Skip to main content

Microbial Inoculums

  • 1279 Accesses

Abstract

Use of soil microbes to inoculate plants is a favorite method of fertilization environmentally and economically. There are different microbial species used as inoculum including arbuscular mycorrhizal fungi and plant growth promotin rhizobacteria (PGPR) including rhizobium. The microbial species are able to positively affect plant growth by increasing the uptake of water and nutrients, production of different products, controlling unfavorable microbes, interacting with other microbes, etc. It is hence important to prepare suitable inoculums, which are able to act favorably under different conditions including stress. The microbial inoculum must be tested under different conditions so that the most efficient and tolerant species be selected and used. If the microbial species are used under stress, preferably they must be isolated from stressed environments so that they can tolerate and handle the stress more efficiently. If the consortium of microbial species is used, the important factor is the interactions between the microbes, which must be determined and in case of favorite interactions they can be used as inoculum. Some of the most and recent findings are reviewed and analyzed.

Keywords

  • Arbuscular mycorrhizal fungi
  • Inoculum
  • Microbial species
  • Interactions
  • Plant growth promoting rhizobacteria (PGPR)

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-0721-2_11
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-0721-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)

References

  • Adesemoye A, Kloepper J (2009) Plant–microbes interactions in enhanced fertilizer use efficiency. Appl Microbiol Biotechnol 85:1–12

    PubMed  CrossRef  CAS  Google Scholar 

  • Albareda M, Dardanelli M, Sousa C, Megıas M, Temprano F, Rodriguez-Navarro D (2006) Factors affecting the attachment of rhizospheric bacteria to bean and soybea roots. FEMS Microbiol Lett 259:67–73

    PubMed  CrossRef  CAS  Google Scholar 

  • Auffan M, Rose J, Bottero J-Y, Lowry G, Jolivet J, Wiesner M (2009) Towards definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641

    PubMed  CrossRef  CAS  Google Scholar 

  • Bashan Y, Puente M, Rodriguez-Mendoza M, Toledo G, Holguin G, Ferrera-Cerrato R, Pedrin S (1995) Survival of Azospirillum brasilense in the bulk soil and rhizosphere o 23 soil types. Appl Environ Microbiol 61:1938–1945

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bashan Y, Hernandez J, Leyva L, Bacilio M (2002) Alginate microbeads as inoculan carriers for plant growthpromoting bacteria. Biol Fertil Soil 35:359–368

    CrossRef  Google Scholar 

  • Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution o species richness and composition to bacterial services. Nature 436:1157–1160

    PubMed  CrossRef  CAS  Google Scholar 

  • Brahmaprakash GP, Kumar P (2011) Biofertilizers for Sustainability. J Indian Inst Sci 92:37–62

    Google Scholar 

  • Cartieaux F et al (2003) Transcriptome analysis of Arabidopsis colonized by a plant growth promoting rhizobacterium reveals a general effect on disease resistance. Plant J 36:177–188

    PubMed  CrossRef  CAS  Google Scholar 

  • Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP (2009) The bacterial specie challenge: making sense of genetic and ecological diversity. Science 323:741–746

    PubMed  CrossRef  CAS  Google Scholar 

  • Gryndler M, Hrselova H, Sudova R, Gryndlerova H, Rezacova V, Merhautova V (2005) Hyphal growth and mycorrhiza formation by the arbuscular mycorrhizal fungus Glomu claroideum BEG 23 is stimulated by humic substances. Mycorrhiza 15(7):483–488

    PubMed  CrossRef  CAS  Google Scholar 

  • Gryndler M, Hrselova H, Cajthaml T, Havrankova M, Rezacova V, Gryndlerova H, Larsen J (2009) Influence of soil organic matter decomposition on arbuscula mycorrhizal fungi in terms of asymbiotic hyphal growth and root colonizatio. Mycorrhiza 19:255–266

    PubMed  CrossRef  Google Scholar 

  • Jansa J, Smith FA, Smith SA (2008) Are there benefits of simultaneous root colonizatio by different arbuscular mycorrhizal fungi? New Phytol 177:779–789

    PubMed  CrossRef  CAS  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal association along the mutualism-parasitism continuum. New Phytol 135:575–586

    CrossRef  Google Scholar 

  • Khavazi K, Rejali F, Seguin P, Miransari M (2007) Effects of carrier, sterilizatio method, and incubation on survival of Bradyrhizobium japonicum in soybean (Glycin max L.) inoculants. Enzym Microb Technol 41:780–784

    CrossRef  CAS  Google Scholar 

  • Kloepper JW (1996) Host specificity in microbe-microbe interactions. Bioscience 46:406–409

    CrossRef  Google Scholar 

  • Lekberg Y, Koide RT, Rohr JR, Aldrich-Wolfe L, Morton JB (2007) Role of nich restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol 95:95–105

    CrossRef  Google Scholar 

  • Lempert RJ, Norling P, Pernin CG, Resetar SA, Mahnovski S (2003) Next generatio environmental technologies: benefits and barriers. Rand, New York, p 24

    Google Scholar 

  • Liu L, Liu Y, Shin H, Chen R, Li J, Du G, Chen J (2013) Microbial production o glucosamine and N-acetylglucosamine: advances and perspectives. Appl Microbiol Biotechnol 97:6149–6158

    PubMed  CrossRef  CAS  Google Scholar 

  • Malusa E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganism inocula used as biofertilizers. Sci World J Article ID 491206:12

    Google Scholar 

  • Manjula K, Podile A (2001) Chitin-supplemented formulations improve biocontrol an plant growth promoting efficiency of Bacillus subtilis AF 1. Can J Microbiol 47:618–625

    PubMed  CrossRef  CAS  Google Scholar 

  • Marschner P, Rumberger A (2004) Rapid changes in the rhizosphere bacteria community structure during re-colonization of sterilized soil. Biol Fertil Soil 40:1–6

    CrossRef  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Intern 37:1362–1375

    CrossRef  CAS  Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stresses. Plant Biol 12:563–569 (Review article)

    Google Scholar 

  • Miransari M (2011a) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89:917–930 (Review article)

    Google Scholar 

  • Miransari M (2011b) Soil microbes and plant fertilization. App Microbiol Biotechnol 92:875–885 (Review article)

    Google Scholar 

  • Miransari M (2013a). Plant Growth Promoting Rhizobacteria. J Plant Nutr (in press)

    Google Scholar 

  • Miransari M (2013b). Soil microbes and the availability of soil nutrients. Act Physiologiae Plantarum 35:3075–3084

    Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ, Torabi H (2007) Using arbuscula mycorrhiza to reduce the stressful effects of soil compaction on corn (Zea mays L.) growth. Soil Biol Biochem 39:2014–2026

    CrossRef  CAS  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2008) Using arbuscular mycorrhiz to reduce the stressful effects of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206

    CrossRef  CAS  Google Scholar 

  • Miransari M et al (2013a). Improving soybean (Glycine max L.) N2-fixation unde stress. J Plant Growth Regul 32:909–921

    Google Scholar 

  • Miransari M et al. (2013b). Plant hormones as signals in arbuscular mycorrhiza symbiosis. Crit Rev Biotechnol. (In press)

    Google Scholar 

  • Muresu R, Sulas L, Caredda S (2003) Legume—Rhizobium symbiosis: characteristic and prospects of inoculation. Rivoluzione Agronomica 37:33–45

    Google Scholar 

  • Navrotsky A (2000) Technology and applications. Nanomaterials in the environment agriculture, and technology (NEAT). J Nanopart Res 2:321–323

    CrossRef  Google Scholar 

  • Rouissi T, John R, Brar S, Tyagi R, Prevost D (2010) Original research: centrifuga recovery of rhizobial cells from fermented starch industry wastewater and development of stable formulation. Ind Biotechnol 6:41–49

    CrossRef  CAS  Google Scholar 

  • Schenk P, Carvalhais L, Kazan K (2012) Unravelling plant-microbe interactions: ca multi-species transcriptomics help? Trend Biotechnol 30:177–184

    CrossRef  CAS  Google Scholar 

  • Schmidt FR (2005) Optimization and scale up of industrial fermentation processes. App Microbiol Biotechnol 68:425–435

    CrossRef  CAS  Google Scholar 

  • Seneviratne G, Zavahir JS, Bandara W, Weerasekara M (2008) Fungal-bacteria biofilms: their development for novel biotechnological applications. World J Microbiol Biotechnol 24:739–743

    CrossRef  CAS  Google Scholar 

  • Shen Z, Wang J (2011) Biological denitrification using cross-linked starch/PCL blend as solid carbon source and biofilm carrier. Bioresour Technol 102:8835–8838

    PubMed  CrossRef  CAS  Google Scholar 

  • Smidsrod O, Skjak-Braek G (1990) Alginate as immobilization matrix for cells. Trend Biotechnol 8:71–78

    CrossRef  CAS  Google Scholar 

  • Strullu D, Plenchette C (1991) The entrapment of Glomus sp. in alginate beads and their use as root inoculum. Mycol Res 95:1194–1196

    CrossRef  Google Scholar 

  • Tavasolee A, Aliasgharzad N, SalehiJouzani G, Mardi M, Asgharzadeh A (2011) Interactive effects of Arbuscular mycorrhizal fungi and rhizobial strains on chickpe growth and nutrient content in plant. Afr J Biotechnol 10:7585–7591

    Google Scholar 

  • Trivedi P, Pandey A, Palni L (2005) Carrier-based preparations of plant growth promoting bacterial inoculants suitable for use in cooler regions. World J Microbiol Biotechnol 21:941–945

    CrossRef  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    PubMed  CrossRef  Google Scholar 

  • Vassilev N, Vassileva M, Azcon R, Medina A (2001) Preparation of gel-entrappe mycorrhizal inoculum in the presence or absence of Yarowia lipolytica. Biotechnol Lett 23:907–909

    CrossRef  CAS  Google Scholar 

  • Vassileva M, Serrano M, Bravo V et al (2010) Multifunctional properties of phosphate solubilizing microorganisms grown on agro-industrial wastes in fermentation and soil conditions. Appl Microbiol Biotechnol 85:1287–1299

    PubMed  CrossRef  CAS  Google Scholar 

  • Verhagen BWM et al (2004) The transcriptome of Rhizobacteria-induced systemic resistance in Arabidopis. Mol Plant Microbe Interact 17:895–908

    PubMed  CrossRef  CAS  Google Scholar 

  • Vilchez S, Manzanera M (2011) Biotechnological uses of desiccation-toleran microorganisms for the rhizoremediation of soils subjected to seasonal drought. App Microbiol Biotechnol 91:1297–1304

    CrossRef  CAS  Google Scholar 

  • Wagg C, Jansa J, Schmid B, van der Heijden G (2011) Belowground biodiversity effect of plant symbionts support aboveground productivity. Ecol Lett 14:1001–1009

    PubMed  CrossRef  Google Scholar 

  • Yabur R, Bashan Y, Hernandez-Carmona G (2007) Alginate from the macroalga Sargassum sinicola as a novel source for microbial immobilization material i wastewater treatment and plant growth promotion. J Appl Phycol 19(1):43–53

    Google Scholar 

  • Zabihi HR, Savaghebi GR, Khavazi K, Ganjali A, Miransari M (2010) Pseudomona bacteria and phosphorous fertilization, affecting wheat (Triticum aestivum L.) yield and uptake under greenhouse and field conditions. Acta Physiol Plant 33:145–152

    CrossRef  Google Scholar 

  • Zhao ZX et al (2010) ABA-regulated G protein signaling in arabidopsis guard cells: 381 proteomic perspective. J Proteome Res 9:1637–1647

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Miransari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miransari, M. (2014). Microbial Inoculums. In: Miransari, M. (eds) Use of Microbes for the Alleviation of Soil Stresses. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0721-2_11

Download citation