Introduction to Electroanalysis of Environmental Samples

Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

A short introduction to the importance of electroanalytical methods in environmental analysis is given, underlined by some historical aspects and milestones. The main topics of environmental electrochemistry are sketched briefly.

Keywords

Titanium Surfactant High Performance Liquid Chromatography Mercury Iodine 

Notes

Acknowledgement

Herein, I.Š. and K.K. would like to acknowledge the valuable contributions from the research activities of their close colleagues and friends who have collaborated with the authors over the years and whose results are also somehow present in this text.

References

  1. 1.
    Ashok K, Shukla AK, Prem Kumar T (2013) Pillars of modern electrochemistry: a brief history. http://electrochem.cwru.edu/encycl/art-p05-pillars-of-ec.htm. Downloaded 5 May 2013
  2. 2.
    Cremer M (1906) Über die Ursache der elektromotorischen Eigenschaften der Gewebe, zugleich ein Beitrag zur Lehre von polyphasischen Elektrolytketten. Z Biol 47:542Google Scholar
  3. 3.
    Haber F, Klemensiewicz Z (1909) Ueber elektrische. Phasengrenzkraefte. Z Phys Chem 67:385–427Google Scholar
  4. 4.
    Heyrovský J (1922) Electrolysis with a mercury drop cathode (in Czech). Chem Listy XVI:258–264Google Scholar
  5. 5.
    Heyrovský J, Kůta F (1966) Principles of polarography. Academic, New YorkGoogle Scholar
  6. 6.
    Kalousek M (1946) Investigation on the reversibility of the dropping mercury electrode by discontinually changeable polarisation voltage (in Czech). Chem Listy 40:149–157Google Scholar
  7. 7.
    Barker GC, Jenkins IL (1952) Square-wave polarography. Analyst 77:685–696Google Scholar
  8. 8.
    Elbei AW (1960) Tast polarography (in German). Fresenius’ Z Anal Chem 173:70–73Google Scholar
  9. 9.
    Bruckenstein S, Bixler IW (1965) Chemical stripping analysis. Anal Chem 37:786–790Google Scholar
  10. 10.
    Fogg AG, Wang J (1999) Terminology and convention for electrochemical stripping analysis (technical report). Pure Appl Chem 71:891–897Google Scholar
  11. 11.
    Jagner D (1982) Potentiometric stripping analysis: a review. Analyst (UK) 107:593–599Google Scholar
  12. 12.
    Růžička J, Hansen EH (1975) Flow injection analyses. 1. New concept of fast continuous analysis. Anal Chim Acta 78:145–157Google Scholar
  13. 13.
    Růžička J, Hansen EH (1988) Flow injection analysis, 2nd edn. Wiley, New YorkGoogle Scholar
  14. 14.
    Kolthoff IM, Furman NH (1931) Potentiometric titrations. Wiley, New YorkGoogle Scholar
  15. 15.
    Pungor E (1965) Oscillometry and conductometry. Pergamon Press, LondonGoogle Scholar
  16. 16.
    Vydra F, Štulík K (1971) Biamperometric titrations (in Czech). SNTL, PragueGoogle Scholar
  17. 17.
    MacDonald DD (1977) Chronopotentiometry. In: Transient techniques in electrochemistry. Springer, Berlin, pp 119–184Google Scholar
  18. 18.
    Compton RG, Eklund JC, Page SD (1994) Voltammetry in the presence of ultrasound: sonovoltammetry and surface effects. J Phys Chem 98:12410–12414Google Scholar
  19. 19.
    Orazem ME, Tribollet B (2011) Electrochemical impedance spectroscopy (EIS). Wiley, New YorkGoogle Scholar
  20. 20.
    Knight AW (1999) A review of recent trends in analytical applications of electrogenerated chemiluminescence. Trends Anal Chem 18:47–62Google Scholar
  21. 21.
    Gale RJ (1988) Spectroelectrochemistry: theory and practice. Springer, BerlinGoogle Scholar
  22. 22.
    Bard AE, Mirkin EV (eds) (2012) Scanning electrochemical microscopy. CRC Press, Boca Raton, FLGoogle Scholar
  23. 23.
    J. Heyrovsky Institute of Physical Chemistry, homepage (2013) http://www.jh-inst.cas.cz/www/data/dokument/obrazek/539o.jpg. Downloaded 5 May 2013
  24. 24.
    Heyrovsky J, Shikata M (1925) Researches with the dropping mercury cathode. II. The polarograph. Rec Trav Chim Pays Bas 44:496Google Scholar
  25. 25.
    Clark LC, Lyons C (1962) Electrode system for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29Google Scholar
  26. 26.
    Adams RN (1958) Carbon paste electrodes. Anal Chem 30:1576Google Scholar
  27. 27.
    Clark LC, Wolf R, Granger D, Taylor Z (1953) Continuous recording of blood oxygen tensions by polarography. J Appl Physiol 6:189–193Google Scholar
  28. 28.
    Wang J (1985) Stripping analysis: principles, instrumentation, and application. VCH Publishers, Deerfield Beach, FLGoogle Scholar
  29. 29.
    Wang J (1994) Analytical electrochemistry. VCH Publishers, New YorkGoogle Scholar
  30. 30.
    Veselý J, Weis D, Štulík K (1978) Analysis with ion-selective electrodes. E. Horwood, ChichesterGoogle Scholar
  31. 31.
    Štulík K, Pacáková V (1987) Electroanalytical measurements in flowing liquids. Ellis Horwood, ChichesterGoogle Scholar
  32. 32.
    Adams RN (1969) Electrochemistry at solid electrodes. Marcel Dekker, New YorkGoogle Scholar
  33. 33.
    Kalcher K, Švancara I, Metelka R, Vytřas K, Walcarius A (2006) Heterogeneous electrochemical carbon sensors. In: Grimes CA, Dickey EC, Pishko MV (eds) Encyclopedia of sensors, vol IV. American Scientific Publisher, Stevenson Ranch, pp 283–429Google Scholar
  34. 34.
    Rivas GA et al (eds) (2009) Carbon nanotubes: a new alternative for electrochemical sensors. Nova, Hauppauge, NYGoogle Scholar
  35. 35.
    Delahay P (1954) New instrumental methods in electrochemistry: theory, instrumentation, and applications to analytical and physical chemistry. Interscience, New YorkGoogle Scholar
  36. 36.
    Lingane JJ (1958) Electroanalytical chemistry. Interscience, New YorkGoogle Scholar
  37. 37.
    Bard AJ et al (eds) (1966–2013) Electroanalytical chemistry, a series of advances, vol I–XXV. M. Dekker, New YorkGoogle Scholar
  38. 38.
    Heyrovský J, Zuman P (1968) Practical polarography. Academic, New YorkGoogle Scholar
  39. 39.
    Vydra F, Štulík K, Juláková E (1976) Electrochemical stripping analysis. Ellis Horwood, ChichesterGoogle Scholar
  40. 40.
    Meittes L, Zuman P, Rott A (1976) Handbook series in inorganic electrochemistry (Vol. I + II) & Handbook series in organic electrochemistry (Vol. III + IV). CRC Press, Cleveland, OHGoogle Scholar
  41. 41.
    Wang J (1988) Electroanalytical techniques in clinical chemistry and laboratory medicine. VCH Publishers, WeinheimGoogle Scholar
  42. 42.
    Smyth MR, Vos J (eds) (1992) Analytical voltammetry, vol 27, Comprehensive analytical chemistry series. Elsevier, AmsterdamGoogle Scholar
  43. 43.
    Brainina K, Neiman E (1993) Electroanalytical stripping methods. Wiley, New YorkGoogle Scholar
  44. 44.
    Vanýsek P (ed) (1996) Modern techniques in electroanalysis. Wiley, New YorkGoogle Scholar
  45. 45.
    Kissinger P, Heineman WR (eds) (1996) Laboratory techniques in electroanalytical chemistry, 2nd edn. CRC Press, Boca Raton, FLGoogle Scholar
  46. 46.
    Brett CMA, Oliveira Brett MA (1998) Electroanalysis, Oxford chemistry primers series. Oxford University Press, OxfordGoogle Scholar
  47. 47.
    Monk PMS (2001) Fundamentals of electroanalytical chemistry. Wiley, New YorkGoogle Scholar
  48. 48.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: principles and application, 2nd edn. Wiley, New YorkGoogle Scholar
  49. 49.
    Bard AJ, Stratmann M et al (eds) (2002–2007) Encyclopedia of electrochemistry, vol I–XI. Wiley, WeinheimGoogle Scholar
  50. 50.
    Grimes CA, Dickey EC, Pishko MV (eds) (2006) The encyclopedia of sensors, vol I–X. American Scientific Publisher, Stevenson RanchGoogle Scholar
  51. 51.
    Mirčeski V, Komorski-Lovrić Š, Lovrić M (2007) Square-wave voltammetry: theory and application. Springer, HeidelbergGoogle Scholar
  52. 52.
    Scholz F (ed) (2011) Electroanalytical methods: guide to experiments and applications, 2nd edn. Springer, BerlinGoogle Scholar
  53. 53.
    Compton RG, Banks CE (2011) Understanding voltammetry, 2nd edn. Imperial College Press, LondonGoogle Scholar
  54. 54.
    Compton RG, Batchelor-McAuley C, Dickinson EJF (2011) Understanding voltammetry: problems and solutions. Imperial College Press, LondonGoogle Scholar
  55. 55.
    Ozkan SA (2012) Method validation. In: Electrochemical methods in pharmaceutical analysis and their validation. HNB Publishing, New York, pp 293–335Google Scholar
  56. 56.
    Neeb R (1969) Inverse polarography and voltammetry (in German). Verlag Chemie, WeinheimGoogle Scholar
  57. 57.
    Vydra F, Štulík K, Julakova E (1977) Stripping polarography and voltammetry (in Czech). SNTL, PragueGoogle Scholar
  58. 58.
    Doležal J, Musil J (1977) Polarographic analysis of mineral resources (in Czech). SNTL, PragueGoogle Scholar
  59. 59.
    Kalvoda R (ed) (1985) Electroanalysis of the environment (in Czech). SNTL, PragueGoogle Scholar
  60. 60.
    Neeb R, Henze G (1986) Electrochemical analysis (in German). Springer, BerlinGoogle Scholar
  61. 61.
    Brainina KZ, Neiman E, Slepuschkin VV (1988) Inverse electroanalytical methods (in Russian). Chimiya, MoscowGoogle Scholar
  62. 62.
    Galus Z (1994) Fundamentals of electroanalytical chemistry (in Polish), 2nd edn. Polish Scientific Publishers, WarsawGoogle Scholar
  63. 63.
    Ion A, Banica FG (2002) Electrochemical methods in analytical chemistry (in Roumanian). ARS Docendi, BucharestGoogle Scholar
  64. 64.
    Jindra J (2009) History of electrochemistry in Czech lands, 1882–1989 (in Czech). Libri, PragueGoogle Scholar
  65. 65.
    Kalcher K, Vytřas K, Švancara I, Metelka R (eds) (2005–2012) Sensing in electroanalysis, an annual series of books (in English), vol I–VII. University Press Centre, University of Pardubice, PardubiceGoogle Scholar
  66. 66.
    Švancara I, Kalcher K, Walcarius A, Vytřas K (2012) Electroanalysis with carbon paste electrodes. CRC Press, Boca Raton, FLGoogle Scholar
  67. 67.
    Van den Berg CMG, Kramer JR (1979) Determination of complexing capacities of ligands in natural waters and conditional stability constants of the copper complexes by means of manganese dioxide. Anal Chim Acta 106:113–120Google Scholar
  68. 68.
    Achtenberg EP, Van den Berg CMG (1994) Automated voltammetric system for shipboard metal speciation in sea water. Anal Chim Acta 284:463–471Google Scholar
  69. 69.
    Yang RJ, Van den Berg CMG (2009) Metal complexation by humic substances in seawater. Environ Sci Technol 43:7192–7197Google Scholar
  70. 70.
    Florence TM (1989) Electrochemical techniques for trace element speciation in waters. In: Batley GE (ed) Trace element speciation: analytical methods and problems. CRC Press, Boca Raton, FL, pp 77–116Google Scholar
  71. 71.
    Florence TM (1970) Anodic stripping voltammetry with a glassy carbon electrode mercury-plated in situ. J Electroanal Chem 27:273–278Google Scholar
  72. 72.
    Bond AM, Heritage ID, Thormann W (1986) Strategy for trace metal determination in seawater by anodic stripping voltammetry using a computerized multitime-domain measurement method. Anal Chem 58:1063–1066Google Scholar
  73. 73.
    Howell GN, O’Connor MJ, Bond AM (1986) Methylmercury generation in seawater by transmethylation reactions of organolead and organotin compounds with inorganic mercury as monitored by multi-nuclear magnetic resonance and electroanalytical techniques. Aust J Chem 39:1167–1175Google Scholar
  74. 74.
    Wang J (1982) Anodic stripping voltammetry as an analytical tool. Environ Sci Technol 16:104A–109AGoogle Scholar
  75. 75.
    Wang J (2001) In-situ monitoring electrochemical sensors. In: Ghassemi A (ed) Handbook of pollution control and waste minimization. M. Dekker, New YorkGoogle Scholar
  76. 76.
    Wang J (2007) Stripping-based electrochemical metal sensors for environmental monitoring. In: Alegret A, Merkoci A (eds) Chemical sensors. Elsevier, AmsterdamGoogle Scholar
  77. 77.
    Brainina KZ, Malakhova NA, Stojko NY (2000) Stripping voltammetry in environmental and food analysis. Fresenius J Anal Chem 368:307–325Google Scholar
  78. 78.
    Brainina KZ, Kubysheva IV, Miroshnikova EG et al (2001) Small-size sensors for in-field stripping voltammetric analysis of water. Field Anal Chem Technol 1:260–271Google Scholar
  79. 79.
    Nurnberg HW (1977) Potentialities and applications of advanced polarographic and voltammetric methods in environmental research and surveillance of toxic metals. Electrochim Acta 22:935–949Google Scholar
  80. 80.
    Nurnberg HW (1979) Polarography and voltammetry in studies of toxic metals in man and his environment. Sci Total Environ 12:35–60Google Scholar
  81. 81.
    Stoeppler M, Durbeck HW, Nurnberg HW (1982) Environmental specimen banking: a challenge in trace analysis. Talanta 29:963–972Google Scholar
  82. 82.
    Ostapczuk P, Froning M (1992) Advanced electrochemical techniques for the determination of heavy metals in specimen bank materials. In: Rossbach M, Schladot JD, Ostapczuk P (eds) Specimen banking—environmental monitoring and modern analytical approaches. Springer, Berlin, pp 153–165Google Scholar
  83. 83.
    Ostapczuk P (1993) Present potentials and limitations in the determination of trace elements by potentiometric stripping analysis. Anal Chim Acta 273:35–40Google Scholar
  84. 84.
    Compton RG, Foord JS, Marken F (2003) Electroanalysis at diamond-like and doped-diamond electrodes. Electroanalysis 15:1349–1363Google Scholar
  85. 85.
    Welch CW, Compton RG (2006) The use of nanoparticles in electroanalysis: a review. Anal Bioanal Chem 384:601–619Google Scholar
  86. 86.
    Campbell FW, Compton RG (2010) The use of nanoparticles in electroanalysis: an updated review. Anal Bioanal Chem 396:241–259Google Scholar
  87. 87.
    O’Connor KM, Arrigan DWM, Gy S (1995) Calixarenes in electroanalysis. Electroanalysis 7:205–215Google Scholar
  88. 88.
    Dempsey E, Smyth MR, Richardson DHS (1992) Application of lichen-modified carbon paste electrodes to the voltammetric determination of metal ions in multielement and speciation studies. Analyst (UK) 117:1467–1470Google Scholar
  89. 89.
    Ruíz Barrio MA, Pingarron Corrazón JM (1992) Voltammetric determination of pentachlorophenol with a silica gel-modified carbon paste electrode. Fresenius J Anal Chem 344:34–38Google Scholar
  90. 90.
    Agraz R, Sevilla MT, Hernández L (1995) Voltammetric quantification and speciation of mercury compounds. J Electroanal Chem 390:47–57Google Scholar
  91. 91.
    Estela JM, Tomás C, Cladera A, Cerdà V (1995) Potentiometric stripping analysis: a review. Crit Rev Anal Chem 25:91–141Google Scholar
  92. 92.
    Brett CMA (1999) Electroanalytical techniques for the future: the challenges of miniaturization and of real-time measurements. Electroanalysis 11:1013–1016Google Scholar
  93. 93.
    Marchal V, Barbier F, Plassard R, Faure R, Vittori O (1999) Determination of cadmium in bentonite clay mineral using a carbon paste electrode. Fresenius J Anal Chem 363:710–712Google Scholar
  94. 94.
    Walcarius A (1995) Zeolite-modified electrodes: analytical applications and prospects. Electroanalysis 8:971–986Google Scholar
  95. 95.
    Walcarius A (2001) Electroanalysis with pure, chemically modified, and sol-gel-derived silica-based materials (an overview). Electroanalysis 13:701–718Google Scholar
  96. 96.
    Monien H, Gerlach U, Jacob P (1981) Inverse-voltammetry of some copper-chelates using a carbon paste electrode—determination of copper in drinking water by oxidation of copper dithiooxamide. Fresenius′ Z Anal Chem 306:136–143Google Scholar
  97. 97.
    Meyer S, Kubsch G, Lovric M, Scholz F (1997) Speciation of mercury in two dimictic lakes of North-East Germany during a period of 600 days. Int J Environ Anal Chem 68:347–368Google Scholar
  98. 98.
    Bakker E, Pretsch E (2005) Potentiometric sensors for trace-level analysis. Trends Anal Chem 24:199–207Google Scholar
  99. 99.
    Tercier ML, Buffle J (1993) In-situ voltammetric measurements in natural waters: future prospects and challenges. Electroanalysis 5:187–200Google Scholar
  100. 100.
    Daniele S, Ugo P, Bragato C et al (1996) Use of Nafion(R) coated carbon disk micro-electrodes in solution without and with different concentrations of supporting electrolyte. J Electroanal Chem 418:29–34Google Scholar
  101. 101.
    Daniele S, Baldo MA, Bragato C (2008) Recent developments in stripping analysis on microelectrodes. Curr Anal Chem 4:215–228Google Scholar
  102. 102.
    Arduini F, Quintana Calvo J, Amine A, Palleschi G, Moscone D (2010) Bismuth-modified electrodes for lead detection (a review). Trends Anal Chem 29(2010):1295–1304Google Scholar
  103. 103.
    Paneli MG, Voulgaropoulos A (1993) Applications of adsorptive stripping voltammetry in the determination of trace and ultratrace metals. Electroanalysis 5:355–373Google Scholar
  104. 104.
    Economou A, Fielden PR (1993) Adsorptive stripping voltammetry on mercury film electrodes in the presence of surfactants. Analyst (UK) 118:1399–1403Google Scholar
  105. 105.
    Hocevar SB, Ogorevc B (2007) Preparation and characterization of carbon paste micro-electrode based on carbon nanoparticles. Talanta 74:405–411Google Scholar
  106. 106.
    Kemula W, Kublik Z (1958) The hanging mercury drop electrode. Anal Chim Acta 18:104–108Google Scholar
  107. 107.
    Stará V, Kopanica M (1989) Chemically modified carbon paste and carbon composite electrodes. Electroanalysis 1:251–256Google Scholar
  108. 108.
    Barek J, Cvačka J, Muck A, Quaiserová V, Zima J (2001) Electrochemical methods for monitoring of environmental carcinogens. Fresenius J Anal Chem 369:556–562Google Scholar
  109. 109.
    Navrátilová Z, Kula P (2003) Clay modified electrodes: present applications and prospects. Electroanalysis 15:837–846Google Scholar
  110. 110.
    Beinrohr E, Tschopel P, Tolg G, Nemeth M (1993) Flow-through anodic stripping coulometry and anodic stripping coulometry with collection for the simultaneous determination of copper, lead, cadmium, and zinc. Anal Chim Acta 273:13–25Google Scholar
  111. 111.
    Labuda J, Vaníčková M, Bučková M, Korgová E (2000) Development in voltammetric analysis with chemically modified electrodes and biosensors. Chem Papers 54:95–103Google Scholar
  112. 112.
    Bobrowski A, Zarebski J (2000) Catalytic systems in adsorptive stripping voltammetry: a review. Electroanalysis 12:1177–1186Google Scholar
  113. 113.
    Kalcher K, Grabec I, Raber G, Cai XH, Tavcar G, Ogorevc B (1995) The vermiculite-modified carbon paste electrode as a model system for preconcentrating mono- and divalent cations. J Electroanal Chem 386:149–156Google Scholar
  114. 114.
    Nović M, Divjak B, Pihlar B, Hudnik V (1996) Influence of the sample matrix composition on the accuracy of the ion chromatographic determination of anions. J Chromatogr A 739:35–42Google Scholar
  115. 115.
    Guzsvány V, Kádár M, Zs P, Bjelica L, Gaál F, Tóth K (2008) Monitoring of photocatalytic degradation of selected neonicotinoid insecticides by cathodic voltammetry with a bismuth film electrode. Electroanalysis 20:291–300Google Scholar
  116. 116.
    Pižeta I, Branica M (1997) Simulation and fitting of anodic stripping voltammetry data for determination of the metal complexing capacity. Anal Chim Acta 351:73–82Google Scholar
  117. 117.
    Murray RW, Ewing AG, Durst RA (1987) Chemically modified electrodes: molecular design for electroanalysis. Anal Chem 59:A379–A390Google Scholar
  118. 118.
    Bonakdar M, Mottola HA (1989) Electrocatalysis at chemically modified electrodes. Detection/determination of redox gaseous species in continuous-flow systems. Anal Chim Acta 224:305–313Google Scholar
  119. 119.
    Wang J (2002) Real-time electrochemical monitoring: toward green analytical chemistry. Acc Chem Res 35:811–816Google Scholar
  120. 120.
    Hart JP, Wring SA (1997) Recent developments in the design and application of screen-printed electrochemical sensors for biomedical, environmental and industrial analyses. Trends Anal Chem 16:89–103Google Scholar
  121. 121.
    Wang J (2002) Portable electrochemical systems. Trends Anal Chem 21:226–232Google Scholar
  122. 122.
    Hart JP, Wring SA (1994) Screen-printed voltammetric and amperometric electro-chemical sensors for decentralized testing. Electroanalysis 6:617–624Google Scholar
  123. 123.
    Teixeira MFS, Bergamini MF, Bocchi N (2004) Lithium ions determination by selective pre-concentration and differential pulse anodic stripping voltammetry using a carbon paste electrode with a spinel-type manganese oxide. Talanta 62:603–609Google Scholar
  124. 124.
    Augelli MA, Muñoz RAA, Richter EM, Junior AG, Angnes L (2005) Chronopotentiometric stripping analysis using gold electrodes, an efficient technique for mercury quantification in natural waters. Electroanalysis 17:755–761Google Scholar
  125. 125.
    Muñoz RAA, Correia PRM, Nascimento AN, Silva CS, Oliveira PV, Angnes L (2007) Electroanalysis of crude oil and petroleum-based fuel for trace metals: evaluation of different microwave-assisted sample decompositions and stripping techniques. Energy Fuels 21:295–302Google Scholar
  126. 126.
    Alemu H, Chandravanshi BS (1998) Electrochemical behavior of N-phenylcinna-mohydroxamic acid incorporated into carbon paste electrode and adsorbed metal ions. Electroanalysis 10:116–120Google Scholar
  127. 127.
    Siswana M, Ozoemena KI, Nyokong T (2006) Electrocatalytic behaviour of carbon paste electrode modified with iron(II) phthalocyanine nanoparticles towards the detection of amitrole. Talanta 69:1136–1142Google Scholar
  128. 128.
    Üslu B, Ozkan SA (2007) Solid electrodes in electroanalytical chemistry: present applications and prospects. Comb Chem High Throughput Screen 10:495–513Google Scholar
  129. 129.
    Turyan I, Mandler D (1993) Low-level mercury electrochemical detection. Nature 362:703–704Google Scholar
  130. 130.
    Turyan I, Mandler D (1994) Electrochemical determination of ultralow levels (<10-12 M) of mercury by anodic stripping voltammetry using a chemically modified electrode. Electroanalysis 6:838–843Google Scholar
  131. 131.
    Wang S-T, Xu H-D, Li J-H (2002) Environmental electroanalytical chemistry. Fenxi Huaxue (Chinese J Anal Chem) 30:1005–1011Google Scholar
  132. 132.
    Li J, Liu S, Mao X, Gao P, Yan Z (2004) Trace determination of rare earths by adsorption voltammetry at a carbon paste electrode. J Electroanal Chem 561:137–142Google Scholar
  133. 133.
    Hu ZW, Li Z-L, Li R-L, Jiang H-S, Wang E-K, Tian L-Q, Jiang H-H, Xu X-Y, Tian W-Z, Zheng S-H (1997) Study of the fallen ice in Meichun (Xishan, China). Gaoxiao Dizhi Xuebao (Geol J Chin Univ) 3:361–369Google Scholar
  134. 134.
    Watanabe D, Furuike T, Midorikawa M, Tanaka T (2005) Simultaneous determination of copper and antimony by differential pulse anodic stripping voltammetry with a carbon-paste electrode. Bunseki Kagaku (Jpn Analyst) 54:907–912Google Scholar
  135. 135.
    Kamio A, Nagaosa Y (2008) 1-Butyl-3-methylimidazolium hexafluorophosphate ionic liquid as a new solvent for the determination of Pb(II) and Cd(II) by anodic stripping voltammetry after extraction of the iodide complexes. Anal Sci (Jpn) 24:1363–1367Google Scholar
  136. 136.
    Lee Y-K, Kim C-K, Park J-T, Kim K-S, Whang K-J (1985) Potentiometry with carbon paste-based ion-selective electrode for the determination of sulphate. J Korean Air Pollut Res Assoc 1:99–103Google Scholar
  137. 137.
    Chuanuwatanakul S, Punrat E, Panchompoo J, Chailapakul O, Motomizu S (2008) On-line preconcentration and determination of heavy metals by sequential injection-anodic stripping voltammetry by using bismuth film screen-printed carbon electrode. J Flow Injection Anal (Japan) 25:49–52Google Scholar
  138. 138.
    Khoo SB, Guo SX (2002) Rapidly renewable and reproducible mercury film coated carbon paste electrode for anodic stripping voltammetry. Electroanalysis 14:813–822Google Scholar
  139. 139.
    Graabæk AM, Jeberg B (1992) Trace element analysis by computerized stripping potentiometry. Intern Labor 22:33–38Google Scholar
  140. 140.
    Manahan SE (2001–2012) Fundamentals of environmental chemistry, 1–3rd edn. CRC Press, Boca Raton, FLGoogle Scholar
  141. 141.
    Keith LH, Crummett W, Deegan J Jr, Libby RA, Taylor JK, Wentler G (1983) Principles of environmental analysis. Anal Chem 55:2210–2218Google Scholar
  142. 142.
    Keith LH (1991) Environmental sampling and analysis: a practical guide. Lewis Publishers, ChelseaGoogle Scholar
  143. 143.
    Arthur CL, Pratt K, Motlagh S, Pawliszyn J, Belardi RP (1992) Environmental analysis of organic compounds in water using solid phase micro extraction. J High Resolut Chromatogr 15:741–744Google Scholar
  144. 144.
    Subramanian G (ed) (1995) Quality assurance in environmental monitoring: instrumental methods. VCH, WeinheimGoogle Scholar
  145. 145.
    Patnaik P (1997) Handbook of environmental analysis: chemical pollutants in air, water, soil, and solid wastes. CRC Press, Boca Raton, FLGoogle Scholar
  146. 146.
    Reimann C, De Caritat P (1998) Chemical elements in the environment: factsheets for the geochemists and environmental scientists. Berlin, SpringerGoogle Scholar
  147. 147.
    Sunahara GI (2002) Environmental analysis of contaminated sites. Wiley, New YorkGoogle Scholar
  148. 148.
    Grygar T, Marken F, Schroeder U, Scholz F (2002) Electrochemical analysis of solids. A review. Collect Czech Chem Commun 67:163–208Google Scholar
  149. 149.
    Namieśnik J (2003) Trends in environmental analytics and monitoring. In: New horizons and challenges in environmental analysis and monitoring. CEEAM, Gdansk (Poland), pp 260–283Google Scholar
  150. 150.
    Namieśnik J, Szefer P (eds) (2010) Analytical measurements in aquatic environments. CRC Press, Boca Raton, FLGoogle Scholar
  151. 151.
    Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of anti-microbials. Biotechnol Adv 27:76–83Google Scholar
  152. 152.
    Locatelli C (2007) Voltammetric analysis of trace levels of platinum group metals: principles and applications. Electroanalysis 19:2167–2175Google Scholar
  153. 153.
    Research Centre for Toxic Compounds in the Environment (RECETOX)—homepage (2013) http://www.recetox.muni.cz/index-en.php. Downloaded 30 May 2013
  154. 154.
    Koel M, Kaljurand M (2010) Green analytical chemistry. RSC, LondonGoogle Scholar
  155. 155.
    Navrátil T, Švancara I, Mrázová K, Nováková K, Šestáková I, Heyrovský M, Pelclová D (2011) Mercury and mercury electrodes: the ultimate battle for the naked existence (a consideration). In: Kalcher K, Metelka R, Švancara I, Vytřas K (eds) Sensing in electroanalysis, vol VI. University Press Centre, Pardubice, pp 23–53Google Scholar
  156. 156.
    Yáñez-Sedeño P, Pingarrón JM, Hernández L (2012) Bismuth electrodes. In: De la Guardia M, Garrigues S (eds) Handbook of green analytical chemistry. Wiley, New York, pp 262–268 and 282–284Google Scholar
  157. 157.
    Förstner U, Salomons W (1980) Trace metal analysis on polluted sediments. Part I: assessment of sources and intensities. Environ Technol Lett 1:494–505Google Scholar
  158. 158.
    Salomons W, Förstner U (1980) Trace metal analysis on polluted sediments. Part II: evaluation of environmental impact. Environ Technol Lett 1:506–517Google Scholar
  159. 159.
    Di Natale C, Macagnano A, Davide F, D’Amico A, Legin A, Vlasov Y, Rudnitskaya A, Selezenev B (1997) Multicomponent analysis on polluted waters by means of an electronic tongue. Sensors Actuat B 44:423–428Google Scholar
  160. 160.
    Meloun M, Sáňka M, Němec P, Křítková S, Kupka K (2005) The analysis of soil cores polluted with certain metals using the Box-Cox transformation. Environ Pollut 137:273–280Google Scholar
  161. 161.
    Lagakos SW, Wessen BJ, Zelen M (1986) An analysis of contaminated well water and health effects in Woburn, Massachusetts. J Am Stat Assoc 81:583–596Google Scholar
  162. 162.
    Karstensen KH, Ringstad O, Rustad I, Kalevi K, Jørgensen K, Nylund K, Alsberg T, Ólafsdóttir K, Heidenstam O, Solberg H (1998) Methods for chemical analysis of contaminated soil samples: tests of their reproducibility between Nordic laboratories. Talanta 46:423–437Google Scholar
  163. 163.
    Šulcek Z, Povondra P (1989) Methods of decomposition in inorganic analysis. CRC Press, Boca Raton, FLGoogle Scholar
  164. 164.
    Matusiewicz H (2003) Wet digestion methods. In: New horizons and challenges in environmental analysis and monitoring. CEEAM, Gdansk, pp 225–259Google Scholar
  165. 165.
    Hoenig M (2005) Dry ashing. In: Worsfold P, Townshend A, Poole C (eds) Encyclopedia of analytical science, vol VIII, 2nd edn, Sample dissolution for elemental analysis. Elsevier Science, London, pp 131–145Google Scholar
  166. 166.
    Twyman RM (2005) Wet digestion. In: Worsfold P, Townshend A, Poole C (eds) Encyclopedia of analytical science, vol VIII, 2nd edn, Sample dissolution for elemental analysis. Elsevier Science, London, pp 146–153Google Scholar
  167. 167.
    Ojeda CB, Rojas FS (2005) Microwave digestion. In: Worsfold P, Townshend A, Poole C (eds) Encyclopedia of analytical science, vol VIII, 2nd edn, Sample dissolution for elemental analysis. Elsevier Science, London, pp 153–165Google Scholar
  168. 168.
    Rajeshwar K, Ibanez JG, Swain GM (1994) Electrochemistry and the environment. J Appl Electrochem 24:1077–1091Google Scholar
  169. 169.
    Wang J (1994) Decentralized electrochemical monitoring of trace metals: from disposable strips to remote electrodes. Analyst (UK) 119:763–766Google Scholar
  170. 170.
    Esteban M, Casassas E (1994) Stripping electroanalytical techniques in environmental analysis. Trends Anal Chem 13:110–117Google Scholar
  171. 171.
    Simonsson D (1997) Electrochemistry for a cleaner environment. Chem Soc Rev 26:181–189Google Scholar
  172. 172.
    Barek J, Fischer J, Navrátil T, Pecková K, Yosypchuk B, Zima J (2007) Nontraditional electrode materials in environmental analysis of biologically active organic compounds. Electroanalysis 19:1967–1986Google Scholar
  173. 173.
    De Marco R, Clarke G, Pejcic B (2007) Ion-selective electrode potentiometry in environmental analysis. Electroanalysis 19:1987–2001Google Scholar
  174. 174.
    Badihi Mossberg M, Buchner V, Rishpon J (2007) Electrochemical biosensors for pollutants in the environment. Electroanalysis 19:2015–2028Google Scholar
  175. 175.
    Zima J, Švancara I, Pecková K, Barek J (2009) Carbon paste electrodes for the determination of detrimental substances in drinking water. In: Lefèbvre MH, Roux MM (eds) Progress on drinking water research. Nova, Hauppauge, NY, pp 1–54Google Scholar
  176. 176.
    Vyskocil V, Barek J (2009) Mercury electrodes-possibilities and limitations in environmental electroanalysis. Crit Rev Anal Chem 39:173–188Google Scholar
  177. 177.
    Wang J (2007) Electrochemical sensing of explosives. Electroanalysis 19:415–423Google Scholar
  178. 178.
    Hart JP, Crew A, Crouch E, Honeychurch KC, Pemberton RM (2004) Some recent designs and developments of screen-printed carbon electrochemical sensors/bio-sensors for biomedical, environmental, and industrial analyses. A review. Anal Lett 37:789–830Google Scholar
  179. 179.
    Švancara I, Prior C, Hočevar SB, Wang J (2010) A decade of bismuth-modified electrodes in electroanalysis. Electroanalysis 22:1405–1420Google Scholar
  180. 180.
    Hulanicki A, Glab S, Ingman F (1991) Chemical sensors: definitions and classification. Pure Appl Chern 63:1247–1250Google Scholar
  181. 181.
    Theavenot DR, Toth K, Durst RA, Wilson GS (1999) Electrochemical biosensors: recommended definitions and classification. Pure Appl Chem 71:2333–2348Google Scholar
  182. 182.
    Krantz-Rülcker C, Stenberg M, Winquist F, Lundström I (2001) Electronic tongues for environmental monitoring based on sensor arrays and pattern recognition: a review. Anal Chim Acta 426:217–226Google Scholar
  183. 183.
    Ampuero S, Bosset JO (2003) The electronic nose applied to dairy products: a review. Sensors Actuat B 94:1–12Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Analytical Chemistry, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic
  2. 2.Institute of Chemistry—Analytical ChemistryKarl-Franzens-University of GrazGrazAustria

Personalised recommendations