Skip to main content

The Role of Arbuscular Mycorrhizal Fungi in Alleviation of Salt Stress

Abstract

Salinity is one of the abiotic stresses adversely affecting plant growth and productivity. Salt tolerance of plants requires knowledge of the physiological mechanisms and recognition of genes, which affect plant tolerance at different plant growth stages. Recently, the researchers try to improve plant tolerance to salt stress via biofertilizers treatments such as arbuscular mycorrhizal (AM) fungi. AM fungi colonize plant root system and improve plant growth by various ways. This chapter focuses on the mechanisms of the AM fungi, which improve salt tolerance of host plants. These mechanisms include the improved nutrient uptake (N, P, Ca, and Mg), maintenance of the K+/Na+ ratio, biochemical changes (accumulation of sugar, proline, betaines, and antioxidant enzymes) and physiological changes (water status, relative permeability, chlorophyll concentration, and abscisic acid accumulation).

Keywords

  • Enzymes
  • Mycorrhizal fungi
  • Plant
  • Salinity
  • Stress

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-0721-2_2
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-0721-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)

References

  • Abdel Latef AA (2010) Changes of antioxidative enzymes in salinity tolerance among different wheat cultivars. Cereal Res Comm 38:43–55

    Google Scholar 

  • Abdel Latef AA (2011a) Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuumL.). Mycorrhiza 21:495–503

    PubMed  CrossRef  CAS  Google Scholar 

  • Abdel Latef AA (2011b) Ameliorative effect of calcium chloride on growth, antioxidant enzymes, protein patterns and some metabolic activities of canola (Brassica napusL.) under seawater stress. J Plant Nutr 34:1303–1320

    CrossRef  CAS  Google Scholar 

  • Abdel Latef AA (2013) Growth and some physiological activities of pepper (Capsicum annuum L.) in response to cadmium stress and mycorrhizal symbiosis. J Agr Sci Tech 15:1437–1448

    Google Scholar 

  • Abdel Latef AA, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127:228−233

    Google Scholar 

  • Abdel Latef AA, Chaoxing H (2014) Does the inoculation with Glomus mosseae improve salt tolerance in pepper plants?. J Plant Growth Regulat. doi: 10.1007/s00344-014-9414-4

  • Abdel Latef AA, Shaddad KAM, Ismail MA, Abu Alhmad FM. (2009). Benzyladenine can alleviate saline injury of two roselle (Hibiscus sabdariffa) cultivars via equilibration of cytosolutes including anthocyanins. Int J Agric Biol 11:151–157

    Google Scholar 

  • Al-Garni SMS (2006) Increasing NaCl-salt tolerance of a halophytic plant Phragmitesaustralis by mycorrhizal symbiosis. Am Euras J Agri Environ Scie 1:119–126

    Google Scholar 

  • Allen EB, Cunningham GL (1983) Effects of vesicular-arbuscularmycorrhizae on Distichlisspicata under three salinity levels. New Phytol 93:227–236

    CrossRef  Google Scholar 

  • Allen MF, Moore TS, Christensen M (1982) Phytohormone changes in Boutelouagracilis infected by vesicular-arbuscularmycorrhizae II; Altered levels of gibberellin-like substances and abscisic acid in the host plant. Can J Bot 60:468–471

    CrossRef  CAS  Google Scholar 

  • Asghari HR, Marschner P, Smith SE, Smith FA (2005) Growth response of Atriplex nummularia to inoculation with arbuscular mycorrhizal fungi at different salinity levels. Plant Soil 373:245–256

    Google Scholar 

  • Asghari HR, Chittleborough DJ, Smith FA, Smith SE (2005) Influence of arbuscular mycorrhizal (AM) symbiosis on phosphorus leaching through soil cores. Plant and Soil 275:181–193

    Google Scholar 

  • Bago B, Pfeffer PE, Abubaker J, Jun J, Allen JW, Brouillette J, Douds DD, Lammers PJ, Shachar-Hill Y (2003) Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol 131:1496–1507

    PubMed Central  PubMed  CrossRef  CAS  Google Scholar 

  • Bago B, Zipfel W, Williams RM, Jun J, Arreola R, Lammers PJ, Pfeffer PE, Shachar-Hill Y (2002) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128:108–124

    PubMed Central  PubMed  CrossRef  CAS  Google Scholar 

  • Bearden B, Petersen L (2000) Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of a vertisol. Plant Soil 218:173–183

    CrossRef  CAS  Google Scholar 

  • Beltrano J, Ruscitti M, Arango MC, Ronco M (2013) Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and P levels. J Soil Sci Plant Nutr 13:123–141

    Google Scholar 

  • Blaha G, Stelzl U, Spahn CMT, Agrawal RK, Frank J, Nierhaus KH (2000) Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Meth Enzymol 317:292–309

    PubMed  CrossRef  CAS  Google Scholar 

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281

    CrossRef  CAS  Google Scholar 

  • Cabello ML, Gaspar L, Pollero R (1994) Glomus antarcticum sp. Nov., a vesicular arbuscular mycorrhizal fungus from Antarctica. Mycotaxon 51:123–128

    Google Scholar 

  • Caproni AL, Franco AA, Berbara RLL, Trufem SB, Granha JRD, Monteiro AB. (2003). Arbuscular mycorrhizal fungi occurrence in revegetated areas after bauxite mining at Porto Trombetas, Para state, Brazil. Pesquisa-Agropecuária-Brasileira. 38:1409–1418

    Google Scholar 

  • Daei G, Ardakani M, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:617–625

    PubMed  CrossRef  CAS  Google Scholar 

  • Dalpé Y, Aiken SG (1998) Arbuscular mycorrhizal fungi associated with Festuca species in Canadian High Arctic. Can J Bot 76:1930–1938

    CrossRef  Google Scholar 

  • Duke ER, Johnson CR, Koch KE (1986) Accumulation of phosphorus, dry matter and betaine during NaCl stress of split-root citrus seedlings colonized with vesicular-arbuscular mycorrhizal fungi on zero, one or two halves. New Phytol 104:583–590

    CrossRef  CAS  Google Scholar 

  • Estrada-Luna AA, Davies FT (2003) Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscisic acid and growth of micropropagated chile ancho pepper (Capsicum annuum) plantlets during acclimatization and post acclimatization. J Plant Physiol 160:1073–1083

    PubMed  CrossRef  CAS  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomusintraradices inoculation to nutrient acquisition and mitigat ion of ionic imbalance in NaCl-stressed Trigonellafoenum-graecum. Mycorrhiza 22:203–217

    PubMed  CrossRef  CAS  Google Scholar 

  • Evelin H, Kapoor R (2013) Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants. Mycorrhiza doi: 10.1007/s00572-013-0529-4

  • Evelin H, Giri B, Kapoor R (2013) Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonella foenum-gr aecum. Mycorrhiza 23:71–86

    PubMed  CrossRef  CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    PubMed Central  PubMed  CrossRef  CAS  Google Scholar 

  • Feng G, Zhang FS, Li Xl, Tian CY, Tang C, Rengel Z. (2002). Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12: 185–190

    Google Scholar 

  • Frechill S, Lasa B, Ibarretxe L, Lamsfus C, Aparicio Trejo P. (2001). Pea response to saline stress is affected by the source of nitrogen nutrition (ammonium or nitrate). Plant Growth Regulat 35:171–179

    Google Scholar 

  • Fuzy A, Biro B, Toth T, Hildebrandt U, Bothe H (2008) Drought, but not salinity, determines the apparent effectiveness of halophytes colonized by arbuscular mycorrhizal fungi. J Plant Physiol 165:1181–1192

    PubMed  CrossRef  CAS  Google Scholar 

  • Ganesan V, Ragupathy S, Parthipan B, Rajini-Rani DB, Mahadevan A (1991) Distribution of vesicular-arbuscular mycorrhizal fungi in coal, lignite and calcite mine spoils of India. BiolFertil Soils 12:131–136

    CrossRef  Google Scholar 

  • Garg N, Manchanda G (2008) Effect of arbuscular mycorrhizal inoculation of salt-induced nodule senescence in Cajanus cajan (pigeonpea). J Plant Growth Regulat 27:115–124

    CrossRef  CAS  Google Scholar 

  • Gaspar ML, Pollero RJ, Cabello MN (1994) Triacylglycerol consumption during spore germination of vesicular-arbuscular mycorrhizal fungi. J Am Oil Chem Soc 71:449–452

    CrossRef  CAS  Google Scholar 

  • Gerdemann JW (1968) Vesicular-arbuscular mycorrhiza and plant growth. Ann Rev Phytopathol 6:397–418

    Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175

    Google Scholar 

  • Giri B, Kapoor R, Agarwal L, Mukerji KG (2004) Pre-inoculation with arbuscular mycorrhizae helps Acacia auriculiformis grow in degraded Indian wasteland soil. Comm Soil Sci Plant Anal 35:193–204

    Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum, maybe partly related to elevated K+/Na+ ratio in root and shoot tissues. Microb Ecol 54:753–760

    PubMed  CrossRef  CAS  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbaniaaegyptiaca and Sesbaniagrandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    PubMed  CrossRef  Google Scholar 

  • Gorham J (1995) Betaines in higher plants—biosynthesis and role in stress metabolism. In: Wallgrove RM (ed) Amino acids and their derivatives in higher plants. Cambridge University Press, Cambridge, pp 171–203

    Google Scholar 

  • Graham JH, Syversten JP (1984) Influence of vesicular arbuscular mycorrhiza on the hydraulic conductivity of roots of two Citrus rootstocks. New Phytol 97:277–284

    CrossRef  Google Scholar 

  • Hajiboland R (2013) Role of arbuscular mycorrhiza in amelioration of salinity. In: Ahmad P et al (eds) Salt stress in plants: signalling, omics and adaptations. Springer, New York, pp 301–354

    Google Scholar 

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenreider C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327

    CrossRef  CAS  Google Scholar 

  • Hall IR (1977) Species and mycorrhizal infections of New Zealand Endogonaceae. Transaction of the British Mycological Society. 68:341–356

    CrossRef  Google Scholar 

  • Hamdia MA, Shaddad MAK (2010) Salt tolerance of crop plants. Review. J Stress Physiol Biochem 6:64–90

    Google Scholar 

  • Hameed A, Dilfuza E, Abd-Allah EF, Hashem A, Kumar A, Ahmad P (2014) Salinity stress and arbuscular mycorrhizal symbiosis in Plants. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 139–159

    Google Scholar 

  • Hassanein RA, Hassanein AA, Haider AS, Hashem HA (2009) Improving salt tolerance of Zea Mays L. plants by presoaking their grains in glycine betaine. Aust J Basic Appl Sci 3:928–942

    Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    PubMed  CrossRef  CAS  Google Scholar 

  • Horie T, Karahara I, Katsuhara M (2012) Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice. 5:11

    CrossRef  Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225–234

    PubMed  CrossRef  CAS  Google Scholar 

  • Jarstfer AG, Farmer-Koppenol P, Sylvia DM (1998) Tissue magnesium and calcium affect mycorrhiza development and fungal reproduction. Mycorrhiza 7:237–242

    PubMed  CrossRef  CAS  Google Scholar 

  • Javid MJ, Sorooshzadeh A, Moradi F, Sanavy SAMM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Aust J Crop Sci 5:726–734

    CAS  Google Scholar 

  • Jeffries P, Spyropoulos T, Vardavarkis E (1988) Vesicular-arbuscular mycorrhizal status of various crops in different agricultural soils of northern Greece. Biol Fertil Soils 5:333–337

    CrossRef  Google Scholar 

  • Jindal V, Atwal A, Sekhon BS, Singh R (1993) Effect of vesicular-arbuscular mycorrhizae on metabolism of moong plants under NaCl salinity. Plant Physiol Biochem 3:475–481

    Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53

    PubMed  CrossRef  Google Scholar 

  • Juniper S, Abbott LK (1993) Vesicular –arbuscular mycorrhizas and soil salinity. Mycorrhiza 4:45–57

    CrossRef  Google Scholar 

  • Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–379

    PubMed  CrossRef  CAS  Google Scholar 

  • Kapoor R, Sharma D, Bhatnagar AK (2008) Arbuscular mycorrhizae in micropropagation systems and their potential applications. Sci Hortic 116:227–239

    Google Scholar 

  • Kapoor R, Evelin H, Mathur P, Giri B (2013) Arbuscular mycorrhiza: Approaches for abiotic stress tolerance in crop plants for sustainable agriculture. In: Tuteja N and Gill SS (eds) Plant acclimation to environmental stress. Springer, LLC, pp 359–401

    Google Scholar 

  • Kaya C, Ashraf M, Sonmez O, Aydemir S, Tuna LA, Cullu AM (2009) The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. SciHortic. 121:1–6

    CAS  Google Scholar 

  • Keskin BC, Sarikaya AT, Yuksel B, Memon AR (2010) Abscisic acid regulated gene expression in bread wheat. Aust J Crop Sci 4:617–625

    CAS  Google Scholar 

  • Kothari SK, Marschner H, George E (1990) Effect of VA mycorrhizal fungi and rhizosphere microorganism on root and shoot morphology, growth and water relations of maize. New Phytol 116:303–311

    CrossRef  Google Scholar 

  • Maathuis FJM (2009) Physiological functions of mineral macro nutrients. Curr Opin Plant Biol 12:250–258

    PubMed  CrossRef  CAS  Google Scholar 

  • Manchanda G, Garg N (2011) Alleviation of salt-induced ionic, osmotic and oxidative stresses in Cajanuscajan nodules by AM inoculation. Plant Biosyst. 145:88–97

    CrossRef  Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Review. Plant Biol. 12:563–569

    CAS  Google Scholar 

  • Miransari M (2011a) Arbuscular mycorrhizal fungi and nitrogen uptake. Review article. Arch Microbiol. 193:77–81

    PubMed  CrossRef  CAS  Google Scholar 

  • Miransari M (2011b) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653

    PubMed  CrossRef  CAS  Google Scholar 

  • Miransari et al. (2014) Plant hormones as signals in arbuscular mycorrhizal symbiosis. Crit Rev Biotechnol (In press)

    Google Scholar 

  • Murkute AA, Sharma S, Singh SK (2006) Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi. Hort Sci. 33:70–76

    Google Scholar 

  • Paraviz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants—a review. Plant Soil Environ 54:89–99

    Google Scholar 

  • Paul EA, Kucey RMN (1981) Carbon flow in plant microbial associations photosynthesis. Science 213:473–474

    PubMed  CrossRef  CAS  Google Scholar 

  • Pearson JN, Jakobsen I (1993) The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labelling with 32P and 33P. New Phytol 124:489–494

    CrossRef  CAS  Google Scholar 

  • Pearson JN, Schweiger P (1993) Scutellospora calospora (Nicol. and Gerd.) Walker & Sanders associated with subterranean clover: dynamics of colonization, sporulation and soluble carbohydrates. New Phytol 124:215–219

    CrossRef  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200

    CrossRef  CAS  Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Viciafaba plants under salinity stress. Afri J Biotech 4:210–222

    CAS  Google Scholar 

  • Read DJ, Koucheki HK, Hodgson J (1976) Vesicular-arbuscular mycorrhiza in natural vegetation systems I; The occurrence of infection. New Phytol 77:641–653

    CrossRef  Google Scholar 

  • Redhead JF (1977) Endotrophic mycorrhizas in Nigeria: species of endogonaceae and their distribution. Trans British Mycol Soc 69:275–280

    CrossRef  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcόn C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63:4033–4044

    Google Scholar 

  • Russell J, Bulman S (2005) The liverwort Marchantia foliacea forms a specialized symbiosis with arbuscular mycorrhizal fungi in the genus Glomus. New Phytol 165:567–579

    PubMed  CrossRef  CAS  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Schüßler A (2005). http:// www.tu-darmstadt. de/fb/ bio/ bot/ schuessler/ amphylo/ amphylogeny.html. ( Accessed Aug 2005)

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    CrossRef  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151

    PubMed  CrossRef  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidant defense mechanism in plants under stressful conditions. A review. J Bot. 2012:1–26

    Google Scholar 

  • Sheng M, Tang M, Chan H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    PubMed  CrossRef  CAS  Google Scholar 

  • Sheng M, Tang M, Zhang F, Huang Y (2011) Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 21:423–430

    PubMed  CrossRef  Google Scholar 

  • Sjöberg J (2005) Arbuscular mycorrhizal fungi–occurrence in Sweden and interaction with a plant pathogenic fungus in barley. Ph.D. Thesis. Swedish Univ Agri Sci, Uppsala, pp 1–55

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, San Diego, CA

    Google Scholar 

  • Solaiman MD, Saito M (1997) Use of sugars by intra radical hyphae of arbuscular mycorrhizal fungi revealed by radiorespirometry. New Phytolo 136:533–538

    Google Scholar 

  • Tahat MM, Sijam K (2012) Mycorrhizal fungi and abiotic environmental conditions relationship. Res J Environ Sci 6:125–133

    Google Scholar 

  • Talaat NB, Shawky BT (2014) Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) Plants exposed to salinity. Environ Exp Bot 98:20–31

    Google Scholar 

  • Thompson JP (1990) Soil sterilization methods to show VA-mycorrhizae aid P and Zn nutrition of wheat in vertisols. Soil Biol Biochem 22:229–240

    CrossRef  CAS  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    CrossRef  Google Scholar 

  • Xie X, Weng B, Cai B, Dong Y, Yan C (2014) Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth and nutrient uptake of Kandelia obovata (Sheue, Liu & Yong) seedlings in autoclaved soil. App Soil Eco 75:162–171

    Google Scholar 

  • Xu G, Magen H, Tarchitzky J, Kafkaki U (2000) Advances in chloride nutrition. Adv Agron 68:96–150

    Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97:111–119

    CrossRef  Google Scholar 

  • Zuccarini P (2007) Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Plant Soil Environ 53:283–289

    CAS  Google Scholar 

  • Zuccarini P, Okurowska P (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31:497–513

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arafat Abdel Hamed Abdel Latef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Abdel Latef, A.A.H., Miransari, M. (2014). The Role of Arbuscular Mycorrhizal Fungi in Alleviation of Salt Stress. In: Miransari, M. (eds) Use of Microbes for the Alleviation of Soil Stresses. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0721-2_2

Download citation