Skip to main content

Epigenetics: Role of Histone Proteases in Cellular Functions and Diseases

Abstract

In the past few decades, exciting advances have been made to understand the epigenetic regulation of chromatin structure and function. There has been tremendous progress in the identification and study of protein complexes of catalytic nature, which reversibly modify chromatin (DNA as well as histone proteins) during various nuclear processes that involves DNA. Histone proteins undergo post-translational modifications (PTMs) like acetylation, phosphorylation, ubiquitination, methylation, and proteolytic clipping. However, the proteolytic clipping of histone tails is not as well understood as other covalent modifications. In some cases, the proteolytic processing, particularly of histone H3 and H1, has been considered as a physiologically regulated event. For example, in Tetrahymena, six amino acids are removed from the NH2-terminus of histone H3 in transcriptionally silent micronuclei. Similarly, during viral infection of foot-and-mouth disease virus, H3 has been reported to be cleaved between Leu20 and Ala21 from the NH2-terminus. Lately, in parallel to the emergence of the “histone code” hypothesis, there has been substantial excitement in the field of site-specific proteolytic processing of some of the core histones. A chromatin-bound proteolytic activity with unique specificity for histone H2A has long been identified and characterized in quite detail. Recently, human Cathepsin L and an unidentified protease in yeast and another in chicken liver have been shown to cleave H3 from NH2-terminus. Such processing of histones has the potential to regulate chromatin dynamics to an extent that makes it physiologically relevant and crucial. This comprehensive review will shed light on advancements made so far on proteolytic processing of histones and future directions of study. Here we discuss the biochemical properties and biological functions of histone proteolysis in transcription, viral diseases, stem cell differentiation, and sporulation.

Keywords

  • Protease
  • Histones
  • Post-translation modifications
  • Epigenetics
  • Diseases

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-0706-9_4
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-0706-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2

References

  • Adams CC, Workman JL (1993) Nucleosome displacement in transcription. Cell 72:305–308

    CAS  PubMed  CrossRef  Google Scholar 

  • Ajiro K, Allis CD (2002) Histone code hypothesis. Tanpakushitsu Kakusan Koso 47:753–760

    CAS  PubMed  Google Scholar 

  • Allis CD, Allen RL, Wiggins JC, Chicoine LG, Richman R (1984) Proteolytic processing of h1-like histones in chromatin: a physiologically and developmentally regulated event in Tetrahymena micronuclei. J Cell Biol 99:1669–1677

    CAS  PubMed  CrossRef  Google Scholar 

  • Allis CD, Bowen JK, Abraham GN, Glover CV, Gorovsky MA (1980) Proteolytic processing of histone H3 in chromatin: a physiologically regulated event in Tetrahymena micronuclei. Cell 20:55–64

    CAS  PubMed  CrossRef  Google Scholar 

  • Andrews AJ, Luger K (2011) Nucleosome structure(s) and stability: variations on a theme. Annu Rev Biophys 40:99–117

    CAS  PubMed  CrossRef  Google Scholar 

  • Arents G, Moudrianakis EN (1995) The histone fold: a ubiquitous architectural motif utilized in DNA compaction and protein dimerization. Proc Natl Acad Sci U S A 92:11170–11174

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Bando M, Ijuin S, Hasegawa S, Horikoshi M (1997) The involvement of the histone fold motifs in the mutual interaction between human TAF(II)80 and TAF(II)22. J Biochem 121:591–597

    CAS  PubMed  CrossRef  Google Scholar 

  • Bartley J, Chalkley R (1970) Further studies of a thymus nucleohistone-associated protease. J Biol Chem 245:4286–4292

    CAS  PubMed  Google Scholar 

  • Berchowitz LE, Hanlon SE, Lieb JD, Copenhaver GP (2009) A positive but complex association between meiotic double-strand break hotspots and open chromatin in Saccharomyces cerevisiae. Genome Res 19:2245–2257

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Bharath MM, Chandra NR, Rao MR (2002) Prediction of an HMG-box fold in the C-terminal domain of histone H1: insights into its role in DNA condensation. Proteins 49:71–81

    CAS  PubMed  CrossRef  Google Scholar 

  • Brandt WF, Von Holt C (1975) Isolation and characterization of the histones from cycad pollen. FEBS Lett 51:84–87

    CAS  PubMed  CrossRef  Google Scholar 

  • Burzio LO, Riquelme PT, Koide SS (1979) ADP ribosylation of rat liver nucleosomal core histones. J Biol Chem 254:3029–3037

    CAS  PubMed  Google Scholar 

  • Carrozza MJ, Utley RT, Workman JL, Cote J (2003) The diverse functions of histone acetyltransferase complexes. Trends Genet 19:321–329

    CAS  PubMed  CrossRef  Google Scholar 

  • Cerutti H, Casas-Mollano JA (2009) Histone H3 phosphorylation: universal code or lineage specific dialects? Epigenetics 4:71–75

    CAS  PubMed  CrossRef  Google Scholar 

  • Chakravarthy S, Park YJ, Chodaparambil J, Edayathumangalam RS, Luger K (2005) Structure and dynamic properties of nucleosome core particles. FEBS Lett 579:895–898

    CAS  PubMed  CrossRef  Google Scholar 

  • Chandrasekharan MB, Huang F, Sun ZW (2009) Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability. Proc Natl Acad Sci U S A 106:16686–16691

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Chandrasekharan MB, Huang F, Sun ZW (2010) Histone H2B ubiquitination and beyond: Regulation of nucleosome stability, chromatin dynamics and the trans-histone H3 methylation. Epigenetics 5:460–468

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Chodaparambil JV, Edayathumangalam RS, Bao Y, Park YJ, Luger K (2006) Nucleosome structure and function. Ernst Schering Res Found Workshop 29–46

    Google Scholar 

  • Chong MT, Garrard WT, Bonner J (1974) Purification and properties of a neutral protease from rat liver chromatin. Biochemistry 13:5128–5134

    CAS  PubMed  CrossRef  Google Scholar 

  • Cosgrove MS (2012) Writers and readers: deconvoluting the harmonic complexity of the histone code. Nat Struct Mol Biol 19:739–740

    CAS  PubMed  CrossRef  Google Scholar 

  • Davie JR, Numerow L, Delcuve GP (1986) The nonhistone chromosomal protein, H2A-specific protease, is selectively associated with nucleosomes containing histone H1. J Biol Chem 261:10410–10416

    CAS  PubMed  Google Scholar 

  • Depken M, Schiessel H (2009) Nucleosome shape dictates chromatin fiber structure. Biophys J 96:777–784

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Duncan EM, Muratore-Schroeder TL, Cook RG, Garcia BA, Shabanowitz J, Hunt DF, Allis CD (2008) Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell 135:284–294

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Dyson M, Walker JM (1984) Chromatin associated protease from calf thymus. Int J Pept Protein Res 24:201–207

    CAS  PubMed  CrossRef  Google Scholar 

  • Eberharter A, Becker PB (2002) Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 3:224–229

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Eickbush TH, Godfrey JE, Elia MC, Moudrianakis EN (1988) H2a-specific proteolysis as a unique probe in the analysis of the histone octamer. J Biol Chem 263:18972–18978

    CAS  PubMed  Google Scholar 

  • Eickbush TH, Watson DK, Moudrianakis EN (1976) A chromatin-bound proteolytic activity with unique specificity for histone H2A. Cell 9:785–792

    CAS  PubMed  CrossRef  Google Scholar 

  • Elia MC, Moudrianakis EN (1988) Regulation of H2a-specific proteolysis by the histone H3:H4 tetramer. J Biol Chem 263:9958–9964

    CAS  PubMed  Google Scholar 

  • Falk MM, Grigera PR, Bergmann IE, Zibert A, Multhaup G, Beck E (1990) Foot-and-mouth disease virus protease 3C induces specific proteolytic cleavage of host cell histone H3. J Virol 64:748–756

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gardner KE, Allis CD, Strahl BD (2011) Operating on chromatin, a colorful language where context matters. J Mol Biol 409:36–46

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Garrels JI, Elgin SC, Bonner J (1972) A histone protease of rat liver chromatin. Biochem Biophys Res Commun 46:545–551

    CAS  PubMed  CrossRef  Google Scholar 

  • Gaziev AI, Kutsyi MP (1988) Histone H1-specific proteinase is associated with the nuclear matrix and is activated by DNA-containing breaks or denatured sites. Dokl Akad Nauk SSSR 299:240–242

    CAS  PubMed  Google Scholar 

  • Gaziev AI, Kutsyi MP (1992) Gamma-irradiated DNA activates histone H1-specific proteinase of rat liver nuclei. Int J Radiat Biol 61:169–174

    CAS  PubMed  CrossRef  Google Scholar 

  • Grigera PR, Tisminetzky SG (1984) Histone H3 modification in BHK cells infected with foot-and-mouth disease virus. Virology 136:10–19

    CAS  PubMed  CrossRef  Google Scholar 

  • Harlow R, Wells JR (1975) Histone proteases of avian erythroid cells. J Cell Sci 18:217–225

    CAS  PubMed  Google Scholar 

  • Harvima RJ, Yabe K, Fraki JE, Fukuyama K, Epstein WL (1988) Hydrolysis of histones by proteinases. Biochem J 250:859–864

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hayes JJ, Tullius TD, Wolffe AP (1990) The structure of DNA in a nucleosome. Proc Natl Acad Sci U S A 87:7405–7409

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Imhof A, Becker PB (2001) Modifications of the histone N-terminal domains. Evidence for an “epigenetic code”? Mol Biotechnol 17:1–13

    CAS  PubMed  CrossRef  Google Scholar 

  • Jansen A, Van Der Zande E, Meert W, Fink GR, Verstrepen KJ (2012) Distal chromatin structure influences local nucleosome positions and gene expression. Nucleic Acids Res 40:3870–3885

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    CAS  PubMed  CrossRef  Google Scholar 

  • Johnson RT, Harris H (1969) DNA synthesis and mitosis in fused cells. II. HeLa-chick erythrocyte heterokaryons. J Cell Sci 5:625–643

    CAS  PubMed  Google Scholar 

  • Kaul R, Hoang A, Yau P, Bradbury EM, Wenman WM (1997) The chlamydial EUO gene encodes a histone H1-specific protease. J Bacteriol 179:5928–5934

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kukimoto I, Elderkin S, Grimaldi M, Oelgeschlager T, Varga-Weisz PD (2004) The histone-fold protein complex CHRAC-15/17 enhances nucleosome sliding and assembly mediated by ACF. Mol Cell 13:265–277

    CAS  PubMed  CrossRef  Google Scholar 

  • Li B, Jackson J, Simon MD, Fleharty B, Gogol M, Seidel C, Workman JL, Shilatifard A (2009) Histone H3 lysine 36 dimethylation (H3K36me2) is sufficient to recruit the Rpd3s histone deacetylase complex and to repress spurious transcription. J Biol Chem 284:7970–7976

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Lipinska A, Klyszejko-Stefanowicz L (1980) The activity of chromatin-bound protease extracted selectively with histone H2B from calf thymus and rat liver. Int J Biochem 11:299–303

    CAS  PubMed  CrossRef  Google Scholar 

  • Lipinska A, Krawczyk Z, Krajewska W, Klyszejko-Stefanowicz L, Chorazy M (1980) Activity of chromatin-bound protease in histone fractions from rat liver and Morris hepatoma. Neoplasma 27:409–413

    CAS  PubMed  Google Scholar 

  • Lu X, Simon MD, Chodaparambil JV, Hansen JC, Shokat KM, Luger K (2008) The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nat Struct Mol Biol 15:1122–1124

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Luger K, Dechassa ML, Tremethick DJ (2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 13:436–447

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Luger K, Mader A, Sargent DF, Richmond TJ (2000) The Atomic Structure of the Nucleosome Core Particle. J Biomol Struct Dyn 17:185–188

    PubMed  CrossRef  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    CAS  PubMed  CrossRef  Google Scholar 

  • Luger K, Richmond TJ (1998) The histone tails of the nucleosome. Curr Opin Genet Dev 8:140–146

    CAS  PubMed  CrossRef  Google Scholar 

  • Lukas J, Lukas C, Bartek J (2011) More than just a focus: The chromatin response to DNA damage and its role in genome integrity maintenance. Nat Cell Biol 13:1161–1169

    CAS  PubMed  CrossRef  Google Scholar 

  • Ma MK, Heath C, Hair A, West AG (2011) Histone crosstalk directed by H2B ubiquitination is required for chromatin boundary integrity. PLoS Genet 7:e1002175

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Magdalena W, Adam L (2012) Future of protease activity assays. Curr Pharm Des 19(6):1062–7

    CrossRef  Google Scholar 

  • Mahendra G, Kanungo MS (2000) Age-related and steroid induced changes in the histones of the quail liver. Arch Gerontol Geriatr 30:109–114

    CAS  PubMed  CrossRef  Google Scholar 

  • Mandal P, Azad GK, Tomar RS (2012) Identification of a novel histone H3 specific protease activity in nuclei of chicken liver. Biochem Biophys Res Commun 421:261–267

    CAS  PubMed  CrossRef  Google Scholar 

  • Moindrot B, Bouvet P, Mongelard F (2012) Chromatin structure and organization: the relation with gene expression during development and disease. Subcell Biochem 61:373–396

    CrossRef  Google Scholar 

  • Morin V, Sanchez-Rubio A, Aze A, Iribarren C, Fayet C, Desdevises Y, Garcia-Huidobro J, Imschenetzky M, Puchi M, Geneviere AM (2012) The protease degrading sperm histones post-fertilization in sea urchin eggs is a nuclear cathepsin L that is further required for embryo development. PLoS One 7:e46850

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Neely KE, Workman JL (2002) The complexity of chromatin remodeling and its links to cancer. Biochim Biophys Acta 1603:19–29

    CAS  PubMed  Google Scholar 

  • O’Sullivan RJ, Karlseder J (2012) The great unravelling: chromatin as a modulator of the aging process. Trends Biochem Sci 37:466–476

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Osipova TN, Karpova EV, Vorob’ev VI (1990) Chromatin higher-order structure: two-start double superhelix formed by zig-zag shaped nucleosome chain with folded linker DNA. J Biomol Struct Dyn 8:11–22

    CAS  PubMed  CrossRef  Google Scholar 

  • Ouzounis CA, Kyrpides NC (1996) The core histone fold: limits to functional versatility. J Mol Evol 43:541–542

    CAS  PubMed  CrossRef  Google Scholar 

  • Pachov GV, Gabdoulline RR, Wade RC (2011) On the structure and dynamics of the complex of the nucleosome and the linker histone. Nucleic Acids Res 39:5255–5263

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Pedersen P, Seeman T, Hasselgren PO (1986) Protein synthesis and degradation in liver tissue following induction of septic peritonitis in rats. Acta Chir Scand 152:29–34

    CAS  PubMed  Google Scholar 

  • Poirier GG, Savard P (1980) ADP-ribosylation of pancreatic histone H1 and of other histones. Can J Biochem 58:509–515

    CAS  PubMed  CrossRef  Google Scholar 

  • Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28:1057–1068

    CAS  PubMed  CrossRef  Google Scholar 

  • Ramponi G, Nassi P, Liguri G, Cappugi G, Grisolia S (1978) Purification and properties of a histone-specific protease from rat liver chromatin: effect on acylated histones. FEBS Lett 90:228–232

    CAS  PubMed  CrossRef  Google Scholar 

  • Richmond TJ, Finch JT, Rushton B, Rhodes D, Klug A (1984) Structure of the nucleosome core particle at 7 A resolution. Nature 311:532–537

    CAS  PubMed  CrossRef  Google Scholar 

  • Sakai K, Akanuma H, Imahori K, Kawashima S (1987) A unique specificity of a calcium activated neutral protease indicated in histone hydrolysis. J Biochem 101:911–918

    CAS  PubMed  CrossRef  Google Scholar 

  • Santos-Rosa H, Kirmizis A, Nelson C, Bartke T, Saksouk N, Cote J, Kouzarides T (2009) Histone H3 tail clipping regulates gene expression. Nat Struct Mol Biol 16:17–22

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Saunders MJ, Yeh E, Grunstein M, Bloom K (1990) Nucleosome depletion alters the chromatin structure of Saccharomyces cerevisiae centromeres. Mol Cell Biol 10:5721–5727

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shilatifard A (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75:243–269

    CAS  PubMed  CrossRef  Google Scholar 

  • Simon M, North JA, Shimko JC, Forties RA, Ferdinand MB, Manohar M, Zhang M, Fishel R, Ottesen JJ, Poirier MG (2011) Histone fold modifications control nucleosome unwrapping and disassembly. Proc Natl Acad Sci U S A 108:12711–12716

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Soria G, Polo SE, Almouzni G (2012) Prime, repair, restore: the active role of chromatin in the DNA damage response. Mol Cell 46:722–734

    CAS  PubMed  CrossRef  Google Scholar 

  • Steger DJ, Utley RT, Grant PA, John S, Eberharter A, Cote J, Owen-Hughes T, Ikeda K, Workman JL (1998) Regulation of transcription by multisubunit complexes that alter nucleosome structure. Cold Spring Harb Symp Quant Biol 63:483–491

    CAS  PubMed  CrossRef  Google Scholar 

  • Surowy CS, Berger NA (1983) Nucleotide-stimulated proteolysis of histone H1. Proc Natl Acad Sci U S A 80:5510–5514

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Suzuki M, Sugiura M, Ebashi S (1990) Sea urchin protease specific to the SPKK motif in histone. J Biochem 108:347–355

    CAS  PubMed  Google Scholar 

  • Tesar M, Marquardt O (1990) Foot-and-mouth disease virus protease 3C inhibits cellular transcription and mediates cleavage of histone H3. Virology 174:364–374

    CAS  PubMed  CrossRef  Google Scholar 

  • Travers AA, Vaillant C, Arneodo A, Muskhelishvili G (2012) DNA structure, nucleosome placement and chromatin remodelling: a perspective. Biochem Soc Trans 40:335–340

    CAS  PubMed  CrossRef  Google Scholar 

  • Tsurugi K, Ogata K (1982) Studies on the serine proteases associated with rat liver chromatin. J Biochem 92:1369–1381

    CAS  PubMed  Google Scholar 

  • Tsurugi K, Ogata K (1986) Effects of DNA and urea on the specificity for H1 histone of the neutral protease B partially-purified from rat liver chromatin. J Biochem 99:237–241

    CAS  PubMed  Google Scholar 

  • Vaissiere T, Herceg Z (2010) Histone code in the cross-talk during DNA damage signaling. Cell Res 20:113–115

    PubMed  CrossRef  Google Scholar 

  • Van der Veer E, Bootsma D (1982) Repair DNA synthesis in heterokaryons during reactivation of chick erythrocytes fused with human diploid fibroblasts or HeLa cells. Exp Cell Res 138:469–474

    PubMed  CrossRef  Google Scholar 

  • Vignali M, Hassan AH, Neely KE, Workman JL (2000) ATP-dependent chromatin-remodeling complexes. Mol Cell Biol 20:1899–1910

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Vogler C, Huber C, Waldmann T, Ettig R, Braun L, Izzo A, Daujat S, Chassignet I, Lopez-Contreras AJ, Fernandez-Capetillo O, Dundr M, Rippe K, Längst G, Schneider R (2010) Histone H2A C-terminus regulates chromatin dynamics, remodeling, and histone H1 binding. PLoS Genet 6:e1001234

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Ward W, Richardson A (1991) Effect of age on liver protein synthesis and degradation. Hepatology 14:935–948

    CAS  PubMed  CrossRef  Google Scholar 

  • Watson DK, Moudrianakis EN (1982) Histone-dependent reconstitution and nucleosomal localization of a nonhistone chromosomal protein: the H2A-specific protease. Biochemistry 21:248–256

    CAS  PubMed  CrossRef  Google Scholar 

  • Widlak P, Pietrowska M, Lanuszewska J (2006) The role of chromatin proteins in DNA damage recognition and repair. Histochem Cell Biol 125:119–126

    CAS  PubMed  CrossRef  Google Scholar 

  • Widom J (1998) Structure, dynamics, and function of chromatin in vitro. Annu Rev Biophys Biomol Struct 27:285–327

    CAS  PubMed  CrossRef  Google Scholar 

  • Wolffe AP, Guschin D (2000) Review: chromatin structural features and targets that regulate transcription. J Struct Biol 129:102–122

    CAS  PubMed  CrossRef  Google Scholar 

  • Wolffe AP, Kurumizaka H (1998) The nucleosome: a powerful regulator of transcription. Prog Nucleic Acid Res Mol Biol 61:379–422

    CAS  PubMed  CrossRef  Google Scholar 

  • Woodcock CL, Dimitrov S (2001) Higher-order structure of chromatin and chromosomes. Curr Opin Genet Dev 11:130–135

    CAS  PubMed  CrossRef  Google Scholar 

  • Woodcock CL, Skoultchi AI, Fan Y (2006) Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res 14:17–25

    CAS  PubMed  CrossRef  Google Scholar 

  • Workman JL, Abmayr SM (2004) Histone H3 variants and modifications on transcribed genes. Proc Natl Acad Sci U S A 101:1429–1430

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Workman JL, Kingston RE (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 67:545–579

    CAS  PubMed  CrossRef  Google Scholar 

  • Zlatanova JS, van Holde KE (1992) Chromatin loops and transcriptional regulation. Crit Rev Eukaryot Gene Expr 2:211–224

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghuvir S. Tomar Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mandal, P., Verma, N., Azad, G.K., Singh, V., Golla, U., Tomar, R.S. (2014). Epigenetics: Role of Histone Proteases in Cellular Functions and Diseases. In: Maulik, N., Karagiannis, T. (eds) Molecular mechanisms and physiology of disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0706-9_4

Download citation