Skip to main content

Micelles, Bicelles, Amphipols, Nanodiscs, Liposomes, or Intact Cells: The Hitchhiker’s Guide to the Study of Membrane Proteins by NMR

  • Chapter
  • First Online:
Membrane Proteins Production for Structural Analysis

Abstract

Membrane protein samples for nuclear magnetic resonance (NMR) spectroscopy are made of homogeneous preparations where proteins are isolated in a nonnative environment. Liposomes or nanometric lipid bilayers represent artificial environments that can sometimes be less appropriate than more exotic surfactants like amphipols, which have been shown to keep numerous membrane proteins stable and active. Sample preparation also involves know-how in biochemistry, physical chemistry, and the use of isotope labels. Over the past decades, various membrane mimetics and protocols have been developed for either solution- or solid-state NMR. They are compared in this chapter. In-cell NMR for studies of membrane proteins is a new and very attractive alternative that we also cover in this hitchhiker’s guide to the study of membrane proteins by NMR. While high-resolution 3D structures can be determined by NMR, other useful and unique information on membrane proteins can also be obtained, complementary to information obtained otherwise, in order to get a complete view of these biomolecules and their environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdine A, Verhoeven MA, Park KH, Ghazi A, Guittet E, Berrier C, Van Heijenoort C, Warschawski DE (2010) Structural study of the membrane protein MscL using cell-free expression and solid-state NMR. J Magn Reson 204:155–159. doi:10.1016/j.jmr.2010.02.003

    CAS  PubMed  Google Scholar 

  • Abdine A, Verhoeven MA, Warschawski DE (2011) Cell-free expression and labeling strategies for a new decade in solid-state NMR. N Biotechnol 28:272–276. doi:10.1016/j.nbt.2010.07.014

    CAS  PubMed  Google Scholar 

  • Ahuja S, Jahr N, Im SC, Vivekanandan S, Popovych N, Le Clair SV, Huang R, Soong R, Xu J, Yamamoto K, Nanga RP, Bridges A, Waskell L, Ramamoorthy A (2013) A model of the membrane-bound cytochrome b5-cytochrome P450 complex from NMR and mutagenesis data. J Biol Chem 288:22080–22095. doi:10.1074/jbc.M112.448225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andreas LB, Barnes AB, Corzilius B, Chou JJ, Miller EA, Caporini M, Rosay M, Griffin RG (2013) Dynamic nuclear polarization study of inhibitor binding to the M2(18-60) proton transporter from influenza A. Biochemistry 52:2774–2282. doi:10.1021/bi400150x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M (2005) Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. J Am Chem Soc 127:12965–12974

    CAS  PubMed  Google Scholar 

  • Arechaga I, Miroux B, Karrasch S, Huijbregts R, de Kruijff B, Runswick MJ, Walker JE (2000) Characterisation of new intracellular membranes in Escherichia coli accompanying large scale over-production of the b subunit of F(1)F(o) ATP synthase. FEBS Lett 482:215–219

    CAS  PubMed  Google Scholar 

  • Arora A, Abildgaard F, Bushweller JH, Tamm LK (2001) Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat Struct Biol 8:334–338

    CAS  PubMed  Google Scholar 

  • Assadi-Porter FM, Tonelli M, Maillet E, Hallenga K, Benard O, Max M, Markley JL (2008) Direct NMR detection of the binding of functional ligands to the human sweet receptor, a heterodimeric family 3 GPCR. J Am Chem Soc 130:7212–7213

    CAS  PubMed Central  PubMed  Google Scholar 

  • Badola P, Sanders CR (1997) Escherichia coli diacylglycerol kinase is an evolutionarily optimized membrane enzyme and catalyzes direct phosphoryl transfer. J Biol Chem 272:24176–24182

    CAS  PubMed  Google Scholar 

  • Bajaj VS, Mak-Jurkauskas ML, Belenky M, Herzfeld J, Griffin RG (2009) Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization-enhanced solid-state NMR. Proc Natl Acad Sci U S A 106:9244–9249. doi:10.1073/pnas.0900908106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bayburt TH, Grinkova YV, Sligar SG (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2:853–856

    CAS  Google Scholar 

  • Bayburt TH, Sligar SG (2010) Membrane protein assembly into nanodiscs. FEBS Lett 584:1721–1727

    CAS  PubMed  Google Scholar 

  • Bazzacco P, Billon-Denis E, Sharma KS, Catoire LJ, Mary S, Le Bon C, Point E, Banères JL, Durand G, Zito F, Pucci B, Popot JL (2012) Nonionic homopolymeric amphipols: application to membrane protein folding, cell-free synthesis, and solution nuclear magnetic resonance. Biochemistry 51:1416–1430

    CAS  PubMed  Google Scholar 

  • Beaugrand M, Arnold AA, Hénin J, Warschawski DE, Williamson PTF, Marcotte I (2014) Lipid Concentration and Molar Ratio Boundaries for the Use of Isotropic Bicelles. Langmuir, in press

    Google Scholar 

  • Berardi MJ, Shih WM, Harrison SC, Chou JJ (2011) Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 476:109–113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bocharov EV, Pustovalova YE, Pavlov KV, Volynsky PE, Goncharuk MV, Ermolyuk YS, Karpunin DV, Schulga AA, Kirpichnikov MP, Efremov RG, Maslennikov IV, Arseniev AS (2007) Unique dimeric structure of BNip3 transmembrane domain suggests membrane permeabilization as a cell death trigger. J Biol Chem 282:16256–16266

    CAS  PubMed  Google Scholar 

  • Bocharov EV, Mineev KS, Volynsky PE, Ermolyuk YS, Tkach EN, Sobol AG, Chupin VV, Kirpichnikov MP, Efremov RG, Arseniev AS (2008) Spatial structure of the dimeric transmembrane domain of the growth factor receptor ErbB2 presumably corresponding to the receptor active state. J Biol Chem 283:6950–6956

    CAS  PubMed  Google Scholar 

  • Bokoch MP, Zou Y, Rasmussen SG, Liu CW, Nygaard R, Rosenbaum DM, Fung JJ, Choi HJ, Thian FS, Kobilka TS, Puglisi JD, Weis WI, Pardo L, Prosser RS, Mueller L, Kobilka BK (2010) Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 463:108–112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bowie JU (2001) Stabilizing membrane proteins. Curr Opin Struct Biol 11:397–340

    CAS  PubMed  Google Scholar 

  • Cady SD, Schmidt-Rohr K, Wang J, Soto CS, Degrado WF, Hong M (2010) Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463:689–692. doi:10.1038/nature08722

    CAS  PubMed Central  PubMed  Google Scholar 

  • Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102

    CAS  PubMed  Google Scholar 

  • Catoire LJ, Zoonens M, van Heijenoort C, Giusti F, Popot JL, Guittet E (2009) Inter- and intramolecular contacts in a membrane protein/surfactant complex observed by heteronuclear dipole-to-dipole cross-relaxation. J Magn Reson 197:91–95

    CAS  PubMed  Google Scholar 

  • Catoire LJ, Zoonens M, van Heijenoort C, Giusti F, Guittet E, Popot JL (2010a) Solution NMR mapping of water-accessible residues in the transmembrane beta-barrel of OmpX. Eur Biophys J 39:623–630

    CAS  Google Scholar 

  • Catoire LJ, Damian M, Giusti F, Martin A, van Heijenoort C, Popot JL, Guittet E, Banères JL (2010b) Structure of a GPCR ligand in its receptor-bound state: leukotriene B4 adopts a highly constrained conformation when associated to human BLT2. J Am Chem Soc 132:9049–9057

    CAS  Google Scholar 

  • Catoire LJ, Damian M, Baaden M, Guittet E, Banères JL (2011) Electrostatically-driven fast association and perdeuteration allow detection of transferred cross-relaxation for G protein-coupled receptor ligands with equilibrium dissociation constants in the high-to- low nanomolar range. J Biomol NMR 50:191–195

    CAS  PubMed  Google Scholar 

  • Chae PS, Rasmussen SG, Rana RR, Gotfryd K, Chandra R, Goren MA, Kruse AC, Nurva S, Loland CJ, Pierre Y, Drew D, Popot JL, Picot D, Fox BG, Guan L, Gether U, Byrne B, Kobilka B, Gellman SH (2010) Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat Methods 7:1003–1008

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chung KY, Kim TH, Manglik A, Alvares R, Kobilka BK, Prosser RS (2012) Role of detergents in conformational exchange of a G protein-coupled receptor. J Biol Chem 287:36305–36311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Claasen B, Axmann M, Meinecke R, Meyer B (2005) Direct observation of ligand binding to membrane proteins in living cells by a saturation transfer double difference (STDD) NMR spectroscopy method shows a significantly higher affinity of integrin alpha(IIb)beta3 in native platelets than in liposomes. J Am Chem Soc 127:916–919

    CAS  PubMed  Google Scholar 

  • Cook GA, Zhang H, Park SH, Wang Y, Opella SJ (2011) Comparative NMR studies demonstrate profound differences between two viroporins: p7 of HCV and Vpu of HIV-1. Biochim Biophys Acta 1808:554–560. doi:10.1016/j.bbamem.2010.08.005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Czerski L, Sanders CR (2000) Functionality of a membrane protein in bicelles. Anal Biochem 284:327–333

    CAS  PubMed  Google Scholar 

  • Dahmane T, Damian M, Mary S, Popot JL, Banères JL (2009) Amphipol-assisted in vitro folding of G protein-coupled receptors. Biochemistry 48:6516–6521

    CAS  PubMed  Google Scholar 

  • Dahmane T, Giusti F, Catoire LJ, Popot JL (2011) Sulfonated amphipols: synthesis, properties, and applications. Biopolymers 95:811–823

    CAS  PubMed  Google Scholar 

  • De Angelis AA, Nevzorov AA, Park SH, Howell SC, Mrse AA, Opella SJ (2004) High-resolution NMR spectroscopy of membrane proteins in aligned bicelles. J Am Chem Soc 126:15340–15341

    CAS  PubMed  Google Scholar 

  • De Angelis AA, Howell SC, Nevzorov AA, Opella SJ (2006) Structure determination of a membrane protein with two trans-membrane helices in aligned phospholipid bicelles by solid-state NMR spectroscopy. J Am Chem Soc 128:12256–12267

    CAS  PubMed Central  PubMed  Google Scholar 

  • Denisov IG, Grinkova YV, Lazarides AA, Sligar SG (2004) Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J Am Chem Soc 126:3477–3478

    CAS  PubMed  Google Scholar 

  • Dick-Pérez M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M (2011) Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50:989–1000. doi:10.1021/bi101795q

    PubMed  Google Scholar 

  • Dürr UH, Waskell L, Ramamoorthy A (2007a) The cytochromes P450 and b5 and their reductases-promising targets for structural studies by advanced solid-state NMR spectroscopy. Biochim Biophys Acta 1768:3235–3259

    Google Scholar 

  • Dürr UH, Yamamoto K, Im SC, Waskell L, Ramamoorthy A (2007b) Solid-state NMR reveals structural and dynamical properties of a membrane-anchored electron-carrier protein, cytochrome b5. J Am Chem Soc 129:6670–6671

    Google Scholar 

  • Elter S, Raschle T, Arens S, Gelev V, Etzkorn M, Wagner G (2014) The use of amphipols for NMR structural characterization of 7-TM proteins. J Membr Biol, in press

    Google Scholar 

  • Emami S, Fan Y, Munro R, Ladizhansky V, Brown LS (2013) Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra. J Biomol NMR 55:147–155. doi:10.1007/s10858-013-9710-5

    CAS  PubMed  Google Scholar 

  • Etzkorn M, Martell S, Andronesi OC, Seidel K, Engelhard M, Baldus M (2007) Secondary structure, dynamics, and topology of a seven-helix receptor in native membranes, studied by solid-state NMR spectroscopy. Angew Chem Int Ed Engl 46:459–462

    CAS  PubMed  Google Scholar 

  • Etzkorn M, Raschle T, Hagn F, Gelev V, Rice AJ, Walz T, Wagner G (2013) Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility. Structure 21:394–401

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fernández C, Adeishvili K, Wüthrich K (2001) Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein OmpX in dihexanoyl phosphatidylcholine micelles. Proc Natl Acad Sci U S A 98:2358–2363

    PubMed Central  PubMed  Google Scholar 

  • Frericks HL, Zhou DH, Yap LL, Gennis RB, Rienstra CM (2006) Magic-angle spinning solid-state NMR of a 144 kDa membrane protein complex: E. coli cytochrome bo3 oxidase. J Biomol NMR 36:55–71

    CAS  PubMed  Google Scholar 

  • Fu R, Wang X, Li C, Santiago-Miranda AN, Pielak GJ, Tian F (2011) In situ structural characterization of a recombinant protein in native Escherichia coli membranes with solid-state magic-angle-spinning NMR. J Am Chem Soc 133:12370–12373. doi:10.1021/ja204062v

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gabriel NE, Roberts MF (1984) Spontaneous formation of stable unilamellar vesicles. Biochemistry 23:4011–4015

    CAS  PubMed  Google Scholar 

  • Gautier A, Mott HR, Bostock MJ, Kirkpatrick JP, Nietlispach D (2010) Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy. Nat Struct Mol Biol 17:768–774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giusti F, Rieger J, Catoire LJ, Qian S, Calabrese AN, Watkinson TG, Casiraghi M, Radford SE, Ashcroft AE, Popot JL (2014) Synthesis, characterization and applications of a perdeuterated amphipol. J Membr Biol, in press

    Google Scholar 

  • Glück JM, Wittlich M, Feuerstein S, Hoffmann S, Willbold D, Koenig BW (2009) Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy. J Am Chem Soc 131:12060–12061

    PubMed  Google Scholar 

  • Gohon Y, Dahmane T, Ruigrok R, Schuck P, Charvolin D, Rappaport F, Timmins P, Engelman DM, Tribet C, Popot JL, Ebel C (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys J 94:3523–3537

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gong XM, Choi J, Franzin CM, Zhai D, Reed JC, Marassi FM (2004) Conformation of membrane-associated proapoptotic tBid. J Biol Chem 279:28954–28960

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gowda GA, Shanaiah N, Raftery D (2012) Isotope enhanced approaches in metabolomics. Adv Exp Med Biol 992:147–164. doi:10.1007/978-94-007-4954-2_8

    CAS  PubMed  Google Scholar 

  • Hagn F, Etzkorn M, Raschle T, Wagner G (2013) Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc 135:1919–1925

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EY, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure 16:897–905

    CAS  PubMed Central  PubMed  Google Scholar 

  • Helenius A, Simons K (1975) Solubilization of membranes by detergents. Biochim Biophys Acta 415:29–79

    CAS  PubMed  Google Scholar 

  • Hiller M, Krabben L, Vinothkumar KR, Castellani F, van Rossum BJ, Kühlbrandt W, Oschkinat H (2005) Solid-state magic-angle spinning NMR of outer membrane protein G from Escherichia coli. Chembiochem 6:1679–1684

    CAS  PubMed  Google Scholar 

  • Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, Wagner G (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321:1206–1210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu J, Asbury T, Achuthan S, Li C, Bertram R, Quine JR, Fu R, Cross TA (2007) Backbone structure of the amantadine-blocked trans-membrane domain M2 proton channel from influenza A virus. Biophys J 92:4335–4343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hwang PM, Choy WY, Lo EI, Chen L, Forman-Kay JD, Raetz CR, Privé GG, Bishop RE, Kay LE (2002) Solution structure and dynamics of the outer membrane enzyme PagP by NMR. Proc Natl Acad Sci U S A 99:13560–13565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inomata K, Ohno A, Tochio H, Isogai S, Tenno T, Nakase I, Takeuchi T, Futaki S, Ito Y, Hiroaki H, Shirakawa M (2009) High-resolution multi dimensional NMR spectroscopy of proteins in human cells. Nature 458:106–109

    CAS  PubMed  Google Scholar 

  • Ito Y, Selenko P (2010) Cellular structural biology. Curr Opin Struct Biol 20:640–648

    CAS  PubMed  Google Scholar 

  • Jacso T, Franks WT, Rose H, Fink U, Broecker J, Keller S, Oschkinat H, Reif B (2012) Characterization of membrane proteins in isolated native cellular membranes by dynamic nuclear polarization solid-state NMR spectroscopy without purification and reconstitution. Angew Chem Int Ed Engl 51:432–435. doi:10.1002/anie.201104987

    CAS  PubMed  Google Scholar 

  • Jordà J, Suarez C, Carnicer M, ten Pierick A, Heijnen JJ, van Gulik W, Ferrer P, Albiol J, Wahl A (2013) Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary 13C flux analysis. BMC Syst Biol 7:17. doi:10.1186/1752-0509-7-17

    PubMed Central  PubMed  Google Scholar 

  • Kang CB, Li Q (2011) Solution NMR study of integral membrane proteins. Curr Opin Struct Biol 15:560–569

    CAS  Google Scholar 

  • Ketchem RR, Hu W, Cross TA (1993) High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science 261:1457–1460

    CAS  PubMed  Google Scholar 

  • Kijac AZ, Li Y, Sligar SG, Rienstra CM (2007) Magic-angle spinning solid-state NMR spectroscopy of nanodisc-embedded human CYP3A4. Biochemistry 46:13696–13703

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kofuku Y, Ueda T, Okude J, Shiraishi Y, Kondo K, Maeda M, Tsujishita H, Shimada I (2012) Efficacy of the β2-adrenergic receptor is determined by conformational equilibrium in the transmembrane region. Nat Commun 3:1045

    PubMed Central  PubMed  Google Scholar 

  • Kulminskaya NV, Pedersen M, Bjerring M, Underhaug J, Miller M, Frigaard NU, Nielsen JT, Nielsen NC (2012) In situ solid-state NMR spectroscopy of protein in heterogeneous membranes: the baseplate antenna complex of Chlorobaculum tepidum. Angew Chem Int Ed Engl 51:6891–6895. doi:10.1002/anie.201201160

    CAS  PubMed  Google Scholar 

  • Lange A, Giller K, Hornig S, Martin-Eauclaire MF, Pongs O, Becker S, Baldus M (2006) Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440:959–962

    CAS  PubMed  Google Scholar 

  • Lau TL, Partridge AW, Ginsberg MH, Ulmer TS (2008) Structure of the integrin beta3 transmembrane segment in phospholipid bicelles and detergent micelles. Biochemistry 47:4008–4016

    CAS  PubMed  Google Scholar 

  • Lau TL, Kim C, Ginsberg MH, Ulmer TS (2009) The structure of the integrin alphaI- Ibbeta3 transmembrane complex explains integrin transmembrane signalling. EMBO J 28:1351–1361

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 1666:62–87

    CAS  PubMed  Google Scholar 

  • Lee D, Walter KF, Brckner AK, Hilty C, Becker S, Griesinger C (2008) Bilayer in small bicelles revealed by lipid-protein interactions using NMR spectroscopy. J Am Chem Soc 130:13822–13823

    CAS  PubMed  Google Scholar 

  • Linden AH, Lange S, Franks WT, Akbey U, Specker E, van Rossum BJ, Oschkinat H (2011) Neurotoxin II bound to acetylcholine receptors in native membranes studied by dynamic nuclear polarization NMR. J Am Chem Soc 133:19266–19269. doi:10.1021/ja206999c

    CAS  PubMed  Google Scholar 

  • Liu JJ, Horst R, Katritch V, Stevens RC, Wüthrich K (2012) Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science 335:1106–1110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loquet A, Lv G, Giller K, Becker S, Lange A (2011) 13C spin dilution for simplified and complete solid-state NMR resonance assignment of insoluble biological assemblies. J Am Chem Soc 133:4722–4725. doi:10.1021/ja200066s

    CAS  PubMed  Google Scholar 

  • Lu GJ, Tian Y, Vora N, Marassi FM, Opella SJ (2013) The structure of the mercury transporter MerF in phospholipid bilayers: a large conformational rearrangement results from N-terminal truncation. J Am Chem Soc 135:9299–9302. doi:10.1021/ja4042115

    CAS  PubMed Central  PubMed  Google Scholar 

  • MacKenzie KR, Prestegard JH, Engelman DM (1997) A transmembrane helix dimer: structure and implications. Science 276:131–133

    CAS  PubMed  Google Scholar 

  • Mani R, Tang M, Wu X, Buffy JJ, Waring AJ, Sherman MA, Hong M (2006) Membrane-bound dimer structure of a β-hairpin antimicrobial peptide from rotational-echo double-resonance solid-state NMR. Biochemistry 45:8341–8349

    CAS  PubMed  Google Scholar 

  • McDonnell PA, Opella SJ (1993) Effect of detergent concentration on multidimensional solution NMR spectra of membrane proteins in micelles. J Magn Reson B 102:120–125

    CAS  Google Scholar 

  • McGregor CL, Chen L, Pomroy NC, Hwang P, Go S, Chakrabartty A, Priv GG (2003) Lipopeptide detergents designed for the structural study of membrane proteins. Nat Biotechnol 21:171–176

    CAS  PubMed  Google Scholar 

  • Miao Y, Qin H, Fu R, Sharma M, Can TV, Hung I, Luca S, Gor’kov PL, Brey WW, Cross TA (2012) M2 proton channel structural validation from full-length protein samples in synthetic bilayers and E. coli membranes. Angew Chem Int Ed Engl 51:8383–8386. doi:10.1002/anie.201204666

    CAS  PubMed Central  PubMed  Google Scholar 

  • Michalek M, Salnikov ES, Werten S, Bechinger B (2013) Membrane interactions of the amphipathic amino terminus of huntingtin. Biochemistry 52:847–858. doi:10.1021/bi301325q

    CAS  PubMed  Google Scholar 

  • Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298

    CAS  PubMed  Google Scholar 

  • Mörs K, Roos C, Scholz F, Wachtveitl J, Dötsch V, Bernhard F, Glaubitz C (2013) Modified lipid and protein dynamics in nanodiscs. Biochim Biophys Acta 1828:1222–1229. doi:10.1016/j.bbamem.2012.12.011

    PubMed  Google Scholar 

  • Müller SD, De Angelis AA, Walther TH, Grage SL, Lange C, Opella SJ, Ulrich AS (2007) Structural characterization of the pore forming protein TatAd of the twin-arginine translocase in membranes by solid-state 15N-NMR. Biochim Biophys Acta 1768:3071–3079

    PubMed  Google Scholar 

  • Nakano M, Fukuda M, Kudo T, Miyazaki M, Wada Y, Matsuzaki N, Endo H, Handa T (2009) Static and dynamic properties of phospholipid bilayer nanodiscs. J Am Chem Soc 131:8308–8312

    CAS  PubMed  Google Scholar 

  • Nath A, Atkins WM, Sligar SG (2007) Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46:2059–2069

    CAS  PubMed  Google Scholar 

  • Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A, Pan AC, Liu CW, Fung JJ, Bokoch MP, Thian FS, Kobilka TS, Shaw DE, Mueller L, Prosser RS, Kobilka BK (2013) The dynamic process of (2)-adrenergic receptor activation. Cell 152:532–542

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohashi R, Mu H, Wang X, Yao Q, Chen C (2005) Reverse cholesterol transport and cholesterol efflux in atherosclerosis. Q J Med 98:845–856

    CAS  Google Scholar 

  • Oliver RC, Lipfert J, Fox DA, Lo RH, Doniach S, Columbus L (2013) Dependence of micelle size and shape on detergent alkyl chain length and head group. PLoS ONE 8:e62488. doi:10.1371/journal.pone.0062488

    CAS  PubMed Central  PubMed  Google Scholar 

  • Opella SJ, Marassi FM, Gesell JJ, Valente AP, Kim Y, Oblatt-Montal M, Montal M (1999) Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy. Nat Struct Biol 6:374–379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park SH, Mrse AA, Nevzorov AA, Mesleh MF, Oblatt-Montal M, Montal M, Opella SJ (2003) Three-dimensional structure of the channel-forming trans-membrane domain of virus protein “u” (Vpu) from HIV-1. J Mol Biol 333:409–424

    CAS  PubMed  Google Scholar 

  • Park SH, Casagrande F, Das BB, Albrecht L, Chu M, Opella SJ (2011a) Local and global dynamics of the G protein-coupled receptor CXCR1. Biochemistry 50:2371–2380. doi:10.1021/bi101568j

    CAS  Google Scholar 

  • Park SH, Berkamp S, Cook GA, Chan MK, Viadiu H, Opella SJ (2011b) Nanodiscs versus macrodiscs for NMR of membrane proteins. Biochemistry 50:8983–8985. doi:10.1021/bi201289c

    CAS  Google Scholar 

  • Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, Kiefer H, Maier K, De Angelis AA, Marassi FM, Opella SJ (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491:779–783. doi:10.1038/nature11580

    CAS  PubMed Central  PubMed  Google Scholar 

  • Planchard N, Point E, Dahmane T, Giusti F, Renault M, Le Bon C, Durand G, Milon A, Guittet E, Zoonens M, Popot JL, Catoire LJ (2014) The use of amphipols for solution NMR studies of membrane proteins: advantages and constraints as compared to other solubilizing media. J Membr Biol, in press

    Google Scholar 

  • Plevin MJ, Boisbouvier J (2012) Isotope-labelling of methyl groups for NMR studies of large proteins. In: Clore M, Potts J (eds) Recent developments in biomolecular NMR. Royal Society of Chemistry, London

    Google Scholar 

  • Poget SF, Girvin ME (2007) Solution NMR of membrane proteins in bilayer mimics: small is beautiful, but sometimes bigger is better. Biochim Biophys Acta 1768:3098–3106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poget SF, Cahill SM, Girvin ME (2007) Isotropic bicelles stabilize the functional form of a small multidrug-resistance pump for NMR structural studies. J Am Chem Soc 129:2432–2433

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poget SF, Harris R, Cahill SM, Girvin ME (2010) 1H, 13C, 15N backbone NMR assignments of the Staphylococcus aureus small multidrug-resistance pump (Smr) in a functionally active conformation. Biomol NMR Assign 4:139–142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Popot JL (2010) Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Ann Rev Biochem 79:737–775

    CAS  PubMed  Google Scholar 

  • Popot JL, Althoff T, Bagnard D et al (2011) Amphipols from A to Z. Ann Rev Biophys 40:379–408

    CAS  Google Scholar 

  • Potenza D, Vasile F, Belvisi L, Civera M, Araldi EMV (2011) STD and trNOESY NMR study of receptor-ligand interactions in living cancer cells. Chembiochem 12:695–699

    CAS  PubMed  Google Scholar 

  • Privé GG (2011) Lipopeptide detergents for membrane protein studies. Curr Opin Struct Biol 19:379–385

    Google Scholar 

  • Raschle T, Hiller S, Yu TY, Rice AJ, Walz T, Wagner G (2009) Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. J Am Chem Soc 131:17777–17779

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raschle T, Hiller S, Etzkorn M, Wagner G (2010) Nonmicellar systems for solution NMR spectroscopy of membrane proteins. Curr Opin Struct Biol 20:471–479

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reckel S, Lopez JJ, Löhr F, Glaubitz C, Dötsch V (2012) In-cell solid-state NMR as a tool to study proteins in large complexes. Chembiochem 13:534–537. doi:10.1002/cbic.201100721

    CAS  PubMed  Google Scholar 

  • Reggie L, Lopez JJ, Collinson I, Glaubitz C, Lorch M (2011) Dynamic nuclear polarization-enhanced solid-state NMR of a 13C-labeled signal peptide bound to lipid-reconstituted Sec translocon. J Am Chem Soc 133:19084–19086. doi:10.1021/ja209378h

    CAS  PubMed  Google Scholar 

  • Renault M (2008) Etudes structurales et dynamiques de la protéine membranaire KpOmpA par RMN en phase liquide et solide. Dissertation, Université Paul Sabatier, Toulouse

    Google Scholar 

  • Renault M, Tommassen-van Boxtel R, Bos MP, Post JA, Tommassen J, Baldus M (2012a) Cellular solid-state nuclear magnetic resonance spectroscopy. Proc Natl Acad Sci U S A 109:4863–4868. doi:10.1073/pnas.1116478109

    CAS  Google Scholar 

  • Renault M, Pawsey S, Bos MP, Koers EJ, Nand D, Tommassen-van Boxtel R, Rosay M, Tommassen J, Maas WE, Baldus M (2012b) Solid-state NMR spectroscopy on cellular preparations enhanced by dynamic nuclear polarization. Angew Chem Int Ed Engl 51:2998–3001. doi:10.1002/anie.201105984: E coli

    CAS  Google Scholar 

  • Ritchie TK, Grinkova YV, Bayburt TH, Denisov IG, Zolnerciks JK, Atkins WM, Sligar SG (2009) Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Method Enzymol 464:211–213

    CAS  Google Scholar 

  • Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH, Rasmussen SG, Choi HJ, Devree BT, Sunahara RK, Chae PS, Gellman SH, Dror RO, Shaw DE, Weis WI, Caffrey M, Gmeiner P, Kobilka BK (2011) Structure and function of an irreversible agonist-(2) adrenoceptor complex. Nature 469:236–240

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakakibara D, Sasaki A, Ikeya T, Hamatsu J, Hanashima T, Mishima M, Yoshimasu M, Hayashi N, Mikawa T, Wälchli M, Smith BO, Shirakawa M, Güntert P, Ito Y (2009) Protein structure determination in living cells by in-cell NMR spectroscopy. Nature 458:102–105

    CAS  PubMed  Google Scholar 

  • Sanders CR, Prestegard JH (1990) Magnetically orientable phospholipid bilayers containing small amounts of a bile salt analogue, CHAPSO. Biophys J 58:447–460

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanders CR, Schwonek JP (1992) Characterization of magnetically orientable bilayers in mixtures of dihexanoylphosphatidylcholine and dimyristoylphosphatidylcholine by solid-state NMR. Biochemistry 31:8898–8905

    CAS  PubMed  Google Scholar 

  • Sanders CR, Landis GC (1995) Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. Biochemistry 34:4030–4040

    CAS  PubMed  Google Scholar 

  • Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451:591–595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Selenko P, Wagner G (2007) Looking into live cells with in-cell NMR spectroscopy. J Struct Biol 158:244–253

    CAS  PubMed  Google Scholar 

  • Shahid SA, Bardiaux B, Franks WT, Krabben L, Habeck M, van Rossum BJ, Linke D (2012) Membrane-protein structure determination by solid-state NMR spectroscopy of microcrystals. Nat Methods 9:1212–1217. doi:10.1038/nmeth.2248

    CAS  PubMed  Google Scholar 

  • Shenkarev ZO, Lyukmanova EN, Paramonov AS, Shingarova LN, Chupin VV, Kirpichnikov MP, Blommers MJ, Arseniev AS (2010) Lipid-protein nanodiscs as reference medium in detergent screening for high-resolution NMR studies of integral membrane proteins. J Am Chem Soc 132:5628–5629

    CAS  PubMed  Google Scholar 

  • Shenkarev ZO, Lyukmanova EN, Butenko IO, Petrovskaya LE, Paramonov AS, Shulepko MA, Nekrasova OV, Kirpichnikov MP, Arseniev AS (2013) Lipid-protein nanodiscs promote in vitro folding of transmembrane domains of multi-helical and multimeric membrane proteins. Biochim Biophys Acta 1828:776–784

    CAS  PubMed  Google Scholar 

  • Shi L, Ahmed MA, Zhang W, Whited G, Brown LS, Ladizhansky V (2009) Three-dimensional solid-state NMR study of a seven-helical integral membrane proton pump-structural insights. J Mol Biol 386:1078–1093

    CAS  PubMed  Google Scholar 

  • Shi P, Li D, Chen H, Xiong Y, Wang Y, Tian C (2012) In situ 19F NMR studies of an E. coli membrane protein. Protein Sci 21:596–600. doi:10.1002/pro.2040

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi H, Ayala I, Bardet M, De Paëpe G, Simorre JP, Hediger S (2013) Solid-State NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization. J Am Chem Soc 135:5105–5110. doi:10.1021/ja312501d

    CAS  PubMed  Google Scholar 

  • Tanford C, Reynolds JA (1976) Characterization of membrane proteins in detergent solutions. Biochim Biophys Acta 457:133–170

    CAS  PubMed  Google Scholar 

  • Tang M, Sperling LJ, Berthold DA, Schwieters CD, Nesbitt AE, Nieuwkoop AJ, Gennis RB, Rienstra CM (2011) High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data. J Biomol NMR 51:227–233. doi:10.1007/s10858-011-9565-6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tang M, Nesbitt AE, Sperling LJ, Berthold DA, Schwieters CD, Gennis RB, Rienstra CM (2013) Structure of the disulfide bond generating membrane protein DsbB in the lipid bilayer. J Mol Biol 425:1670–1682. doi:10.1016/j.jmb.2013.02.009

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tardy-Laporte C, Arnold AA, Genard B, Gastineau R, Morançais M, Mouget JL, Tremblay R, Marcotte I (2013) A (2)H solid-state NMR study of the effect of antimicrobial agents on intact Escherichia coli without mutating. Biochim Biophys Acta 1828:614–622. doi:10.1016/j.bbamem.2012.09.011

    CAS  PubMed  Google Scholar 

  • Teriete P, Franzin CM, Choi J, Marassi FM (2007) Structure of the Na, K-ATPase regulatory protein FXYD1 in micelles. Biochemistry 46:6774–6783

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson AA, Liu JJ, Chun E, Wacker D, Wu H, Cherezov V, Stevens RC (2011) GPCR stabilization using the bicelle-like architecture of mixed sterol-detergent micelles. Methods 55:310–317

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tieleman DP, van der Spoel D, Berendsen HJC (2000) Molecular dynamics simulations of dodecylphosphocholine micelles at three different aggregate sizes: micellar structure and lipid chain relaxation. J Phys Chem B 104:6380–6388

    CAS  Google Scholar 

  • Traaseth NJ, Shi L, Verardi R, Mullen DG, Barany G, Veglia G (2009) Structure and topology of monomeric phospholamban in lipid membranes determined by a hybrid solution and solid-state NMR approach. Proc Natl Acad Sci U S A 106:10165–10170. doi:10.1073/pnas.0904290106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Triba MN, Warschawski DE, Devaux PF (2005) Reinvestigation by phosphorus NMR of lipid distribution in bicelles. Biophys J 88:1887–1901

    CAS  PubMed Central  PubMed  Google Scholar 

  • Triba MN, Zoonens M, Popot JL, Devaux PF, Warschawski DE (2006a) Reconstitution and alignment by a magnetic field of a beta-barrel membrane protein in bicelles. Eur Biophys J 35:268–275

    CAS  Google Scholar 

  • Triba MN, Devaux PF, Warschawski DE (2006b) Effects of lipid chain length and unsaturation on bicelles stability. A phosphorus NMR study. Biophys J 91:1357–1367

    CAS  Google Scholar 

  • Tribet C, Audebert R, Popot JL (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci U S A 93:15047–15050

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tzitzilonis C, Eichmann C, Maslennikov I, Choe S, Riek R (2013) Detergent/nanodisc screening for high-resolution NMR studies of an integral membrane protein containing a cytoplasmic domain. PLoS ONE 8(1):e54378. doi:10.1371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ullrich SJ, Hellmich UA, Ullrich S, Glaubitz C (2011) Interfacial enzyme kinetics of a membrane bound kinase analyzed by real-time MAS-NMR. Nat Chem Biol 7:263–270. doi:10.1038/nchembio.543

    CAS  PubMed  Google Scholar 

  • Vold RR, Prosser RS, Deese AJ (1997) Isotropic solutions of phospholipid bicelles: a new membrane mimetic for high-resolution NMR studies of polypeptides. J Biomol NMR 9:329–335

    CAS  PubMed  Google Scholar 

  • Wacker D, Fenalti G, Brown MA, Katritch V, Abagyan R, Cherezov V, Stevens RC (2010) Conserved binding mode of human beta2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J Am Chem Soc 132:11443–11445

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walsh JP, Bell RM (1986) sn-1,2-Diacylglycerol kinase of Escherichia coli. Structural and kinetic analysis of the lipid cofactor dependence. J Biol Chem 261:15062–15069

    CAS  PubMed  Google Scholar 

  • Warne T, Moukhametzianov R, Baker JG, Nehm R, Edwards PC, Leslie AG, Schertler GF, Tate CG (2011) The structural basis for agonist and partial agonist action on a (1)-adrenergic receptor. Nature 469:241–244

    CAS  PubMed Central  PubMed  Google Scholar 

  • Warschawski DE (2013) Membrane proteins of known structure determined by NMR. http://www.drorlist.com/nmr/MPNMR.html. Accessed 30 Aug 2013

  • Warschawski DE, Arnold AA, Beaugrand M, Gravel A, Chartrand É, Marcotte I (2011) Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim Biophys Acta 1808:1957–1974. doi:10.1016/j.bbamem.2011.03.016

    CAS  PubMed  Google Scholar 

  • Whiles JA, Deems R, Vold RR, Dennis EA (2002) Bicelles in structure-function studies of membrane-associated proteins. Bioorg Chem 30:431–442

    CAS  PubMed  Google Scholar 

  • Williams JK, Zhang Y, Schmidt-Rohr K, Hong M (2013) pH-dependent conformation, dynamics, and aromatic interaction of the gating tryptophan residue of the influenza M2 proton channel from solid-state NMR. Biophys J 104:1698–1708. doi:10.1016/j.bpj.2013.02.054

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wittlich M, Thiagarajan P, Koenig BW, Hartmann R, Willbold D (2010) NMR structure of the transmembrane and cytoplasmic domains of human CD4 in micelles. Biochim Biophys Acta 1798:122–127

    CAS  PubMed  Google Scholar 

  • Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

    Google Scholar 

  • Yang J, Ma YQ, Page RC, Misra S, Plow EF, Qin J (2009) Structure of an integrin alphaIIb beta3 transmembrane-cytoplasmic heterocomplex provides insight into integrin activation. Proc Natl Acad Sci U S A 106:17729–17734

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang J, Aslimovska L, Glaubitz C (2011) Molecular dynamics of proteorhodopsin in lipid bilayers by solid-state NMR. J Am Chem Soc 133:4874–4881. doi:10.1021/ja109766n

    CAS  PubMed  Google Scholar 

  • Yeh JI, Du S, Tordajada A, Paulo J, Zhang S (2005) Peptergent: peptide detergents that improve stability and functionality of a membrane protein glycerol-3-phosphate dehydrogenase. Biochemistry 44:16912–16919

    CAS  PubMed  Google Scholar 

  • Yokogawa M, Kobashigawa Y, Yoshida N, Ogura K, Harada K, Inagaki F (2012) NMR analyses of the interaction between the FYVE domain of early endosome antigen 1 (EEA1) and phosphoinositide embedded in a lipid bilayer. J Biol Chem 287:34936–34945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zandomeneghi G, Ilg K, Aebi M, Meier BH (2012) On-cell MAS NMR: physiological clues from living cells. J Am Chem Soc 134:17513–17519. doi:10.1021/ja307467p

    CAS  PubMed  Google Scholar 

  • Zhang Y, Doherty T, Li J, Lu W, Barinka C, Lubkowski J, Hong M (2010) Resonance assignment and three-dimensional structure determination of a human alpha-defensin, HNP-1, by solid-state NMR. J Mol Biol 397:408–422. doi:10.1016/j.jmb.2010.01.030

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao X, Nagai Y, Reeves PJ, Kiley P, Khorana HG, Zhang S (2006) Designer short peptide surfactants stabilize G protein-coupled receptor bovine rhodopsin. Proc Natl Acad Sci U S A 103:17707–17712

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zoonens M, Catoire LJ, Giusti F, Popot JL (2005) NMR study of a membrane protein in detergent-free aqueous solution. Proc Natl Acad Sci U S A 102:8893–8898

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the CNRS (UMR 7099), the Université Paris Diderot, the Labex Dynamo (ANR-11-LABX-0011-01), and a fellowship from the Ministère de l’Enseignement Supérieur et de la Recherche (to XLW). We thank Eric Guittet and Christina Sizun for help with the NMR, Oana Ilioaia for advice in microbiology, and Jean-Luc Popot for proofreading the manuscript. Bienvenue à Bérénice.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laurent J. Catoire or Dror E. Warschawski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Catoire, L., Warnet, X., Warschawski, D. (2014). Micelles, Bicelles, Amphipols, Nanodiscs, Liposomes, or Intact Cells: The Hitchhiker’s Guide to the Study of Membrane Proteins by NMR. In: Mus-Veteau, I. (eds) Membrane Proteins Production for Structural Analysis. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0662-8_12

Download citation

Publish with us

Policies and ethics