Skip to main content

Methodological Approaches for Understanding the Epigenetic Landscape of the Human Breast and Its Implications in Cancer and Prevention

  • Chapter
  • First Online:
  • 966 Accesses

Abstract

Breast cancer is among the most prevalent of cancers diagnosed within women worldwide [1]. To this end, much effort has been directed towards the research and development of viable methods for treating the disease. While treatment of breast cancer is both important and necessary, investigation of means for preventing the disease is of equal significance. In order to prevent the development of breast cancer, it is important that we understand the normal breast. The differentiation of the mammary gland during pregnancy is a key event that provides protection from neoplasia [2, 3]. At the heart of lobular differentiation is a specific pattern of gene expression induced by pregnancy [4–8]. Here, we report a methodological approach to understand the unique methylation profiles within the parous and nulliparous postmenopausal breast. We consider that an epigenomic signature of pregnancy, combined with our knowledge of the transcriptomic signature, may provide a comprehensive understanding of the molecular basis of mammary differentiation. In this chapter, we discuss some of the paradigms in order to provide a better understanding of our data on the epigenetic basis of breast cancer prevention.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literature Cited

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917

    Article  CAS  PubMed  Google Scholar 

  2. Russo IH, Koszalka M, Russo J (1991) Comparative study of the influence of pregnancy and hormonal treatment on mammary carcinogenesis. Br J Cancer 64:481–484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Russo J, Russo IH (2004) Molecular basis of breast cancer: prevention and treatment. Springer, Berlin

    Book  Google Scholar 

  4. Russo J, Rivera R, Russo IH (1992) Influence of age and parity on the development of the human breast. Breast Cancer Res Treat 23:211–218

    Article  CAS  PubMed  Google Scholar 

  5. Asztalos S, Gann PH, Hayes MK, Nonn L, Beam CA, Dai Y, Wiley EL, Tonetti DA (2010) Gene expression patterns in the human breast after pregnancy. Cancer Prev Res (Phila) 3:301–311

    Article  CAS  Google Scholar 

  6. Peri S, de Cicco RL, Santucci-Pereira J, Slifker M, Ross EA, Russo IH, Russo PA, Arslan AA, Belitskaya-Levy I, Zeleniuch-Jacquotte A, Bordas P, Lenner P, Ahman J, Afanasyeva Y, Johansson R, Sheriff F, Hallmans G, Toniolo P, Russo J (2012) Defining the genomic signature of the parous breast. BMC Med Genomics 5:46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Russo J, Santucci-Pereira J, de Cicco RL, Sheriff F, Russo PA, Peri S, Slifker M, Ross E, Mello ML, Vidal BC, Belitskaya-Levy I, Arslan A, Zeleniuch-Jacquotte A, Bordas P, Lenner P, Ahman J, Afanasyeva Y, Hallmans G, Toniolo P, Russo IH (2012) Pregnancy-induced chromatin remodeling in the breast of postmenopausal women. Int J Cancer 131:1059–1070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Belitskaya-Levy I, Zeleniuch-Jacquotte A, Russo J, Russo IH, Bordas P, Ahman J, Afanasyeva Y, Johansson R, Lenner P, Li X, de Cicco RL, Peri S, Ross E, Russo PA, Santucci-Pereira J, Sheriff FS, Slifker M, Hallmans G, Toniolo P, Arslan AA (2011) Characterization of a genomic signature of pregnancy identified in the breast. Cancer Prev Res (Phila) 4:1457–1464

    Article  Google Scholar 

  9. Jablonka E, Lamb MJ (2002) The changing concept of epigenetics. Ann N Y Acad Sci 981:82–96

    Article  PubMed  Google Scholar 

  10. Holliday R (1987) The inheritance of epigenetic defects. Science 238:163–170

    Article  CAS  PubMed  Google Scholar 

  11. Holliday R (2005) DNA methylation and epigenotypes. Biochemistry (Mosc) 70:500–504

    Article  CAS  Google Scholar 

  12. Cohn WE (1951) The isolation and identification of desoxy-5-methylcytidylic acid from thymus nucleic acid1. J Am Chem Soc 73:1539–1541

    Article  CAS  Google Scholar 

  13. Holliday R (2006) Epigenetics: a historical overview. Epigenetics 1:76–80

    Article  PubMed  Google Scholar 

  14. Doskocil J, Sorm F (1962) Distribution of 5-methylcytosine in pyrimidine sequences of deoxyribonucleic acids. Biochim Biophys Acta 55:953–959

    Article  CAS  PubMed  Google Scholar 

  15. Doerfler W (1981) DNA methylation–a regulatory signal in eukaryotic gene expression. J Gen Virol 57:1–20

    Article  CAS  PubMed  Google Scholar 

  16. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282

    Article  CAS  PubMed  Google Scholar 

  17. Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187:226–232

    Article  CAS  PubMed  Google Scholar 

  18. Futscher BW, Oshiro MM, Wozniak RJ, Holtan N, Hanigan CL, Duan H, Domann FE (2002) Role for DNA methylation in the control of cell type specific maspin expression. Nat Genet 31:175–179

    Article  CAS  PubMed  Google Scholar 

  19. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  PubMed  Google Scholar 

  20. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25:1010–1022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Jaenisch R (1997) DNA methylation and imprinting: why bother? Trends Genet 13:323–329

    Article  CAS  PubMed  Google Scholar 

  22. Smith ZD, Chan MM, Mikkelsen TS, Gu H, Gnirke A, Regev A, Meissner A (2012) A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484:339–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Wolffe AP, Matzke MA (1999) Epigenetics: regulation through repression. Science 286:481–486

    Article  CAS  PubMed  Google Scholar 

  24. Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9:2395–2402

    Article  CAS  PubMed  Google Scholar 

  25. Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, Li BF (1997) Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277:1996–2000

    Article  CAS  PubMed  Google Scholar 

  26. Balmain A, Gray J, Ponder B (2003) The genetics and genomics of cancer. Nat Genet 33(suppl):238–244

    Article  CAS  PubMed  Google Scholar 

  27. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  CAS  PubMed  Google Scholar 

  28. Hermann A, Gowher H, Jeltsch A (2004) Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 61:2571–2587

    Article  CAS  PubMed  Google Scholar 

  29. Klimasauskas S, Kumar S, Roberts RJ, Cheng X (1994) HhaI methyltransferase flips its target base out of the DNA helix. Cell 76:357–369

    Article  CAS  PubMed  Google Scholar 

  30. Klug A, Rhodes D, Smith J, Finch JT, Thomas JO (1980) A low resolution structure for the histone core of the nucleosome. Nature 287:509–516

    Article  CAS  PubMed  Google Scholar 

  31. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  32. Luger K, Richmond TJ (1998) The histone tails of the nucleosome. Curr Opin Genet Dev 8:140–146

    Article  CAS  PubMed  Google Scholar 

  33. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  CAS  PubMed  Google Scholar 

  34. Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64:435–459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Brownell JE, Allis CD (1996) Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr Opin Genet Dev 6:176–184

    Article  CAS  PubMed  Google Scholar 

  37. Parthun MR (2007) Hat1: the emerging cellular roles of a type B histone acetyltransferase. Oncogene 26:5319–5328

    Article  CAS  PubMed  Google Scholar 

  38. Tanner KG, Trievel RC, Kuo MH, Howard RM, Berger SL, Allis CD, Marmorstein R, Denu JM (1999) Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator. J Biol Chem 274:18157–18160

    Article  CAS  PubMed  Google Scholar 

  39. Grant PA, Eberharter A, John S, Cook RG, Turner BM, Workman JL (1999) Expanded lysine acetylation specificity of Gcn5 in native complexes. J Biol Chem 274:5895–5900

    Article  CAS  PubMed  Google Scholar 

  40. Lan F, Shi Y (2009) Epigenetic regulation: methylation of histone and non-histone proteins. Sci China C Life Sci 52:311–322

    Article  CAS  PubMed  Google Scholar 

  41. Bedford MT (2007) Arginine methylation at a glance. J Cell Sci 120:4243–4246

    Article  CAS  PubMed  Google Scholar 

  42. Smith BC, Denu JM (2009) Chemical mechanisms of histone lysine and arginine modifications. Biochim Biophys Acta 1789:45–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  CAS  PubMed  Google Scholar 

  44. Xu L, Zhao Z, Dong A, Soubigou-Taconnat L, Renou JP, Steinmetz A, Shen WH (2008) Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Mol Cell Biol 28:1348–1360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Hyllus D, Stein C, Schnabel K, Schiltz E, Imhof A, Dou Y, Hsieh J, Bauer UM (2007) PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation. Genes Dev 21:3369–3380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ, Zhao K (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40:897–903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Jeppesen P, Turner BM (1993) The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74:281–289

    Article  CAS  PubMed  Google Scholar 

  48. Brinkman AB, Roelofsen T, Pennings SW, Martens JH, Jenuwein T, Stunnenberg HG (2006) Histone modification patterns associated with the human X chromosome. EMBO Rep 7:628–634

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Cullum R, Alder O, Hoodless PA (2011) The next generation: using new sequencing technologies to analyse gene regulation. Respirology 16:210–222

    Article  PubMed  Google Scholar 

  50. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  CAS  PubMed  Google Scholar 

  51. Cavallaro S, Paratore S, de Snoo F, Salomone E, Villari L, Buscarino C, Ferrau F, Banna G, Furci M, Strazzanti A, Cunsolo R, Pezzino S, Gangi S, Basile F (2012) Genomic analysis: toward a new approach in breast cancer management. Crit Rev Oncol Hematol 81:207–223

    Article  PubMed  Google Scholar 

  52. Shendure J, Lieberman Aiden E (2012) The expanding scope of DNA sequencing. Nat Biotechnol 30:1084–1094

    Article  CAS  PubMed  Google Scholar 

  53. Zuo T, Tycko B, Liu TM, Lin HJ, Huang TH (2009) Methods in DNA methylation profiling. Epigenomics 1:331–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Brinkman AB, Simmer F, Ma K, Kaan A, Zhu J, Stunnenberg HG (2010) Whole-genome DNA methylation profiling using MethylCap-seq. Methods 52:232–236

    Article  CAS  PubMed  Google Scholar 

  55. Gargiulo G, Levy S, Bucci G, Romanenghi M, Fornasari L, Beeson KY, Goldberg SM, Cesaroni M, Ballarini M, Santoro F, Bezman N, Frige G, Gregory PD, Holmes MC, Strausberg RL, Pelicci PG, Urnov FD, Minucci S (2009) NA-Seq: a discovery tool for the analysis of chromatin structure and dynamics during differentiation. Dev Cell 16:466–481

    Article  CAS  PubMed  Google Scholar 

  56. Azvolinsky A, Giresi PG, Lieb JD, Zakian VA (2009) Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol Cell 34:722–734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Simon JM, Giresi PG, Davis IJ, Lieb JD (2012) Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Nat Protoc 7:256–267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Russo J, Russo IH (2004) Development of the human breast. Maturitas 49:2–15

    Article  CAS  PubMed  Google Scholar 

  59. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  62. Robyr D, Wolffe AP, Wahli W (2000) Nuclear hormone receptor coregulators in action: diversity for shared tasks. Mol Endocrinol 14:329–347

    Article  CAS  PubMed  Google Scholar 

  63. Perry JK, Kannan N, Grandison PM, Mitchell MD, Lobie PE (2008) Are trefoil factors oncogenic? Trends Endocrinol Metab 19:74–81

    Article  CAS  PubMed  Google Scholar 

  64. Buache E, Etique N, Alpy F, Stoll I, Muckensturm M, Reina-San-Martin B, Chenard MP, Tomasetto C, Rio MC (2011) Deficiency in trefoil factor 1 (TFF1) increases tumorigenicity of human breast cancer cells and mammary tumor development in TFF1-knockout mice. Oncogene 30:3261–3273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Vestergaard EM, Nexo E, Wendt A, Guthmann F (2008) Trefoil factors in human milk. Early Hum Dev 84:631–635

    Article  CAS  PubMed  Google Scholar 

  66. Sun JM, Spencer VA, Li L, Yu Chen H, Yu J, Davie JR (2005) Estrogen regulation of trefoil factor 1 expression by estrogen receptor alpha and Sp proteins. Exp Cell Res 302:96–107

    Article  CAS  PubMed  Google Scholar 

  67. Cress WD, Seto E (2000) Histone deacetylases, transcriptional control, and cancer. J Cell Physiol 184:1–16

    Article  CAS  PubMed  Google Scholar 

  68. Sun JM, Chen HY, Davie JR (2001) Effect of estradiol on histone acetylation dynamics in human breast cancer cells. J Biol Chem 276:49435–49442

    Article  CAS  PubMed  Google Scholar 

  69. Baek SH, Ohgi KA, Rose DW, Koo EH, Glass CK, Rosenfeld MG (2002) Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappaB and beta-amyloid precursor protein. Cell 110:55–67

    Article  CAS  PubMed  Google Scholar 

  70. Rayasam GV, Wendling O, Angrand PO, Mark M, Niederreither K, Song L, Lerouge T, Hager GL, Chambon P, Losson R (2003) NSD1 is essential for early post-implantation development and has a catalytically active SET domain. EMBO J 22:3153–3163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Gojis O, Rudraraju B, Gudi M, Hogben K, Sousha S, Coombes RC, Cleator S, Palmieri C (2010) The role of SRC-3 in human breast cancer. Nat Rev Clin Oncol 7:83–89

    Article  CAS  PubMed  Google Scholar 

  72. Wu Z, Yang M, Liu H, Guo H, Wang Y, Cheng H, Chen L (2012) Role of nuclear receptor coactivator 3 (Ncoa3) in pluripotency maintenance. J Biol Chem 287:38295–38304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Wrana JL, Attisano L, Wieser R, Ventura F, Massague J (1994) Mechanism of activation of the TGF-beta receptor. Nature 370:341–347

    Article  CAS  PubMed  Google Scholar 

  74. Massague J (2000) How cells read TGF-beta signals. Nat Rev Mol Cell Biol 1:169–178

    Article  CAS  PubMed  Google Scholar 

  75. Grotendorst GR, Okochi H, Hayashi N (1996) A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene. Cell Growth Differ 7:469–480

    CAS  PubMed  Google Scholar 

  76. Grimm SL, Rosen JM (2003) The role of C/EBPbeta in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 8:191–204

    Article  PubMed  Google Scholar 

  77. Russell A, Boone B, Jiang A, Sealy L (2010) Genomic profiling of C/EBPbeta2 transformed mammary epithelial cells: a role for nuclear interleukin-1beta. Cancer Biol Ther 10:509–519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Russo M.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Santucci-Pereira, J., Doll, S.G., Smalley, R.R., O’Malley, C., Russo, I.H., Russo, J. (2014). Methodological Approaches for Understanding the Epigenetic Landscape of the Human Breast and Its Implications in Cancer and Prevention. In: Techniques and Methodological Approaches in Breast Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0718-2_10

Download citation

Publish with us

Policies and ethics