Skip to main content

Combination Therapy for Cancer: Phototherapy and HDAC Inhibition

  • Chapter
  • First Online:
Molecular mechanisms and physiology of disease

Abstract

Cutaneous T-cell lymphomas (CTCLs) are rare extranodal non-Hodgkin’s characterised by pleomorphic skin lesions and distinct T-cell markers. The annual incidence of these non-Hodgkin’s lymphomas are approximately 0.2–0.8/100,000 and mycosis fungoides (MF) or its leukemic variant, Sézary syndrome (SS), account for the majority of cases. CTCL is a relatively benign disease in its early stages, but survival rates decrease significantly as it progresses. As curative therapy remains elusive, the goal of therapy is preventing or slowing progression from early stages while minimising long-term toxicity associated with the treatments. Early-stage CTCL can often be controlled with skin-directed therapies including topical steroids, topical retinoids and phototherapy, while patients with late-stage or refractory MF and SS are given systemic therapies including extracorporeal photopheresis (ECP), interferon (IFN), histone deacetylase inhibitors (HDACi) and denileukin diftitox. Since no single therapy can control disease progression fully, combination therapy is employed to enhance response rates. A novel combination treatment using ultraviolet light phototherapy and HDACi has shown to be a potent radiosensitiser, allowing the use of lower radiation doses and minimising the adverse effects of phototherapy. Such combination reduces the carcinogenic risks associated with the long-term use of phototherapy. Studies have shown that HDACi, such as suberoylanilide hydroxamic acid (Vorinostat, Zolinza®), Romidepsin (Istodax®) and sodium butyrate, induce increased radiosensitivity and decreased double-strand break repair capacity. This is due to the action of HDACi modifying the chromatin compaction and thus changing DNA accessibility. By blocking deacetylation of histones, they promote an open chromatin structure altering the expression of genes involved in cell survival, proliferation, differentiation and apoptosis. As a result, there is a significant increase in the level of ultraviolet-induced apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikary A, Buschmann V, Muller C, Sauer M (2003) Ensemble and single-molecule fluorescence spectroscopic study of the bidning modes of the bis-bensimidazole derivative Hoechst 33258 with DNA. Nucleic Acids Res 31:2178–2186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Akilov OE, Grant C, Frye R, Bates S, Piekarz R, Geskin LJ (2012) Low-dose electron beam radiation and romidepsin therapy for symptomatic cutaneous T-cell lymphoma lesions. Br J Dermatol 167:194–197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Amin HM, Saeed S, Alkan S (2001) Histone deacetylase inhibitors induce caspase-dependent apoptosis and downregulation of daxx in acute promyelocytic leukaemia with T(15;17). Br J Haematol 115:287–297

    CAS  PubMed  Google Scholar 

  • Apisarnthanarax N, Talpur R, Duvic M (2002) Treatment of cutaneous T cell lymphoma: current status and future directions. Am J Clin Dermatol 3:193–215

    PubMed  Google Scholar 

  • Arbiser J, Govindarajan B, Battle T, Lynch R, Frank D, Ushio Fukai M, Perry B, Stern D, Bowden GT, Liu A, Klein E, Kolodziejski P, Eissa NT, Hossain C, Nagle D (2006) Carbazole is a naturally occurring inhibitor of angiogenesis and inflammation isolated from antipsoriatic coal tar. J Investig Dermatol 126:1396–1402

    CAS  PubMed  Google Scholar 

  • Aron J, Parthun M, Marcucci G, Kitada S, Mone A, Davis M, Shen T, Murphy T, Wickham J, Kanakry C, Lucas D, Reed J, Grever M, Byrd J (2003) Depsipeptide (FR901228) Induces histone acetylation and inhibition of histone deacetylase in chronic lymphocytic leukemia cells concurrent with activation of caspase 8-mediated apoptosis and down-regulation of c-FLIP protein. Blood 102:652–658

    CAS  PubMed  Google Scholar 

  • Bentley GA, Finch JT, Lewit Bentley A, Roth M (1984) The crystal structure of the nucleosome core particle by contrast variation. Basic Life Sci 27:105–117

    CAS  PubMed  Google Scholar 

  • Berger C, Xu A, Hanlon D, Lee C, Schechner J, Glusac E, Christensen I, Snyder E, Holloway V, Tigelaar R, Edelson RL (2001) Induction of human tumor-loaded dendritic cells. Int J Cancer 9:438–447

    Google Scholar 

  • Beyer M, Mobs M, Humme D, Sterry W (2011) Pathogenesis of mycosis fungoides. J German Soc Dermatol 9:594–598

    Google Scholar 

  • Bladon J, Taylor PC (2006) Extracorporeal photopheresis: a focus on apoptosis and cytokines. J Dermatol Sci 43:85–94

    CAS  PubMed  Google Scholar 

  • Blanquart C, François M, Charrier C, Bertrand P, Gregoire M (2011) Pharmacological characterization of histone deacetylase inhibitor and tumor cell-growth inhibition properties of new benzofuranone compounds. Curr Cancer Drug Targets 11:919–928

    CAS  PubMed  Google Scholar 

  • Bolden J, Peart M, Johnstone R (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784

    CAS  PubMed  Google Scholar 

  • Bradford P, Devesa S, Anderson W, Toro J (2009) Cutaneous lymphoma incidence patterns in the United States: a population-based study of 3884 cases. Blood 113:5064–5073

    CAS  PubMed Central  PubMed  Google Scholar 

  • Breneman D, Duvic M, Kuzel T, Yocum R, Truglia J, Stevens V (2002) Phase 1 and 2 trial of bexarotene gel for skin-directed treatment of patients with cutaneous T-cell lymphoma. Arch Dermatol 138:325–332

    CAS  PubMed  Google Scholar 

  • Breuckmann F, Von Kobyletzki G, Avermaete A, Kreuter A, Altmeyer P (2002) Efficacy of ultraviolet A1 phototherapy on the expression of bcl-2 in atopic dermatitis and cutaneous T-cell lymphoma in vivo: a comparison study. Photodermatol Photoimmunol Photomed 18:217–222

    CAS  PubMed  Google Scholar 

  • Breuckmann F, Gambichler T, Altmeyer P, Kreuter A (2004) UVA/UVA1 phototherapy and PUVA photochemotherapy in connective tissue diseases and related disorders: a research based review. BMC Dermatol 4:11

    PubMed Central  PubMed  Google Scholar 

  • Broch H, Viani R, Vasilescu D (1991) Quantum molecular study of the alkylating agent mechlorethamine. Int J Quantum Chem 40:119–130

    Google Scholar 

  • Bunn PA, Lamberg SI (1979) Report of the Committee on Staging and Classification of Cutaneous T-Cell Lymphomas. Cancer Treat Rep 63:725–728

    PubMed  Google Scholar 

  • Cadet J, Sage E, Douki T (2005) Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res 571:3–17

    CAS  PubMed  Google Scholar 

  • Campbell JJ (2010) Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood 116:767

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carew J, Giles F, Nawrocki S (2008) Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Lett 269:7–17

    CAS  PubMed  Google Scholar 

  • Chiesa Fuxench ZC (2010) Extracorporeal photopheresis: a review on the immunological aspects and clinical applications. P R Health Sci J 29:337

    PubMed  Google Scholar 

  • Cimino GD, Gamper HB, Isaacs ST, Hearst JE (1985) Psoralens as photoactive probes of nucleic acid structure and function: organic chemistry, photochemistry, and biochemistry. Annu Rev Biochem 54:1151–1193

    CAS  PubMed  Google Scholar 

  • Clark C, Dawe RS, Evans AT, Lowe G, Ferguson J (2000) Narrowband TL-01 phototherapy for patch-stage mycosis fungoides. Arch Dermatol 136:748–752

    CAS  PubMed  Google Scholar 

  • Clark RA, Chong B, Mirchandani D (2006) The vast majority of CLA + T cells are resident in normal skin. J Immunol 176:4431–4439

    CAS  PubMed  Google Scholar 

  • Classon M, Harlow E (2002) The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer 2:910–917

    CAS  PubMed  Google Scholar 

  • Codd R, Braich N, Liu J, Soe C, Pakchung AAH (2009) Zn(II)-dependent histone deacetylase inhibitors: suberoylanilide hydroxamic acid and trichostatin A. Int J Biochem Cell Biol 41:736–739

    CAS  PubMed  Google Scholar 

  • Criscione VD, Weinstock MA (2007) Incidence of cutaneous T-cell lymphoma in the United States, 1973–2002. Arch Dermatol 143:854–859

    PubMed  Google Scholar 

  • Das P, Singal R (2004) DNA methylation and cancer. J Clin Oncol 22:4632–4642

    CAS  PubMed  Google Scholar 

  • De Coninck EC, Kim YH, Varghese A, Hoppe RT (2001) Clinical characteristics and outcome of patients with extracutaneous mycosis fungoides. J Clin Oncol 19:779–784

    PubMed  Google Scholar 

  • Demierre M-F, Kim Y, Zackheim H (2003) Prognosis, clinical outcomes and quality of life issues in cutaneous T-cell lymphoma. Hematol Oncol Clin North Am 17:1485–1507

    PubMed  Google Scholar 

  • Demierre M-F, Gan S, Jones J, Miller D (2006) Significant impact of cutaneous T-cell lymphoma on patients’ quality of life: results of a 2005 National Cutaneous Lymphoma Foundation Survey. Cancer 107:2504–2511

    PubMed  Google Scholar 

  • Di Gennaro E, Bruzzese F, Caraglia M, Abruzzese A, Budillon A (2004) Acetylation of proteins as novel target for antitumor therapy: review article. Amino Acids 26:435–441

    PubMed  Google Scholar 

  • Diamandidou E, Cohen PR, Kurzrock R (1996) Mycosis fungoides and sezary syndrome. Blood 88:2385–2409

    CAS  PubMed  Google Scholar 

  • Dickey J, Redon C, Nakamura A, Baird B, Sedelnikova O, Bonner W (2009) H2AX: functional roles and potential applications. Chromosoma 118:683–692

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diederen PVMM, van Weelden H, Sanders CJG, Toonstra J, van Vloten W (2003) Narrowband UVB and psoralen-UVA in the treatment of early-stage mycosis fungoides: a retrospective study. J Am Acad Dermatol 48:215–219

    PubMed  Google Scholar 

  • Dokmanovic M, Marks P (2005) Prospects: histone deacetylase inhibitors. J Cell Biochem 96:293–304

    CAS  PubMed  Google Scholar 

  • Dokmanovic M, Clarke C, Marks P (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5:981–989

    CAS  PubMed  Google Scholar 

  • Dong G, Wang L, Wang C-Y, Yang T, Kumar MV, Dong Z (2008) Induction of apoptosis in renal tubular cells by histone deacetylase inhibitors, a family of anticancer agents. J Pharmacol Exp Ther 325:978–984

    CAS  PubMed  Google Scholar 

  • Duhovic C, Child F, Wain EM (2012) CME dermatology. Clin Med 12:160–164

    PubMed  Google Scholar 

  • Dummer R (2003) Therapy of cutaneous lymphoma–current practice and future developments. Onkologie 26:366

    CAS  PubMed  Google Scholar 

  • Dummer R, Hess Schmid M, Burg G (2000) Cutaneous T-cell lymphomas: prognosis and quality-of-life issues. Clin Lymphoma 1(suppl 1):S21–S25

    PubMed  Google Scholar 

  • Duvic M (2007) Systemic monotherapy vs combination therapy for CTCL: rationale and future strategies. Oncology 21:33–40

    PubMed  Google Scholar 

  • Duvic M, Talpur R, Ni X, Zhang C, Hazarika P, Kelly C, Chiao J, Reilly J, Ricker J, Richon V, Frankel S (2007) Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 109:31–39

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duvic M, Dummer R, Becker JR, Poulalhon N, Ortiz Romero P, Grazia Bernengo M, Lebbé C, Assaf C, Squier M, Williams D, Marshood M, Tai F, Prince HM (2013) Panobinostat activity in both bexarotene-exposed and -naive patients with refractory cutaneous T-cell lymphoma: results of a phase II trial. Eur J Cancer 49:386–394

    CAS  PubMed  Google Scholar 

  • Egger G, Liang G, Aparicio A, Jones P (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    CAS  PubMed  Google Scholar 

  • Fiala Z, Borska L, Pastorkova A, Kremlacek J, Cerna M, Smejkalova J, Hamakova K (2006) Genotoxic effect of Goeckerman regimen of psoriasis. Arch Dermatol Res 298:243–251

    PubMed  Google Scholar 

  • Finch PW, Murphy F, Cardinale I, Krueger JG (1997) Altered expression of keratinocyte growth factor and its receptor in psoriasis. Am J Pathol 151:1619–1628

    CAS  PubMed Central  PubMed  Google Scholar 

  • Foss FM, Bacha P, Osann KE, Demierre MF, Bell T, Kuzel T (2001) Biological correlates of acute hypersensitivity events with DAB(389)IL-2 (denileukin diftitox, ONTAK) in cutaneous T-cell lymphoma: decreased frequency and severity with steroid premedication. Clin Lymphoma 1:298–302

    CAS  PubMed  Google Scholar 

  • Furumai R, Matsuyama A, Kobashi N, Lee K-H, Nishiyama M, Nakajima H, Tanaka A, Komatsu Y, Nishino N, Yoshida M, Horinouchi S (2002) FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res 62:4916–4921

    CAS  PubMed  Google Scholar 

  • Galli M, Salmoiraghi S, Golay J, Gozzini A, Crippa C, Pescosta N, Rambaldi A (2010) A phase II multiple dose clinical trial of histone deacetylase inhibitor ITF2357 in patients with relapsed or progressive multiple myeloma. Ann Hematol 89:185–190

    CAS  PubMed  Google Scholar 

  • Goekerman EH (1925) The treatment of psoriasis. Northwest Med 24:229–231

    Google Scholar 

  • Gorgun G, Foss F (2002) Immunomodulatory effects of RXR rexinoids: modulation of high-affinity IL-2R expression enhances susceptibility to denileukin diftitox. Blood 100:1399–1403

    CAS  PubMed  Google Scholar 

  • Grant S, Easley C, Kirkpatrick P (2007) Vorinostat. Nat Rev Drug Discov 6:21–22

    CAS  PubMed  Google Scholar 

  • Heider U, Kaiser M, Sterz J, Zavrski I, Jakob C, Fleissner C, Eucker J, Possinger K, Sezer O (2006) Histone deacetylase inhibitors reduce VEGF production and induce growth suppression and apoptosis in human mantle cell lymphoma. Eur J Haematol 76:42–50

    CAS  PubMed  Google Scholar 

  • Homey B, Alenius H, Müller A, Soto H, Bowman E, Yuan W, Mcevoy L, Lauerma A, Assmann T, Bünemann E, Lehto M, Wolff H, Yen D, Marxhausen H, To W, Sedgwick J, Ruzicka T, Lehmann P, Zlotnik A (2002) CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat Med 8:157–165

    CAS  PubMed  Google Scholar 

  • Hönigsmann H, Brenner W, Rauschmeier W, Konrad K, Wolff K (1984) Photochemotherapy for cutaneous T cell lymphoma: a follow-up study. J Am Acad Dermatol 10:238–245

    PubMed  Google Scholar 

  • Horwitz S (2011) CTCL-MF fast facts. Getting the facts. Available http://www.clfoundation.org. Accessed 21 Nov 2012

  • Huber MA, Staib G, Pehamberger H, Scharffetter-Kochanek K (2006) Management of refractory early-stage cutaneous T-cell lymphoma. Am J Clin Dermatol 7:155–169

    PubMed  Google Scholar 

  • Hymes K (2007) Choices in the treatment of cutaneous T-cell lymphoma. Oncology 21:18–23

    PubMed  Google Scholar 

  • Hymes K (2010) The role of histone deacetylase inhibitors in the treatment of patients with cutaneous T-cell lymphoma. Clin Lymphoma Myeloma Leuk 10:98–109

    CAS  PubMed  Google Scholar 

  • Inche A, La Thangue N (2006) Chromatin control and cancer-drug discovery: realizing the promise. Drug Discov Today 11:97–109

    CAS  PubMed  Google Scholar 

  • Introcaso C, Leber B, Greene K, Ubriani R, Rook A, Kim EJ (2008) Stem cell transplantation in advanced cutaneous T-cell lymphoma. J Am Acad Dermatol 58:645–649

    PubMed  Google Scholar 

  • Jain N, Odenike O (2010) Emerging role of the histone deacetylase inhibitor romidepsin in hematologic malignancies. Expert Opin Pharmacother 11:3073–3084

    CAS  PubMed  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    CAS  PubMed  Google Scholar 

  • Johnstone RW (2002) Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1:287–299

    CAS  PubMed  Google Scholar 

  • Johnstone R, Licht J (2003) Histone deacetylase inhibitors in cancer therapy: is transcription the primary target? Cancer Cell 4:13–18

    CAS  PubMed  Google Scholar 

  • Jones L, Saha V (2002) Chromatin modification, leukaemia and implications for therapy. Br J Haematol 118:714–727

    PubMed  Google Scholar 

  • Karagiannis T, El Osta A (2006) Clinical potential of histone deacetylase inhibitors as stand alone therapeutics and in combination with other chemotherapeutics or radiotherapy for cancer. Epigenetics 1:121–126

    PubMed  Google Scholar 

  • Karagiannis TC, Lobachevsky PN, Leung BKY, White JM, Martin RF (2006a) Receptor-mediated DNA-targeted photoimmunotherapy. Cancer Res 66:10548–10552

    CAS  PubMed  Google Scholar 

  • Karagiannis TC, Lobachevsky PN, Martin RF (2006b) DNA targeted UVA photosensitisation: characterisation of an extremely photopotent iodinated minor groove binding DNA ligand. J Photochem Photobiol B 83:195–204

    CAS  PubMed  Google Scholar 

  • Kavanaugh S, White L, Kolesar J (2010) Vorinostat: a novel therapy for the treatment of cutaneous T-cell lymphoma. Am J Health Syst Pharm 67:793–797

    CAS  PubMed  Google Scholar 

  • Kaye FJ, Bunn PA, Steinberg SM, Stocker JL, Ihde DC, Fischmann AB, Glatstein EJ, Schechter GP, Phelps RM, Foss FM (1989) A randomized trial comparing combination electron-beam radiation and chemotherapy with topical therapy in the initial treatment of mycosis fungoides. N Engl J Med 321:1784–1790

    CAS  PubMed  Google Scholar 

  • Khan O, La Thangue N (2008) Drug insight: histone deacetylase inhibitor-based therapies for cutaneous T-cell lymphomas. Nat Clin Pract Oncol 5:714–726

    CAS  PubMed  Google Scholar 

  • Kim MS, Kwon HJ, Lee YM, Baek JH, Jang JE, Lee SW, Moon EJ, Kim HS, Chung HY, Kim CW, Kim KW (2001) Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med 7:437–443

    PubMed  Google Scholar 

  • Kim Y, Liu H, Mraz Gernhard S, Varghese A, Hoppe R (2003) Long-term outcome of 525 patients with mycosis fungoides and sezary syndrome: clinical prognostic factors and risk for disease progression. Arch Dermatol 139:857–866

    PubMed  Google Scholar 

  • Klisovic MI, Maghraby EA, Parthun MR, Guimond M, Sklenar AR, Whitman SP, Chan KK, Murphy T, Anon J, Archer KJ, Rush LJ, Plass C, Grever MR, Byrd JC, Marcucci G (2003) Depsipeptide (FR 901228) promotes histone acetylation, gene transcription, apoptosis and its activity is enhanced by DNA methyltransferase inhibitors in AML1/ETO-positive leukemic cells. Leukemia 17:350–358

    CAS  PubMed  Google Scholar 

  • Knobler E (2004) Current management strategies for cutaneous T-cell lymphoma. Clin Dermatol 22:197–208

    PubMed  Google Scholar 

  • Knobler R, Girardi M (2001) Extracorporeal photochemoimmunotherapy in cutaneous T cell lymphomas. Ann N Y Acad Sci 941:123–138

    CAS  PubMed  Google Scholar 

  • Kuo MH (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20:615

    CAS  PubMed  Google Scholar 

  • Kwa FAA, Balcerczyk A, Licciardi P, El Osta A, Karagiannis T (2011) Chromatin modifying agents—the cutting edge of anticancer therapy. Drug Discov Today 16:543–547

    CAS  PubMed  Google Scholar 

  • Lansigan F, Foss F (2010) Current and emerging treatment strategies for cutaneous T-cell lymphoma. Drugs 70:273–286

    CAS  PubMed  Google Scholar 

  • Lansigan F, Choi J, Foss F (2008) Cutaneous T-cell lymphoma. Hematol Oncol Clin North Am 22:979–996

    PubMed  Google Scholar 

  • Lansigan F, Stearns D, Foss F (2010) Role of denileukin diftitox in the treatment of persistent or recurrent cutaneous T-cell lymphoma. Cancer Manag Res 2:53–59

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu T, Kuljaca S, Tee A, Marshall G (2006) Histone deacetylase inhibitors: multifunctional anticancer agents. Cancer Treat Rev 32:157–165

    PubMed  Google Scholar 

  • Lowe NJ, Breeding JH, Wortzman MS (1982) New coal tar extract and coal tar shampoos. evaluation by epidermal cell DNA synthesis suppression assay. Arch Dermatol 118:487–489

    CAS  PubMed  Google Scholar 

  • Lundin J, Hagberg H, Repp R, Cavallin-Ståhl E, Fredén S, Juliusson G, Rosenblad E, Tjønnfjord G, Wiklund T, Osterborg A (2003) Phase 2 study of alemtuzumab (anti-CD52 monoclonal antibody) in patients with advanced mycosis fungoides/sezary syndrome. Blood 101:4267–4272

    CAS  PubMed  Google Scholar 

  • Lyseng Williamson K, Yang LPH (2012) Romidepsin: a guide to its clinical use in cutaneous T-cell lymphoma. Am J Clin Dermatol 13:67–71

    PubMed  Google Scholar 

  • Ma X, Ezzeldin H, Diasio R (2009) Histone deacetylase inhibitors: current status and overview of recent clinical trials. Drugs 69:1911–1934

    CAS  PubMed  Google Scholar 

  • Mah LJ, El Osta A, Karagiannis TC (2010) GammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24:679–686

    CAS  PubMed  Google Scholar 

  • Mann B, Johnson J, He K, Sridhara R, Abraham S, Booth B, Verbois L, Morse D, Jee J, Pope S, Harapanhalli R, Dagher R, Farrell A, Justice R, Pazdur R (2007) Vorinostat for treatment of cutaneous manifestations of advanced primary cutaneous T-cell lymphoma. Clin Cancer Res 13:2318–2322

    CAS  PubMed  Google Scholar 

  • Marks P, Breslow R (2007) Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25:84–90

    CAS  PubMed  Google Scholar 

  • Marks P, Jiang X (2005) Histone deacetylase inhibitors in programmed cell death and cancer therapy. Cell Cycle 4:549–551

    CAS  PubMed  Google Scholar 

  • Marks PA, Richon VM, Rifkind RA (2000) Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 92:1210–1216

    CAS  PubMed  Google Scholar 

  • Martin RF, Murray V, D’cunha G, Pardee M, Kampouris E, Haigh A, Kelly DP, Hodgson GS (1990) Radiation sensitization by an iodine-labelled DNA ligand. Int J Radiat Biol 57:939–946

    CAS  PubMed  Google Scholar 

  • Miller T, Witter D, Belvedere S (2003) Histone deacetylase inhibitors. J Med Chem 46:5097–5116

    CAS  PubMed  Google Scholar 

  • Minucci S, Pelicci P (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6:38–51

    CAS  PubMed  Google Scholar 

  • Moniot SB, Weyand M, Steegborn C (2012) Structures, substrates, and regulators of mammalian sirtuins—opportunities and challenges for drug development. Front Pharmacol 3:16

    CAS  PubMed Central  PubMed  Google Scholar 

  • Munshi A, Kurland J, Nishikawa T, Tanaka T, Hobbs M, Tucker S, Ismail S, Stevens C, Meyn R (2005) Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin Cancer Res 11:4912–4922

    CAS  PubMed  Google Scholar 

  • Munshi A, Tanaka T, Hobbs M, Tucker S, Richon V, Meyn R (2006) Vorinostat, a histone deacetylase inhibitor, enhances the response of human tumor cells to ionizing radiation through prolongation of gamma-H2AX foci. Mol Cancer Ther 5:1967–1974

    CAS  PubMed  Google Scholar 

  • Nebbioso A, Clarke N, Voltz E, Germain E, Ambrosino C, Bontempo P, Alvarez R, Schiavone E, Ferrara F, Bresciani F, Weisz A, De Lera A, Gronemeyer H, Altucci L (2005) Tumor-selective action of HDAC inhibitors involves trail induction in acute myeloid leukemia cells. Nat Med 11:77–84

    CAS  PubMed  Google Scholar 

  • New M, Olzscha H, La Thangue N (2012) HDAC inhibitor-based therapies: can we interpret the code? Mol Oncol 6:637–656

    CAS  PubMed  Google Scholar 

  • Olsen E, Duvic M, Frankel A, Kim Y, Martin A, Vonderheid E, Jegasothy B, Wood G, Gordon M, Heald P, Oseroff A, Pinter Brown L, Bowen G, Kuzel T, Fivenson D, Foss F, Glode M, Molina A, Knobler E, Stewart S, Cooper K, Stevens S, Craig F, Reuben J, Bacha P, Nichols J (2001) Pivotal phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J Clin Oncol 19:376–388

    CAS  PubMed  Google Scholar 

  • Olsen E, Kim Y, Kuzel T, Pacheco T, Foss F, Parker S, Frankel S, Chen C, Ricker J, Arduino J, Duvic M (2007) Phase IIB multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol 25:3109–3115

    CAS  PubMed  Google Scholar 

  • Olsen E, Vonderheid E, Pimpinelli N, Willemze R, Kim Y, Knobler R, Zackheim H, Duvic M, Estrach T, Lamberg S, Wood G, Dummer R, Ranki A, Burg G, Heald P, Pittelkow M, Bernengo M, Sterry W, Laroche L, Trautinger F, Whittaker S (2008) Revisions to the staging and classification of mycosis fungoides and sezary syndrome: a proposal of The International Society For Cutaneous Lymphomas (ISCL) and the Cutaneous Lymphoma Task Force of the European Organization of Research and Treatment of Cancer (EORTC). Blood 111:4830

    CAS  Google Scholar 

  • Osella-Abate S, Zaccagna A, Savoia P, Quaglino P, Salomone B, Bernengo MG (2001) Expression of apoptosis markers on peripheral blood lymphocytes from patients with cutaneous T-cell lymphoma during extracorporeal photochemotherapy. J Am Acad Dermatol 44:40–47

    CAS  PubMed  Google Scholar 

  • Peart M, Tainton K, Ruefli A, Dear A, Sedelies K, O’reilly L, Waterhouse N, Trapani J, Johnstone R (2003) Novel mechanisms of apoptosis induced by histone deacetylase inhibitors. Cancer Res 63:4460–4471

    CAS  PubMed  Google Scholar 

  • Piekarz RL, Robey R, Sandor V, Bakke S, Wilson WH, Dahmoush L, Kingma DM, Turner ML, Altemus R, Bates SE (2001) Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood 98:2865–2868

    CAS  PubMed  Google Scholar 

  • Piekarz R, Frye R, Turner M, Wright J, Allen S, Kirschbaum M, Zain J, Prince HM, Leonard J, Geskin L, Reeder C, Joske D, Figg W, Gardner E, Steinberg S, Jaffe E, Stetler Stevenson M, Lade S, Fojo AT, Bates S (2009) Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol 27:5410–5417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pitzalis C, Pipitone N, Bajocchi G, Hall M, Goulding N, Lee A, Kingsley G, Lanchbury J, Panayi G (1997) Corticosteroids inhibit lymphocyte binding to endothelium and intercellular adhesion: an additional mechanism for their anti-inflammatory and immunosuppressive effect. J Immunol 158:5007–5016

    CAS  PubMed  Google Scholar 

  • Poligone B, Heald P (2012) Menus for managing patients with cutaneous T-cell lymphoma. Semin Cutan Med Surg 31:25–32

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pothiawala S, Baldwin B, Cherpelis B, Lien M, Fenske N (2010) The role of phototherapy in cutaneous T-cell lymphoma. J Drugs Dermatol 9:764–772

    PubMed  Google Scholar 

  • Procaccini E, Selleri C, Monfrecola G (1996) In vitro photoinhibition by psoralen and ultraviolet A radiation of human hematopoietic progenitors. Photodermatol Photoimmunol Photomed 12:200–203

    CAS  PubMed  Google Scholar 

  • Querfeld C, Rosen S, Kuzel T, Kirby K, Roenigk H, Prinz B, Guitart J (2005) Long-term follow-up of patients with early-stage cutaneous T-cell lymphoma who achieved complete remission with psoralen plus UV-A monotherapy. Arch Dermatol 141:305–311

    PubMed  Google Scholar 

  • Rasheed W, Bishton M, Johnstone R, Prince HM (2008) Histone deacetylase inhibitors in lymphoma and solid malignancies. Expert Rev Anticancer Ther 8:413–432

    CAS  PubMed  Google Scholar 

  • Reiss Y, Proudfoot AE, Power CA, Campbell JJ, Butcher EC (2001) CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J Exp Med 194:1541–1547

    CAS  PubMed Central  PubMed  Google Scholar 

  • Resnik KS, Vonderheid EC (1993) Home UV phototherapy of early mycosis fungoides: long-term follow-up observations in thirty-one patients. J Am Acad Dermatol 29:73–77

    CAS  PubMed  Google Scholar 

  • Richon V, Garcia Vargas J, Hardwick J (2009) Development of vorinostat: current applications and future perspectives for cancer therapy. Cancer Lett 280:201–210

    CAS  PubMed  Google Scholar 

  • Rodd AL, Ververis K, Karagiannis TC (2012) Combination Phototherapy with a histone deacetylase inhibitor and a potent DNA-binding bibenzimidazole: effects in haematological cell lines. Lymphoma 2012:13

    Google Scholar 

  • Rook AH, Vowels BR, Jaworsky C, Singh A, Lessin SR (1993) The immunopathogenesis of cutaneous T-cell lymphoma. abnormal cytokine production by Sézary T cells. Arch Dermatol 129:486–489

    CAS  PubMed  Google Scholar 

  • Rosen S, Foss F (1995) Chemotherapy for mycosis fungoides and the sezary syndrome. Hematol Oncol Clin North Am 9:1109–1116

    CAS  PubMed  Google Scholar 

  • Ruefli AA, Ausserlechner MJ, Bernhard D, Sutton VR, Tainton KM, Kofler R, Smyth MJ, Johnstone RW (2001) The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of bid and production of reactive oxygen species. Proc Natl Acad Sci U S A 98:10833–10838

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sambucetti LC, Fischer DD, Zabludoff S, Kwon PO, Chamberlin H, Trogani N, Xu H, Cohen D (1999) Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects. J Biol Chem 274:34940–34947

    CAS  PubMed  Google Scholar 

  • Sandor V, Senderowicz A, Mertins S, Sackett D, Sausville E, Blagosklonny MV, Bates SE (2000) P21-dependent g(1)arrest with downregulation of cyclin D1 and upregulation of cyclin E by the histone deacetylase inhibitor FR901228. Br J Cancer 83:817–825

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santini V, Kantarjian HM, Issa JP (2001) Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann Intern Med 134:573–586

    CAS  PubMed  Google Scholar 

  • Santini V, Gozzini A, Ferrari G (2007) Histone deacetylase inhibitors: molecular and biological activity as a premise to clinical application. Curr Drug Metab 8:383–393

    CAS  PubMed  Google Scholar 

  • Sausville EA, Eddy JL, Makuch RW, Fischmann AB, Schechter GP, Matthews M, Glatstein E, Ihde DC, Kaye F, Veach SR (1988) Histopathologic staging at initial diagnosis of mycosis fungoides and the Sézary syndrome. definition of three distinctive prognostic groups. Ann Intern Med 109:372–382

    CAS  PubMed  Google Scholar 

  • Schaerli P, Ebert L, Moser B (2006) Comment on “the vast majority of CLA + T cells are resident in normal skin”. J Immunol 177:1375–1376

    CAS  PubMed  Google Scholar 

  • Shiozawa K, Nakanishi T, Tan M, Fang H-B, Wang W-C, Edelman M, Carlton D, Gojo I, Sausville E, Ross D (2009) Preclinical studies of vorinostat (suberoylanilide hydroxamic acid) combined with cytosine arabinoside and etoposide for treatment of acute leukemias. Clin Cancer Res 15:1698–1707

    CAS  PubMed  Google Scholar 

  • Stadler R (1998) Interferons in dermatology. Present-day standard. Dermatol Clin 16:377–398

    CAS  PubMed  Google Scholar 

  • Stadler R (2007) Optimal combination with PUVA: rationale and clinical trial update. Oncology 21:29–32

    PubMed  Google Scholar 

  • Stadler R, Kremer A (2006) Therapeutic advances in cutaneous T-cell lymphoma (CTCL): from retinoids to rexinoids. Semin Oncol 33:S7–S10

    CAS  PubMed  Google Scholar 

  • Stadler R, Otte HG, Luger T, Henz BM, Kühl P, Zwingers T, Sterry W (1998) Prospective randomized multicenter clinical trial on the use of interferon-2a plus acitretin versus interferon-2a plus PUVA in patients with cutaneous T-cell lymphoma stages I and II. Blood 92:3578–3581

    CAS  PubMed  Google Scholar 

  • Toyooka T, Ibuki Y (2009) Histone deacetylase inhibitor sodium butyrate enhances the cell killing effect of psoralen plus UVA by attenuating nucleotide excision repair. Cancer Res 69:3492–3500

    CAS  PubMed  Google Scholar 

  • Ueda H, Nakajima H, Hori Y, Goto T, Okuhara M (1994) Action of FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum no. 968, on Ha-ras transformed NIH3T3 cells. Biosci Biotechnol Biochem 58:1579–1583

    CAS  PubMed  Google Scholar 

  • Vittorio CC, Rook AH, French LE, Shapiro M, Lehrer MS, Junkins Hopkins JM (2001) Therapeutic advances in biological response modifiers in the treatment of cutaneous T-cell lymphoma. Biodrugs 15:431–437

    CAS  PubMed  Google Scholar 

  • Vonderheid E, Bernengo M, Burg GN, Duvic M, Heald P, Laroche L, Olsen E, Pittelkow M, Russell Jones R, Takigawa M, Willemze R (2002) Update on erythrodermic cutaneous T-cell lymphoma: report of the International Society For Cutaneous Lymphomas. J Am Acad Dermatol 46:95–106

    PubMed  Google Scholar 

  • Vrana JA, Decker RH, Johnson CR, Wang Z, Jarvis WD, Richon VM, Ehinger M, Fisher PB, Grant S (1999) Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid (SAHA) proceeds through pathways that are regulated by Bcl-2/Bcl-XL, C-Jun, and p21CIP1, but independent of p53. Oncogene 18:7016–7025

    CAS  PubMed  Google Scholar 

  • Weinstock MA, Gardstein B (1999) Twenty-year trends in the reported incidence of mycosis fungoides and associated mortality. Am J Public Health 89:1240–1244

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whittaker S, Foss F (2007) Efficacy and tolerability of currently available therapies for the mycosis fungoides and sezary syndrome variants of cutaneous T-cell lymphoma. Cancer Treat Rev 33:146–160

    CAS  PubMed  Google Scholar 

  • Willemze R, Jaffe E, Burg G (2005) Who-EORTC classification for cutaneous lymphomas. Blood 105:3768–3785

    CAS  PubMed  Google Scholar 

  • Wollina U (2012) Cutaneous T cell lymphoma: update on treatment. Int J Dermatol 51:1019–1036

    PubMed  Google Scholar 

  • Xu WS, Parmigiani RB, Marks PA (2007) Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26:5541–5552

    CAS  PubMed  Google Scholar 

  • Yang G, Thompson MA, Brandt SJ, Hiebert SW (2007) Histone deacetylase inhibitors induce the degradation of the T(8;21) fusion oncoprotein. Oncogene 26:91–101

    PubMed  Google Scholar 

  • Yoo EK, Rook AH, Elenitsas R, Gasparro FP, Vowels BR (1996) Apoptosis induction of ultraviolet light A and photochemotherapy in cutaneous T-cell lymphoma: relevance to mechanism of therapeutic action. J Investig Dermatol 107:235–242

    CAS  PubMed  Google Scholar 

  • Zackheim HS, Kashani Sabet M, Amin S (1998) Topical corticosteroids for mycosis fungoides. Experience in 79 patients. Arch Dermatol 134:949–954

    CAS  PubMed  Google Scholar 

  • Zain J, O’connor O (2010) Targeting histone deacetyalses in the treatment of B- and T-cell malignancies. Invest New Drugs 28(suppl 1):S58–S78

    PubMed  Google Scholar 

  • Zain J, Kaminetzky D, O’connor O (2010) Emerging role of epigenetic therapies in cutaneous T-cell lymphomas. Expert Rev Hematol 3:187–203

    CAS  PubMed  Google Scholar 

  • Zarebska Z (1994) Cell membrane, a target for PUVA therapy. Cell Membr 23:101–109

    CAS  Google Scholar 

  • Zhang C, Hazarika P, Ni X, Weidner D, Duvic M (2002) Induction of apoptosis by bexarotene in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. Clin Cancer Res 8:1234–1240

    CAS  PubMed  Google Scholar 

  • Zhang X, Gillespie S, Borrow J, Hersey P (2004) The histone deacetylase inhibitor suberic bishydroxamate regulates the expression of multiple apoptotic mediators and induces mitochondria-dependent apoptosis of melanoma cells. Mol Cancer Ther 3:425–435

    CAS  PubMed  Google Scholar 

  • Zhang C, Richon V, Ni X, Talpur R, Duvic M (2005) Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. J Investig Dermatol 125:1045–1052

    CAS  PubMed  Google Scholar 

  • Zic J (2012) Photopheresis in the treatment of cutaneous T-cell lymphoma: current status. Curr Opin Oncol 24(suppl 1):S1–S10

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The support of the Australian Institute of Nuclear Science and Engineering is acknowledged. TCK was the recipient of AINSE awards. TCK is a Future Fellow and Epigenomic Medicine Laboratory is supported by the Australian Research Council. Supported in part by the Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom C. Karagiannis B.Sc. (Hons), Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sung, J.J., Karagiannis, T.C. (2014). Combination Therapy for Cancer: Phototherapy and HDAC Inhibition. In: Maulik, N., Karagiannis, T. (eds) Molecular mechanisms and physiology of disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0706-9_17

Download citation

Publish with us

Policies and ethics