe C, Bougnoux P, Fabbro M, Floquet A, Joly F, Plantade A, Paraiso D, Pujade-Lauraine E. Everolimus as second- or third-line treatment of advanced endometrial cancer: ENDORAD, a phase II trial of GINECO. Br J Cancer. 2013;108(9):1771–7. doi: 10.1038/bjc.2013.183.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Colombo N, McMeekin DS, Schwartz PE, Sessa C, Gehrig PA, Holloway R, Braly P, Matei D, Morosky A, Dodion PF, Einstein MH, Haluska F. Ridaforolimus as a single agent in advanced endometrial cancer: results of a single-arm, phase 2 trial. Br J Cancer. 2013;108(5):1021–6. doi: 10.1038/bjc.2013.59.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Weigelt B, Warne PH, Lambros MB, Reis-Filho JS, Downward J. PI3K pathway dependencies in endometrioid endometrial cancer cell lines. Clin Cancer Res. 2013;19:3533–44. doi: 10.1158/1078-0432.CCR-12-3815.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Hampel H, Frankel W, Panescu J, Lockman J, Sotamaa K, Fix D, Comeras I, La Jeunesse J, Nakagawa H, Westman JA, Prior TW, Clendenning M, Penzone P, Lombardi J, Dunn P, Cohn DE, Copeland L, Eaton L, Fowler J, Lewandowski G, Vaccarello L, Bell J, Reid G, de la Chapelle A. Screening for Lynch syndrome (hereditary nonpolyposis colorectal cancer) among endometrial cancer patients. Cancer Res. 2006;66(15):7810–7. doi: 10.1158/0008-5472.CAN-06-1114.PubMedGoogle Scholar
  69. 69.
    Ollikainen M, Abdel-Rahman WM, Moisio AL, Lindroos A, Kariola R, Jarvela I, Poyhonen M, Butzow R, Peltomaki P. Molecular analysis of familial endometrial carcinoma: a manifestation of hereditary nonpolyposis colorectal cancer or a separate syndrome? J Clin Oncol. 2005;23(21):4609–16. doi: 10.1200/JCO.2005.06.055.PubMedGoogle Scholar
  70. 70.
    Aarnio M, Sankila R, Pukkala E, Salovaara R, Aaltonen LA, de la Chapelle A, Peltomaki P, Mecklin JP, Jarvinen HJ. Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer. 1999;81(2):214–8.PubMedGoogle Scholar
  71. 71.
    Meyer LA, Broaddus RR, Lu KH. Endometrial cancer and Lynch syndrome: clinical and pathologic considerations. Cancer Control. 2009;16(1):14–22.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Vasen HF, Watson P, Mecklin JP, Lynch HT. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology. 1999;116(6):1453–6.PubMedGoogle Scholar
  73. 73.
    Lu KH, Dinh M, Kohlmann W, Watson P, Green J, Syngal S, Bandipalliam P, Chen LM, Allen B, Conrad P, Terdiman J, Sun C, Daniels M, Burke T, Gershenson DM, Lynch H, Lynch P, Broaddus RR. Gynecologic cancer as a “sentinel cancer” for women with hereditary nonpolyposis colorectal cancer syndrome. Obstet Gynecol. 2005;105(3):569–74. doi: 10.1097/ Scholar
  74. 74.
    Win AK, Lindor NM, Winship I, Tucker KM, Buchanan DD, Young JP, Rosty C, Leggett B, Giles GG, Goldblatt J, Macrae FA, Parry S, Kalady MF, Baron JA, Ahnen DJ, Marchand LL, Gallinger S, Haile RW, Newcomb PA, Hopper JL, Jenkins MA. Risks of colorectal and other cancers after endometrial cancer for women with Lynch syndrome. J Natl Cancer Inst. 2013;105(4):274–9. doi: 10.1093/jnci/djs525.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Ruschoff J, Fishel R, Lindor NM, Burgart LJ, Hamelin R, Hamilton SR, Hiatt RA, Jass J, Lindblom A, Lynch HT, Peltomaki P, Ramsey SD, Rodriguez-Bigas MA, Vasen HF, Hawk ET, Barrett JC, Freedman AN, Srivastava S. Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004;96(4):261–8.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Folkins AK, Longacre TA. Hereditary gynaecological malignancies: advances in screening and treatment. Histopathology. 2013;62(1):2–30. doi: 10.1111/his.12028.PubMedGoogle Scholar
  77. 77.
    Garg K, Soslow RA. Lynch syndrome (hereditary non-polyposis colorectal cancer) and endometrial carcinoma. J Clin Pathol. 2009;62(8):679–84. doi: 10.1136/jcp.2009.064949.PubMedGoogle Scholar
  78. 78.
    Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Bigas MA, Fodde R, Ranzani GN, Srivastava S. A National Cancer Institute Workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58(22):5248–57.PubMedGoogle Scholar
  79. 79.
    Suraweera N, Duval A, Reperant M, Vaury C, Furlan D, Leroy K, Seruca R, Iacopetta B, Hamelin R. Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology. 2002;123(6):1804–11. doi: 10.1053/gast.2002.37070.PubMedGoogle Scholar
  80. 80.
    Wong YF, Cheung TH, Lo KW, Yim SF, Chan LK, Buhard O, Duval A, Chung TK, Hamelin R. Detection of microsatellite instability in endometrial cancer: advantages of a panel of five mononucleotide repeats over the National Cancer Institute panel of markers. Carcinogenesis. 2006;27(5):951–5. doi: 10.1093/carcin/bgi333.PubMedGoogle Scholar
  81. 81.
    Wijnen J, de Leeuw W, Vasen H, van der Klift H, Moller P, Stormorken A, Meijers-Heijboer H, Lindhout D, Menko F, Vossen S, Moslein G, Tops C, Brocker-Vriends A, Wu Y, Hofstra R, Sijmons R, Cornelisse C, Morreau H, Fodde R. Familial endometrial cancer in female carriers of MSH6 germline mutations. Nat Genet. 1999;23(2):142–4. doi: 10.1038/13773.PubMedGoogle Scholar
  82. 82.
    Hendriks YM, Wagner A, Morreau H, Menko F, Stormorken A, Quehenberger F, Sandkuijl L, Moller P, Genuardi M, Van Houwelingen H, Tops C, Van Puijenbroek M, Verkuijlen P, Kenter G, Van Mil A, Meijers-Heijboer H, Tan GB, Breuning MH, Fodde R, Wijnen JT, Brocker-Vriends AH, Vasen H. Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance. Gastroenterology. 2004;127(1):17–25.PubMedGoogle Scholar
  83. 83.
    Wu Y, Berends MJ, Mensink RG, Kempinga C, Sijmons RH, van Der Zee AG, Hollema H, Kleibeuker JH, Buys CH, Hofstra RM. Association of hereditary nonpolyposis colorectal cancer-related tumors displaying low microsatellite instability with MSH6 germline mutations. Am J Hum Genet. 1999;65(5):1291–8. doi: 10.1086/302612.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Modica I, Soslow RA, Black D, Tornos C, Kauff N, Shia J. Utility of immunohistochemistry in predicting microsatellite instability in endometrial carcinoma. Am J Surg Pathol. 2007;31(5):744–51. doi: 10.1097/01.pas.0000213428.61374.06.PubMedGoogle Scholar
  85. 85.
    Domchek SM, Bradbury A, Garber JE, Offit K, Robson ME. Multiplex genetic testing for cancer susceptibility: out on the high wire without a net? J Clin Oncol. 2013;31(10):1267–70. doi: 10.1200/JCO.2012.46.9403.PubMedGoogle Scholar
  86. 86.
    Zimmermann A, Bernuit D, Gerlinger C, Schaefers M, Geppert K. Prevalence, symptoms and management of uterine fibroids: an international internet-based survey of 21,746 women. BMC Womens Health. 2012;12:6. doi: 10.1186/1472-6874-12-6.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Cramer SF, Patel A. The frequency of uterine leiomyomas. Am J Clin Pathol. 1990;94(4):435–8.PubMedGoogle Scholar
  88. 88.
    Perot G, Croce S, Ribeiro A, Lagarde P, Velasco V, Neuville A, Coindre JM, Stoeckle E, Floquet A, MacGrogan G, Chibon F. MED12 alterations in both human benign and malignant uterine soft tissue tumors. PLoS One. 2012;7(6):e40015. doi: 10.1371/journal.pone.0040015.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: leiomyosarcoma. Cancer Genet Cytogenet. 2005;161(1):1–19.PubMedGoogle Scholar
  90. 90.
    Howlader N, Noone AM, Krapcho M, Garshell J, Neyman N, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA, editors. SEER cancer statistics review, 1975–2010. Bethesda, MD: National Cancer Institute; 2013.Google Scholar
  91. 91.
    Bell SW, Kempson RL, Hendrickson MR. Problematic uterine smooth muscle neoplasms. A clinicopathologic study of 213 cases. Am J Surg Pathol. 1994;18(6):535–58.PubMedGoogle Scholar
  92. 92.
    Veras E, Malpica A, Deavers MT, Silva EG. Mitosis-specific marker phospho-histone H3 in the assessment of mitotic index in uterine smooth muscle tumors: a pilot study. Int J Gynecol Pathol. 2009;28(4):316–21. doi: 10.1097/PGP.0b013e318193df97.PubMedGoogle Scholar
  93. 93.
    Lim D, Alvarez T, Nucci MR, Gilks B, Longacre T, Soslow RA, Oliva E. Interobserver variability in the interpretation of tumor cell necrosis in uterine leiomyosarcoma. Am J Surg Pathol. 2013;37(5):650–8. doi: 10.1097/PAS.0b013e3182851162.PubMedGoogle Scholar
  94. 94.
    Soper JT, McCarty Jr KS, Hinshaw W, Creasman WT, McCarty Sr KS, Clarke-Pearson DL. Cytoplasmic estrogen and progesterone receptor content of uterine sarcomas. Am J Obstet Gynecol. 1984;150(4):342–8.PubMedGoogle Scholar
  95. 95.
    Sutton GP, Stehman FB, Michael H, Young PC, Ehrlich CE. Estrogen and progesterone receptors in uterine sarcomas. Obstet Gynecol. 1986;68(5):709–14.PubMedGoogle Scholar
  96. 96.
    Wade K, Quinn MA, Hammond I, Williams K, Cauchi M. Uterine sarcoma: steroid receptors and response to hormonal therapy. Gynecol Oncol. 1990;39(3):364–7.PubMedGoogle Scholar
  97. 97.
    Zhai YL, Kobayashi Y, Mori A, Orii A, Nikaido T, Konishi I, Fujii S. Expression of steroid receptors, Ki-67, and p53 in uterine leiomyosarcomas. Int J Gynecol Pathol. 1999;18(1):20–8.PubMedGoogle Scholar
  98. 98.
    Mittal K, Demopoulos RI. MIB-1 (Ki-67), p53, estrogen receptor, and progesterone receptor expression in uterine smooth muscle tumors. Hum Pathol. 2001;32(9):984–7. doi: 10.1053/hupa.2001.27113.PubMedGoogle Scholar
  99. 99.
    Bodner K, Bodner-Adler B, Kimberger O, Czerwenka K, Leodolter S, Mayerhofer K. Estrogen and progesterone receptor expression in patients with uterine leiomyosarcoma and correlation with different clinicopathological parameters. Anticancer Res. 2003;23(1B):729–32.PubMedGoogle Scholar
  100. 100.
    Leitao MM, Soslow RA, Nonaka D, Olshen AB, Aghajanian C, Sabbatini P, Dupont J, Hensley M, Sonoda Y, Barakat RR, Anderson S. Tissue microarray immunohistochemical expression of estrogen, progesterone, and androgen receptors in uterine leiomyomata and leiomyosarcoma. Cancer. 2004;101(6):1455–62. doi: 10.1002/cncr.20521.PubMedGoogle Scholar
  101. 101.
    Jeffers MD, Farquharson MA, Richmond JA, McNicol AM. p53 immunoreactivity and mutation of the p53 gene in smooth muscle tumours of the uterine corpus. J Pathol. 1995;177(1):65–70. doi: 10.1002/path.1711770111.PubMedGoogle Scholar
  102. 102.
    Bodner-Adler B, Bodner K, Czerwenka K, Kimberger O, Leodolter S, Mayerhofer K. Expression of p16 protein in patients with uterine smooth muscle tumors: an immunohistochemical analysis. Gynecol Oncol. 2005;96(1):62–6. doi: 10.1016/j.ygyno.2004.09.026.PubMedGoogle Scholar
  103. 103.
    Akhan SE, Yavuz E, Tecer A, Iyibozkurt CA, Topuz S, Tuzlali S, Bengisu E, Berkman S. The expression of Ki-67, p53, estrogen and progesterone receptors affecting survival in uterine leiomyosarcomas. A clinicopathologic study. Gynecol Oncol. 2005;99(1):36–42. doi: 10.1016/j.ygyno.2005.05.019.PubMedGoogle Scholar
  104. 104.
    O’Neill CJ, McBride HA, Connolly LE, McCluggage WG. Uterine leiomyosarcomas are characterized by high p16, p53 and MIB1 expression in comparison with usual leiomyomas, leiomyoma variants and smooth muscle tumours of uncertain malignant potential. Histopathology. 2007;50(7):851–8. doi: 10.1111/j.1365-2559.2007.02699.x.PubMedGoogle Scholar
  105. 105.
    Atkins KA, Arronte N, Darus CJ, Rice LW. The Use of p16 in enhancing the histologic classification of uterine smooth muscle tumors. Am J Surg Pathol. 2008;32(1):98–102. doi: 10.1097/PAS.0b013e3181574d1e.PubMedGoogle Scholar
  106. 106.
    Gannon BR, Manduch M, Childs TJ. Differential Immunoreactivity of p16 in leiomyosarcomas and leiomyoma variants. Int J Gynecol Pathol. 2008;27(1):68–73. doi: 10.1097/pgp.0b013e3180ca954f.PubMedGoogle Scholar
  107. 107.
    Chen L, Yang B. Immunohistochemical analysis of p16, p53, and Ki-67 expression in uterine smooth muscle tumors. Int J Gynecol Pathol. 2008;27(3):326–32. doi: 10.1097/PGP.0b013e31815ea7f5.PubMedGoogle Scholar
  108. 108.
    Lee CH, Turbin DA, Sung YC, Espinosa I, Montgomery K, van de Rijn M, Gilks CB. A panel of antibodies to determine site of origin and malignancy in smooth muscle tumors. Mod Pathol. 2009;22(12):1519–31. doi: 10.1038/modpathol.2009.122.PubMedGoogle Scholar
  109. 109.
    Ip PP, Cheung AN, Clement PB. Uterine smooth muscle tumors of uncertain malignant potential (STUMP): a clinicopathologic analysis of 16 cases. Am J Surg Pathol. 2009;33(7):992–1005. doi: 10.1097/PAS.0b013e3181a02d1c.PubMedGoogle Scholar
  110. 110.
    D'Angelo E, Espinosa I, Ali R, Gilks CB, Rijn M, Lee CH, Prat J. Uterine leiomyosarcomas: tumor size, mitotic index, and biomarkers Ki67, and Bcl-2 identify two groups with different prognosis. Gynecol Oncol. 2011;121(2):328–33. doi: 10.1016/j.ygyno.2011.01.022.PubMedGoogle Scholar
  111. 111.
    Hakverdi S, Gungoren A, Yaldiz M, Hakverdi AU, Toprak S. Immunohistochemical analysis of p16 expression in uterine smooth muscle tumors. Eur J Gynaecol Oncol. 2011;32(5):513–5.PubMedGoogle Scholar
  112. 112.
    Makinen N, Mehine M, Tolvanen J, Kaasinen E, Li Y, Lehtonen HJ, Gentile M, Yan J, Enge M, Taipale M, Aavikko M, Katainen R, Virolainen E, Bohling T, Koski TA, Launonen V, Sjoberg J, Taipale J, Vahteristo P, Aaltonen LA. MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science. 2011;334(6053):252–5. doi: 10.1126/science.1208930.PubMedGoogle Scholar
  113. 113.
    Makinen N, Heinonen HR, Moore S, Tomlinson IP, van der Spuy ZM, Aaltonen LA. MED12 exon 2 mutations are common in uterine leiomyomas from South African patients. Oncotarget. 2011;2(12):966–9.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Je EM, Kim MR, Min KO, Yoo NJ, Lee SH. Mutational analysis of MED12 exon 2 in uterine leiomyoma and other common tumors. Int J Cancer. 2012;131(6):E1044–7. doi: 10.1002/ijc.27610.PubMedGoogle Scholar
  115. 115.
    McGuire MM, Yatsenko A, Hoffner L, Jones M, Surti U, Rajkovic A. Whole exome sequencing in a random sample of North American women with leiomyomas identifies MED12 mutations in majority of uterine leiomyomas. PLoS One. 2012;7(3):e33251. doi:10.1371/journal.pone.0033251.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Markowski DN, Huhle S, Nimzyk R, Stenman G, Loning T, Bullerdiek J. MED12 mutations occurring in benign and malignant mammalian smooth muscle tumors. Genes Chromosomes Cancer. 2013;52(3):297–304. doi: 10.1002/gcc.22029.PubMedGoogle Scholar
  117. 117.
    Matsubara A, Sekine S, Yoshida M, Yoshida A, Taniguchi H, Kushima R, Tsuda H, Kanai Y. Prevalence of MED12 mutations in uterine and extrauterine smooth muscle tumours. Histopathology. 2013;62(4):657–61. doi: 10.1111/his.12039.PubMedGoogle Scholar
  118. 118.
    de Graaff MA, Cleton-Jansen AM, Szuhai K, Bovee JV. Mediator complex subunit 12 exon 2 mutation analysis in different subtypes of smooth muscle tumors confirms genetic heterogeneity. Hum Pathol. 2013;44(8):1597–604. doi: 10.1016/j.humpath.2013.01.006.PubMedGoogle Scholar
  119. 119.
    Conaway RC, Conaway JW. Function and regulation of the mediator complex. Curr Opin Genet Dev. 2011;21(2):225–30. doi: 10.1016/j.gde.2011.01.013.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Kim S, Xu X, Hecht A, Boyer TG. Mediator is a transducer of Wnt/beta-catenin signaling. J Biol Chem. 2006;281(20):14066–75. doi: 10.1074/jbc.M602696200.PubMedGoogle Scholar
  121. 121.
    Zhou H, Kim S, Ishii S, Boyer TG. Mediator modulates Gli3-dependent Sonic hedgehog signaling. Mol Cell Biol. 2006;26(23):8667–82. doi: 10.1128/MCB.00443-06.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Tutter AV, Kowalski MP, Baltus GA, Iourgenko V, Labow M, Li E, Kadam S. Role for Med12 in regulation of Nanog and Nanog target genes. J Biol Chem. 2009;284(6):3709–18. doi: 10.1074/jbc.M805677200.PubMedGoogle Scholar
  123. 123.
    Makinen N, Vahteristo P, Kampjarvi K, Arola J, Butzow R, Aaltonen LA. MED12 exon 2 mutations in histopathological uterine leiomyoma variants. Eur J Hum Genet. 2013;21:1300–3. doi: 10.1038/ejhg.2013.33.PubMedGoogle Scholar
  124. 124.
    Lehtonen R, Kiuru M, Vanharanta S, Sjoberg J, Aaltonen LM, Aittomaki K, Arola J, Butzow R, Eng C, Husgafvel-Pursiainen K, Isola J, Jarvinen H, Koivisto P, Mecklin JP, Peltomaki P, Salovaara R, Wasenius VM, Karhu A, Launonen V, Nupponen NN, Aaltonen LA. Biallelic inactivation of fumarate hydratase (FH) occurs in nonsyndromic uterine leiomyomas but is rare in other tumors. Am J Pathol. 2004;164(1):17–22. doi: 10.1016/S0002-9440(10)63091-X.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: leiomyoma. Cancer Genet Cytogenet. 2005;158(1):1–26. doi: 10.1016/j.cancergencyto.2004.08.025.PubMedGoogle Scholar
  126. 126.
    Mehine M, Kaasinen E, Makinen N, Katainen R, Kampjarvi K, Pitkanen E, Heinonen HR, Butzow R, Kilpivaara O, Kuosmanen A, Ristolainen H, Gentile M, Sjoberg J, Vahteristo P, Aaltonen LA. Characterization of uterine leiomyomas by whole-genome sequencing. N Engl J Med. 2013;369:43–53. doi: 10.1056/NEJMoa1302736.PubMedGoogle Scholar
  127. 127.
    Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, Pleasance ED, Lau KW, Beare D, Stebbings LA, McLaren S, Lin ML, McBride DJ, Varela I, Nik-Zainal S, Leroy C, Jia M, Menzies A, Butler AP, Teague JW, Quail MA, Burton J, Swerdlow H, Carter NP, Morsberger LA, Iacobuzio-Donahue C, Follows GA, Green AR, Flanagan AM, Stratton MR, Futreal PA, Campbell PJ. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011;144(1):27–40. doi: 10.1016/j.cell.2010.11.055.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Hodge JC, Morton CC (2007) Genetic heterogeneity among uterine leiomyomata: insights into malignant progression. Hum Mol Genet. 16 Spec No 1:R7-13. doi: 10.1093/hmg/ddm043.
  129. 129.
    Kuhn E, Yemelyanova A, Wang TL, Kurman R, Shih IeM. Abstract 5536: TP53 and MED12 mutations in uterine smooth muscle tumors. In: AACR 103rd Annual Meeting, Chicago, IL, USA, 2012. vol 8, Supplement 1. Cancer Res.Google Scholar
  130. 130.
    de Vos S, Wilczynski SP, Fleischhacker M, Koeffler P. p53 alterations in uterine leiomyosarcomas versus leiomyomas. Gynecol Oncol. 1994;54(2):205–8. doi: 10.1006/gyno.1994.1194.PubMedGoogle Scholar
  131. 131.
    Chew I, Oliva E. Endometrial stromal sarcomas: a review of potential prognostic factors. Adv Anat Pathol. 2010;17(2):113–21. doi: 10.1097/PAP.0b013e3181cfb7c2.PubMedGoogle Scholar
  132. 132.
    Tanner EJ, Garg K, Leitao Jr MM, Soslow RA, Hensley ML. High grade undifferentiated uterine sarcoma: surgery, treatment, and survival outcomes. Gynecol Oncol. 2012;127(1):27–31. doi: 10.1016/j.ygyno.2012.06.030.PubMedGoogle Scholar
  133. 133.
    Malouf GG, Lhomme C, Duvillard P, Morice P, Haie-Meder C, Pautier P. Prognostic factors and outcome of undifferentiated endometrial sarcoma treated by multimodal therapy. Int J Gynaecol Obstet. 2013;122(1):57–61. doi: 10.1016/j.ijgo.2013.01.025.PubMedGoogle Scholar
  134. 134.
    Jin Y, Pan L, Wang X, Dai Z, Huang H, Guo L, Shen K, Lian L. Clinical characteristics of endometrial stromal sarcoma from an academic medical hospital in China. Int J Gynecol Cancer. 2010;20(9):1535–9.PubMedGoogle Scholar
  135. 135.
    Kurihara S, Oda Y, Ohishi Y, Iwasa A, Takahira T, Kaneki E, Kobayashi H, Wake N, Tsuneyoshi M. Endometrial stromal sarcomas and related high-grade sarcomas: immunohistochemical and molecular genetic study of 31 cases. Am J Surg Pathol. 2008;32(8):1228–38. doi: 10.1097/PAS.0b013e31816a3b42.PubMedGoogle Scholar
  136. 136.
    Nucci MR, O’Connell JT, Huettner PC, Cviko A, Sun D, Quade BJ. h-Caldesmon expression effectively distinguishes endometrial stromal tumors from uterine smooth muscle tumors. Am J Surg Pathol. 2001;25(4):455–63.PubMedGoogle Scholar
  137. 137.
    Oliva E, Young RH, Amin MB, Clement PB. An immunohistochemical analysis of endometrial stromal and smooth muscle tumors of the uterus: a study of 54 cases emphasizing the importance of using a panel because of overlap in immunoreactivity for individual antibodies. Am J Surg Pathol. 2002;26(4):403–12.PubMedGoogle Scholar
  138. 138.
    de Leval L, Waltregny D, Boniver J, Young RH, Castronovo V, Oliva E. Use of histone deacetylase 8 (HDAC8), a new marker of smooth muscle differentiation, in the classification of mesenchymal tumors of the uterus. Am J Surg Pathol. 2006;30(3):319–27. doi: 10.1097/01.pas.0000188029.63706.31.PubMedGoogle Scholar
  139. 139.
    McCluggage WG, Date A, Bharucha H, Toner PG. Endometrial stromal sarcoma with sex cord-like areas and focal rhabdoid differentiation. Histopathology. 1996;29(4):369–74.PubMedGoogle Scholar
  140. 140.
    Fukunaga M, Miyazawa Y, Ushigome S. Endometrial low-grade stromal sarcoma with ovarian sex cord-like differentiation: report of two cases with an immunohistochemical and flow cytometric study. Pathol Int. 1997;47(6):412–5.PubMedGoogle Scholar
  141. 141.
    Zamecnik M, Michal M. Endometrial stromal nodule with retiform sex-cord-like differentiation. Pathol Res Pract. 1998;194(6):449–53.PubMedGoogle Scholar
  142. 142.
    Baker RJ, Hildebrandt RH, Rouse RV, Hendrickson MR, Longacre TA. Inhibin and CD99 (MIC2) expression in uterine stromal neoplasms with sex-cord-like elements. Hum Pathol. 1999;30(6):671–9.PubMedGoogle Scholar
  143. 143.
    Ohta Y, Suzuki T, Kojima M, Shiokawa A, Mitsuya T. Low-grade endometrial stromal sarcoma with an extensive epithelial-like element. Pathol Int. 2003;53(4):246–51.PubMedGoogle Scholar
  144. 144.
    Sumathi VP, Al-Hussaini M, Connolly LE, Fullerton L, McCluggage WG. Endometrial stromal neoplasms are immunoreactive with WT-1 antibody. Int J Gynecol Pathol. 2004;23(3):241–7.PubMedGoogle Scholar
  145. 145.
    Irving JA, Carinelli S, Prat J. Uterine tumors resembling ovarian sex cord tumors are polyphenotypic neoplasms with true sex cord differentiation. Mod Pathol. 2006;19(1):17–24. doi: 10.1038/modpathol.3800475.PubMedGoogle Scholar
  146. 146.
    Reich O, Regauer S, Urdl W, Lahousen M, Winter R. Expression of oestrogen and progesterone receptors in low-grade endometrial stromal sarcomas. Br J Cancer. 2000;82(5):1030–4. doi: 10.1054/bjoc.1999.1038.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Chu MC, Mor G, Lim C, Zheng W, Parkash V, Schwartz PE. Low-grade endometrial stromal sarcoma: hormonal aspects. Gynecol Oncol. 2003;90(1):170–6.PubMedGoogle Scholar
  148. 148.
    Balleine RL, Earls PJ, Webster LR, Mote PA, deFazio A, Harnett PR, Clarke CL. Expression of progesterone receptor A and B isoforms in low-grade endometrial stromal sarcoma. Int J Gynecol Pathol. 2004;23(2):138–44.PubMedGoogle Scholar
  149. 149.
    Lee CH, Marino-Enriquez A, Ou W, Zhu M, Ali RH, Chiang S, Amant F, Gilks CB, van de Rijn M, Oliva E, Debiec-Rychter M, Dal Cin P, Fletcher JA, Nucci MR. The clinicopathologic features of YWHAE-FAM22 endometrial stromal sarcomas: a histologically high-grade and clinically aggressive tumor. Am J Surg Pathol. 2012;36(5):641–53. doi: 10.1097/PAS.0b013e31824a7b1a.PubMedGoogle Scholar
  150. 150.
    Jakate K, Azimi F, Ali RH, Lee CH, Clarke BA, Rasty G, Shaw PA, Melnyk N, Huntsman DG, Laframboise S, Rouzbahman M. Endometrial sarcomas: an immunohistochemical and JAZF1 re-arrangement study in low-grade and undifferentiated tumors. Mod Pathol. 2013;26(1):95–105. doi: 10.1038/modpathol.2012.136.PubMedGoogle Scholar
  151. 151.
    Ng TL, Gown AM, Barry TS, Cheang MC, Chan AK, Turbin DA, Hsu FD, West RB, Nielsen TO. Nuclear beta-catenin in mesenchymal tumors. Mod Pathol. 2005;18(1):68–74. doi: 10.1038/modpathol.3800272.PubMedGoogle Scholar
  152. 152.
    Jung CK, Jung JH, Lee A, Lee YS, Choi YJ, Yoon SK, Lee KY. Diagnostic use of nuclear beta-catenin expression for the assessment of endometrial stromal tumors. Mod Pathol. 2008;21(6):756–63. doi: 10.1038/modpathol.2008.53.PubMedGoogle Scholar
  153. 153.
    Kildal W, Pradhan M, Abeler VM, Kristensen GB, Danielsen HE. Beta-catenin expression in uterine sarcomas and its relation to clinicopathological parameters. Eur J Cancer. 2009;45(13):2412–7. doi: 10.1016/j.ejca.2009.06.017.PubMedGoogle Scholar
  154. 154.
    Kurihara S, Oda Y, Ohishi Y, Kaneki E, Kobayashi H, Wake N, Tsuneyoshi M. Coincident expression of beta-catenin and cyclin D1 in endometrial stromal tumors and related high-grade sarcomas. Mod Pathol. 2010;23(2):225–34. doi: 10.1038/modpathol.2009.162.PubMedGoogle Scholar
  155. 155.
    Moinfar F, Gogg-Kamerer M, Sommersacher A, Regitnig P, Man YG, Zatloukal K, Denk H, Tavassoli FA. Endometrial stromal sarcomas frequently express epidermal growth factor receptor (EGFR, HER-1): potential basis for a new therapeutic approach. Am J Surg Pathol. 2005;29(4):485–9.PubMedGoogle Scholar
  156. 156.
    Cossu-Rocca P, Contini M, Uras MG, Muroni MR, Pili F, Carru C, Bosincu L, Massarelli G, Nogales FF, De Miglio MR. Tyrosine kinase receptor status in endometrial stromal sarcoma: an immunohistochemical and genetic-molecular analysis. Int J Gynecol Pathol. 2012;31(6):570–9. doi: 10.1097/PGP.0b013e31824fe289.PubMedGoogle Scholar
  157. 157.
    Sardinha R, Hernandez T, Fraile S, Tresserra F, Vidal A, Gomez MC, Astudillo A, Hernandez N, Saenz de Santamaria J, Ordi J, Goncalves L, Ramos R, Balana C, de Alava E. Endometrial stromal tumors: immunohistochemical and molecular analysis of potential targets of tyrosine kinase inhibitors. Clin Sarcoma Res. 2013;3(1):3. doi: 10.1186/2045-3329-3-3.PubMedPubMedCentralGoogle Scholar
  158. 158.
    Cheng X, Yang G, Schmeler KM, Coleman RL, Tu X, Liu J, Kavanagh JJ. Recurrence patterns and prognosis of endometrial stromal sarcoma and the potential of tyrosine kinase-inhibiting therapy. Gynecol Oncol. 2011;121(2):323–7. doi: 10.1016/j.ygyno.2010.12.360.PubMedGoogle Scholar
  159. 159.
    Moinfar F, Regitnig P, Tabrizi AD, Denk H, Tavassoli FA. Expression of androgen receptors in benign and malignant endometrial stromal neoplasms. Virchows Arch. 2004;444(5):410–4. doi: 10.1007/s00428-004-0981-9.PubMedGoogle Scholar
  160. 160.
    Reich O, Regauer S. Aromatase expression in low-grade endometrial stromal sarcomas: an immunohistochemical study. Mod Pathol. 2004;17(1):104–8. doi: 10.1038/sj.modpathol.3800031.PubMedGoogle Scholar
  161. 161.
    Liegl B, Reich O, Nogales FF, Regauer S. PDGF-alpha and PDGF-beta are expressed in endometrial stromal sarcoma: a potential therapeutic target for tyrosine kinase inhibitors? Histopathology. 2006;49(5):545–6. doi: 10.1111/j.1365-2559.2006.02529.x.PubMedGoogle Scholar
  162. 162.
    Chiang S, Oliva E. Recent developments in uterine mesenchymal neoplasms. Histopathology. 2013;62(1):124–37. doi: 10.1111/his.12048.PubMedGoogle Scholar
  163. 163.
    Croce S, Hostein I, Ribeiro A, Garbay D, Velasco V, Stoeckle E, Guyon F, Floquet A, Neuville A, Coindre JM, Macgrogan G, Chibon F. YWHAE rearrangement identified by FISH and RT-PCR in endometrial stromal sarcomas: genetic and pathological correlations. Mod Pathol. 2013;26:1390–400. doi: 10.1038/modpathol.2013.69.PubMedGoogle Scholar
  164. 164.
    Lee CH, Ali RH, Rouzbahman M, Marino-Enriquez A, Zhu M, Guo X, Brunner AL, Chiang S, Leung S, Nelnyk N, Huntsman DG, Blake Gilks C, Nielsen TO, Dal Cin P, van de Rijn M, Oliva E, Fletcher JA, Nucci MR. Cyclin D1 as a diagnostic immunomarker for endometrial stromal sarcoma with YWHAE-FAM22 rearrangement. Am J Surg Pathol. 2012;36(10):1562–70. doi: 10.1097/PAS.0b013e31825fa931.PubMedPubMedCentralGoogle Scholar
  165. 165.
    Koontz JI, Soreng AL, Nucci M, Kuo FC, Pauwels P, van Den Berghe H, Dal Cin P, Fletcher JA, Sklar J. Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc Natl Acad Sci U S A. 2001;98(11):6348–53. doi: 10.1073/pnas.101132598.PubMedPubMedCentralGoogle Scholar
  166. 166.
    Huang HY, Ladanyi M, Soslow RA. Molecular detection of JAZF1-JJAZ1 gene fusion in endometrial stromal neoplasms with classic and variant histology: evidence for genetic heterogeneity. Am J Surg Pathol. 2004;28(2):224–32.PubMedGoogle Scholar
  167. 167.
    Hrzenjak A, Moinfar F, Tavassoli FA, Strohmeier B, Kremser ML, Zatloukal K, Denk H. JAZF1/JJAZ1 gene fusion in endometrial stromal sarcomas: molecular analysis by reverse transcriptase-polymerase chain reaction optimized for paraffin-embedded tissue. J Mol Diagn. 2005;7(3):388–95. doi: 10.1016/S1525-1578(10)60568-5.PubMedPubMedCentralGoogle Scholar
  168. 168.
    Oliva E, de Leval L, Soslow RA, Herens C. High frequency of JAZF1-JJAZ1 gene fusion in endometrial stromal tumors with smooth muscle differentiation by interphase FISH detection. Am J Surg Pathol. 2007;31(8):1277–84. doi: 10.1097/PAS.0b013e318031f012.PubMedGoogle Scholar
  169. 169.
    Nucci MR, Harburger D, Koontz J, Dal Cin P, Sklar J. Molecular analysis of the JAZF1-JJAZ1 gene fusion by RT-PCR and fluorescence in situ hybridization in endometrial stromal neoplasms. Am J Surg Pathol. 2007;31(1):65–70. doi: 10.1097/01.pas.0000213327.86992.d1.PubMedGoogle Scholar
  170. 170.
    Chiang S, Ali R, Melnyk N, McAlpine JN, Huntsman DG, Gilks CB, Lee CH, Oliva E. Frequency of known gene rearrangements in endometrial stromal tumors. Am J Surg Pathol. 2011;35(9):1364–72. doi: 10.1097/PAS.0b013e3182262743.PubMedGoogle Scholar
  171. 171.
    D'Angelo E, Ali RH, Espinosa I, Lee CH, Huntsman DG, Gilks B, Prat J. Endometrial stromal sarcomas with sex cord differentiation are associated with PHF1 rearrangement. Am J Surg Pathol. 2013;37(4):514–21. doi: 10.1097/PAS.0b013e318272c612.PubMedGoogle Scholar
  172. 172.
    Micci F, Walter CU, Teixeira MR, Panagopoulos I, Bjerkehagen B, Saeter G, Heim S. Cytogenetic and molecular genetic analyses of endometrial stromal sarcoma: nonrandom involvement of chromosome arms 6p and 7p and confirmation of JAZF1/JJAZ1 gene fusion in t(7;17). Cancer Genet Cytogenet. 2003;144(2):119–24.PubMedGoogle Scholar
  173. 173.
    Panagopoulos I, Micci F, Thorsen J, Gorunova L, Eibak AM, Bjerkehagen B, Davidson B, Heim S. Novel fusion of MYST/Esa1-associated factor 6 and PHF1 in endometrial stromal sarcoma. PLoS One. 2012;7(6):e39354. doi: 10.1371/journal.pone.0039354.PubMedPubMedCentralGoogle Scholar
  174. 174.
    Panagopoulos I, Thorsen J, Gorunova L, Haugom L, Bjerkehagen B, Davidson B, Heim S, Micci F. Fusion of the ZC3H7B and BCOR genes in endometrial stromal sarcomas carrying an X;22-translocation. Genes Chromosomes Cancer. 2013;52(7):610–8. doi: 10.1002/gcc.22057.PubMedGoogle Scholar
  175. 175.
    Lee CH, Ou WB, Marino-Enriquez A, Zhu M, Mayeda M, Wang Y, Guo X, Brunner AL, Amant F, French CA, West RB, McAlpine JN, Gilks CB, Yaffe MB, Prentice LM, McPherson A, Jones SJ, Marra MA, Shah SP, van de Rijn M, Huntsman DG, Dal Cin P, Debiec-Rychter M, Nucci MR, Fletcher JA. 14-3-3 fusion oncogenes in high-grade endometrial stromal sarcoma. Proc Natl Acad Sci U S A. 2012;109(3):929–34. doi: 10.1073/pnas.1115528109.PubMedPubMedCentralGoogle Scholar
  176. 176.
    Isphording A, Ali RH, Irving J, Goytain A, Nelnyk N, Hoang LN, Gilks CB, Huntsman DG, Nielsen TO, Nucci MR, Lee CH. YWHAE-FAM22 endometrial stromal sarcoma: diagnosis by reverse transcription-polymerase chain reaction in formalin-fixed, paraffin-embedded tumor. Hum Pathol. 2013;44(5):837–43. doi: 10.1016/j.humpath.2012.08.007.PubMedGoogle Scholar
  177. 177.
    Li H, Ma X, Wang J, Koontz J, Nucci M, Sklar J. Effects of rearrangement and allelic exclusion of JJAZ1/SUZ12 on cell proliferation and survival. Proc Natl Acad Sci U S A. 2007;104(50):20001–6. doi: 10.1073/pnas.0709986104.PubMedPubMedCentralGoogle Scholar
  178. 178.
    Li H, Wang J, Mor G, Sklar J. A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science. 2008;321(5894):1357–61. doi: 10.1126/science.1156725.PubMedGoogle Scholar
  179. 179.
    Amant F, Tousseyn T, Coenegrachts L, Decloedt J, Moerman P, Debiec-Rychter M. Case report of a poorly differentiated uterine tumour with t(10;17) translocation and neuroectodermal phenotype. Anticancer Res. 2011;31(6):2367–71.PubMedGoogle Scholar
  180. 180.
    Fehr A, Hansson MC, Kindblom LG, Stenman G. YWHAE-FAM22 gene fusion in clear cell sarcoma of the kidney. J Pathol. 2012;227(4):e5–7. doi: 10.1002/path.4040.PubMedGoogle Scholar
  181. 181.
    O’Meara E, Stack D, Lee CH, Garvin AJ, Morris T, Argani P, Han JS, Karlsson J, Gisselson D, Leuschner I, Gessler M, Graf N, Fletcher JA, O’Sullivan MJ. Characterization of the chromosomal translocation t(10;17)(q22;p13) in clear cell sarcoma of kidney. J Pathol. 2012;227(1):72–80. doi: 10.1002/path.3985.PubMedGoogle Scholar
  182. 182.
    Boronow RC. Endometrial cancer: not a benign disease. Obstet Gynecol. 1976;47(5):630–4.PubMedGoogle Scholar
  183. 183.
    Kinde I, Bettegowda C, Wang Y, Wu J, Agrawal N, Shih IM, Kurman R, Dao F, Levine DA, Giuntoli R, Roden R, Eshleman JR, Carvalho JP, Marie SK, Papadopoulos N, Kinzler KW, Vogelstein B, Diaz Jr LA. Evaluation of DNA from the Papanicolaou test to detect ovarian and endometrial cancers. Sci Transl Med. 2013;5(167):167ra4. doi: 10.1126/scitranslmed.3004952.PubMedPubMedCentralGoogle Scholar
  184. 184.
    Byron SA, Pollock PM. FGFR2 as a molecular target in endometrial cancer. Future Oncol. 2009;5(1):27–32. doi: 10.2217/14796694.5.1.27.PubMedGoogle Scholar
  185. 185.
    Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4. doi:10.1158/2159-8290.CD-12-0095.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sarah Chiang
    • 1
  • Luciano G. Martelotto
    • 1
  • Britta Weigelt
    • 1
  1. 1.Department of PathologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations