• Kyle M. McElhoney
  • Glen D. O’Neil
  • Samuel P. Kounaves
Part of the Nanostructure Science and Technology book series (NST)


Electrochemical sensors, especially ion-selective electrodes, are ideally suited for analyses of extraterrestrial environments where comparatively little is known about the chemistry: they have remarkably high sensitivity over a wide dynamic range and are available for a wide range of organic and inorganic cations and anions. In addition, ion-selective electrodes require very little power, have low mass, and can withstand dramatic swings in temperature and pressure without loss of function. Analysis in exosphere environments offers unique challenges caused by the preflight preparations and storage of the sensors, the long cruise to the planetary body, and the harsh environmental conditions in which the analyses must be performed. Currently, only a single set of electrochemical analyses of another planet has been performed, but several new instruments are being developed which will potentially provide insight into the scientific questions surrounding the chemistry and biology of other planetary bodies in our solar system.

This chapter discusses the challenges of performing electrochemical analyses in an extraterrestrial environment such as Mars, with an emphasis on sensor development, characterization, and calibration while addressing lessons learned from the Phoenix mission, and looking to the future of electrochemical analyses of other planetary bodies.


Electrochemical Sensor Martian Atmosphere Planetary Body Anodic Strip Voltammetry Iridium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Clark BC, Mason L, Thompson P (1995) Mars aqueous chemistry experiment (MACE), NASA technical report CR-201925. Lockheed Martin Astronautics, Denver, COGoogle Scholar
  2. 2.
    Kounaves SP et al (2003) Mars Surveyor Program’01 Mars Environmental Compatibility Assessment wet chemistry lab: a sensor array for chemical analysis of the Martian soil. J Geophys Res 108:5077. doi: 10.1029/2002JE001978 CrossRefGoogle Scholar
  3. 3.
    Smith PH et al (2008) Introduction to special section on the phoenix mission: landing site characterization experiments, mission overviews, and expected science. J Geophys Res 113:E00A18. doi: 10.1029/2008JE003083 Google Scholar
  4. 4.
    Smith PH et al (2009) H2O at the phoenix landing site. Science 325:58–61Google Scholar
  5. 5.
    Kounaves SP, Hecht MH, West SJ et al (2009) The MECA wet chemistry laboratory on the 2007 Phoenix Mars scout lander. J Geophys Res 114:E00A19. doi: 10.1029/2008JE003084 Google Scholar
  6. 6.
    Bakker E, Bühlmann P, Pretsch E (1997) Carrier-based ion selective electrodes and bulk optodes. 1. General characteristics. Chem Rev 97:3083–3132CrossRefGoogle Scholar
  7. 7.
    Bakker E, Pretsch E (2007) Modern potentiometry. Angew Chem Int Ed 46:5660–5668. doi: 10.1002/anie.200605068 CrossRefGoogle Scholar
  8. 8.
    Bühlmann P, Pretsch E, Bakker E (1998) Carrier-based ion selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors. Chem Rev 98:1593–1688CrossRefGoogle Scholar
  9. 9.
    Buck RP, Lindner E (1998) Studies of potential generation across membrane sensors at interfaces and through bulk. Acc Chem Res 31:257–266. doi: 10.1021/ar9700623 CrossRefGoogle Scholar
  10. 10.
    Cosofret VV, Erdosy M, Johnson TA et al (1995) Microfabricated sensor arrays sensitive to pH and K+ for ionic distribution measurements in the beating heart. Anal Chem 67:1647–1653. doi: 10.1021/ac00106a001 CrossRefGoogle Scholar
  11. 11.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York, NYGoogle Scholar
  12. 12.
    Kounaves SP, Hecht MH, Kapit J et al (2010) Wet chemistry experiments on the 2007 phoenix Mars scout lander mission: data analysis and results. J Geophys Res 115:E00E10. doi: 10.1029/2009JE003424 Google Scholar
  13. 13.
    Hecht MH, Kounaves SP, Quinn RC et al (2009) Detection of perchlorate and the soluble chemistry of martian soil at the phoenix lander site. Science 325:64–67Google Scholar
  14. 14.
    Stoker CR, Zent A, Catling DC et al (2010) Habitability of the phoenix landing site. J Geophys Res 115:E00E20. doi: 10.1029/2009JE003421 Google Scholar
  15. 15.
    Kounaves SP, Stroble ST, Anderson RM et al (2010) Discovery of natural perchlorate in the Antarctic Dry Valleys and its global implications. Environ Sci Technol 44:2360–2364. doi: 10.1021/es9033606 CrossRefGoogle Scholar
  16. 16.
    Catling DC, Claire MW, Zahnle KJ et al (2010) Atmospheric origins of perchlorate on Mars and in the Atacama. J Geophys Res 115:E00E11. doi: 10.1029/2009JE003425 Google Scholar
  17. 17.
    Kounaves SP, Chaniotakis NA, Chevrier VF et al (2013) Identification of the perchlorate parent salts at the Phoenix Mars landing site and possible implications. Icarus 232:226–231CrossRefGoogle Scholar
  18. 18.
    Boynton WV, Ming DW, Kounaves SP et al (2009) Evidence for calcium carbonate at the Mars Phoenix landing site. Science 325:61–64Google Scholar
  19. 19.
    Bühlmann P, Amemiya S, Yajima S, Umezawa Y (1998) Co-Ion interference for ion selective electrodes based on charged and neutral ionophores: a comparison. Anal Chem 70:4291–4303CrossRefGoogle Scholar
  20. 20.
    Kounaves SP, Hecht MH, Kapit J et al (2010) Soluble sulfate in the martian soil at the Phoenix landing site. Geophys Res Lett 37. doi:  10.1029/2010GL042613
  21. 21.
    Quinn RC, Chittenden JD, Kounaves SP, Hecht MH (2011) The oxidation-reduction potential of aqueous soil solutions at the Mars Phoenix landing site. Geophys Res Lett 38:L14202. doi: 10.1029/2011GL047671 CrossRefGoogle Scholar
  22. 22.
    Vamvakaki M, Chaniotakis NA (1996) Solid-contact ion selective electrode with stable internal electrode. Anal Chim Acta 320:53–61. doi: 10.1016/0003-2670(95)00524-2 CrossRefGoogle Scholar
  23. 23.
    McElhoney K, O’Neil GD, Chaniotakis NA, Kounaves SP (2012) Stability and lifetime of potassium solid-contact ion selective electrodes for continuous and autonomous measurements. Electroanalysis 24:2071–2078. doi: 10.1002/elan.201200264 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Kyle M. McElhoney
    • 1
  • Glen D. O’Neil
    • 1
  • Samuel P. Kounaves
    • 1
  1. 1.Department of ChemistryTufts UniversityMedfordUSA

Personalised recommendations