Advertisement

New Horizons in Next-Generation Sequencing

  • Sara El-Metwally
  • Osama M. Ouda
  • Mohamed Helmy
Part of the SpringerBriefs in Systems Biology book series (BRIEFSBIOSYS, volume 7)

Abstract

In the previous chapters, we described the most common and well-established next-generation sequencing technologies and platforms. However, several methodologies and sequencers with outstanding features have also been released in the last few years. Furthermore, additional technologies demonstrating great promise are currently in development. In this chapter, we will briefly describe these recent and ongoing developments that may have a profound impact on the future of sequencing.

Keywords

Read Length Mycobacterium Smegmatis Pacific Bioscience Capillary Electrophoresis Mass Spectrometry Flow Cell Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Rusk N (2009) Cheap third-generation sequencing. Nature Methods 6 (4):244-245. doi: 10.1038/nmeth0409-244a CrossRefGoogle Scholar
  2. 2.
    Pushkarev D, Neff NF, Quake SR (2009) Single-molecule sequencing of an individual human genome. Nature Biotechnology 27 (9):847-850. doi: 10.1038/Nbt.1561 PubMedCrossRefGoogle Scholar
  3. 3.
    Thompson JF, Steinmann KE (2010) Single molecule sequencing with a HeliScope genetic analysis system. Curr Protoc Mol Biol Chapter 7:Unit7 10. doi: 10.1002/0471142727.mb0710s92
  4. 4.
    Harris TD, Buzby PR, Babcock H, Beer E, Bowers J et al. (2008) Single-molecule DNA sequencing of a viral genome. Science 320 (5872):106-109. doi: 10.1126/science.1150427 PubMedCrossRefGoogle Scholar
  5. 5.
    Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG et al. (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299 (5607):682-686. doi: 10.1126/science.1079700 PubMedCrossRefGoogle Scholar
  6. 6.
    Eid J, Fehr A, Gray J, Luong K, Lyle J et al. (2009) Real-time DNA sequencing from single polymerase molecules. Science 323 (5910):133-138. doi: 10.1126/science.1162986 PubMedCrossRefGoogle Scholar
  7. 7.
    Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A 93 (24):13770-13773PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19 (R2):R227-240. doi: 10.1093/hmg/ddq416 PubMedCrossRefGoogle Scholar
  9. 9.
    McNally B, Singer A, Yu Z, Sun Y, Weng Z et al. (2010) Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. Nano Lett 10 (6):2237-2244. doi: 10.1021/nl1012147 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Stoddart D, Heron AJ, Mikhailova E, Maglia G, Bayley H (2009) Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc Natl Acad Sci U S A 106 (19):7702-7707. doi: 10.1073/pnas.0901054106 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Purnell RF, Mehta KK, Schmidt JJ (2008) Nucleotide identification and orientation discrimination of DNA homopolymers immobilized in a protein nanopore. Nano Lett 8 (9):3029-3034. doi: 10.1021/nl802312f PubMedCrossRefGoogle Scholar
  12. 12.
    Stoddart D, Maglia G, Mikhailova E, Heron AJ, Bayley H (2010) Multiple base-recognition sites in a biological nanopore: two heads are better than one. Angew Chem Int Ed Engl 49 (3):556-559. doi: 10.1002/anie.200905483 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Glenn TC (2011) Field guide to next-generation DNA sequencers. Mol Ecol Resour 11 (5):759-769. doi: 10.1111/j.1755-0998.2011.03024.x PubMedCrossRefGoogle Scholar
  14. 14.
    Glenn TC (2013) Field guide to next-generation DNA sequencers-Update. http://www.molecularecologist.com/next-gen-fieldguide-2013/. Accessed 10-01-2014
  15. 15.
    Oxford Nanopore Technologies Ltd. (2014) The GridION System. https://www.nanoporetech.com/technology/the-gridion-system/the-gridion-system. Accessed 10-01-2014
  16. 16.
    Collins FS, Hamburg MA (2013) First FDA authorization for next-generation sequencer. N Engl J Med 369 (25):2369-2371. doi: 10.1056/NEJMp1314561 PubMedCrossRefGoogle Scholar
  17. 17.
    Hanna GJ, Johnson VA, Kuritzkes DR, Richman DD, Martinez-Picado J et al. (2000) Comparison of sequencing by hybridization and cycle sequencing for genotyping of human immunodeficiency virus type 1 reverse transcriptase. J Clin Microbiol 38 (7):2715-2721PubMedCentralPubMedGoogle Scholar
  18. 18.
    Morey M, Fernandez-Marmiesse A, Castineiras D, Fraga JM, Couce ML et al. (2013) A glimpse into past, present, and future DNA sequencing. Mol Genet Metab 110 (1-2):3-24. doi: 10.1016/j.ymgme.2013.04.024 PubMedCrossRefGoogle Scholar
  19. 19.
    Qin Y, Schneider TM, Brenner MP (2012) Sequencing by hybridization of long targets. PLoS One 7 (5):e35819. doi: 10.1371/journal.pone.0035819 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Di Ventra M (2013) Fast DNA sequencing by electrical means inches closer. Nanotechnology 24 (34):342501. doi: 10.1088/0957-4484/24/34/342501 PubMedCrossRefGoogle Scholar
  21. 21.
    Ohshiro T, Matsubara K, Tsutsui M, Furuhashi M, Taniguchi M et al. (2012) Single-molecule electrical random resequencing of DNA and RNA. Sci Rep 2:501. doi: 10.1038/srep00501 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Bell DC, Thomas WK, Murtagh KM, Dionne CA, Graham AC et al. (2012) DNA base identification by electron microscopy. Microsc Microanal 18 (5):1049-1053. doi: 10.1017/S1431927612012615 PubMedCrossRefGoogle Scholar
  23. 23.
    Helmy M, Tomita M, Ishihama Y (2012) Peptide identification by searching large-scale tandem mass spectra against large databases: bioinformatics methods in proteogenomics. Genes Genome Genomics 6:76-85Google Scholar
  24. 24.
    Ishii N, Nakahigashi K, Baba T, Robert M, Soga T et al. (2007) Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316 (5824):593-597. doi: 10.1126/science.1132067 PubMedCrossRefGoogle Scholar
  25. 25.
    Edwards JR, Ruparel H, Ju J (2005) Mass-spectrometry DNA sequencing. Mutat Res 573 (1-2):3-12. doi:S0027-5107(05)00023-0Google Scholar
  26. 26.
    Beres SB, Carroll RK, Shea PR, Sitkiewicz I, Martinez-Gutierrez JC et al. (2010) Molecular complexity of successive bacterial epidemics deconvoluted by comparative pathogenomics. Proc Natl Acad Sci U S A 107 (9):4371-4376. doi: 10.1073/pnas.0911295107 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Monforte JA, Becker CH (1997) High-throughput DNA analysis by time-of-flight mass spectrometry. Nat Med 3 (3):360-362PubMedCrossRefGoogle Scholar
  28. 28.
    Howard R, Encheva V, Thomson J, Bache K, Chan YT et al. (2013) Comparative analysis of human mitochondrial DNA from World War I bone samples by DNA sequencing and ESI-TOF mass spectrometry. Forensic Sci Int Genet 7 (1):1-9. doi: 10.1016/j.fsigen.2011.05.009 PubMedCrossRefGoogle Scholar
  29. 29.
    Greenleaf WJ, Block SM (2006) Single-molecule, motion-based DNA sequencing using RNA polymerase. Science 313 (5788):801. doi:313/5788/801Google Scholar
  30. 30.
    Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52 (4):413-435. doi: 10.1007/s13353-011-0057-x PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Fujimori S, Hirai N, Ohashi H, Masuoka K, Nishikimi A et al. (2012) Next-generation sequencing coupled with a cell-free display technology for high-throughput production of reliable interactome data. Sci Rep 2:691. doi: 10.1038/srep00691 PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Chen YJ, Roller EE, Huang X (2010) DNA sequencing by denaturation: experimental proof of concept with an integrated fluidic device. Lab Chip 10 (9):1153-1159. doi: 10.1039/b921417h PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29 (8):1072-1075. doi: 10.1093/bioinformatics/btt086 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© The Authors 2014

Authors and Affiliations

  • Sara El-Metwally
    • 1
  • Osama M. Ouda
    • 1
    • 2
  • Mohamed Helmy
    • 3
    • 4
  1. 1.Department of Computer ScienceMansoura UniversityMansouraEgypt
  2. 2.Department of Information TechnologyMichigan State University (MSU)East LansingUSA
  3. 3.Botany Department and Biotechnology DepartmentAl-Azhar UniversityCairoEgypt
  4. 4.The Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto (UofT)TorontoCanada

Personalised recommendations