Advertisement

Micelles, Bicelles, Amphipols, Nanodiscs, Liposomes, or Intact Cells: The Hitchhiker’s Guide to the Study of Membrane Proteins by NMR

  • Laurent J. Catoire
  • Xavier L. Warnet
  • Dror E. Warschawski
Chapter

Abstract

Membrane protein samples for nuclear magnetic resonance (NMR) spectroscopy are made of homogeneous preparations where proteins are isolated in a nonnative environment. Liposomes or nanometric lipid bilayers represent artificial environments that can sometimes be less appropriate than more exotic surfactants like amphipols, which have been shown to keep numerous membrane proteins stable and active. Sample preparation also involves know-how in biochemistry, physical chemistry, and the use of isotope labels. Over the past decades, various membrane mimetics and protocols have been developed for either solution- or solid-state NMR. They are compared in this chapter. In-cell NMR for studies of membrane proteins is a new and very attractive alternative that we also cover in this hitchhiker’s guide to the study of membrane proteins by NMR. While high-resolution 3D structures can be determined by NMR, other useful and unique information on membrane proteins can also be obtained, complementary to information obtained otherwise, in order to get a complete view of these biomolecules and their environment.

Keywords

Nuclear Magnetic Resonance Mixed Micelle Nuclear Magnetic Resonance Spectroscopy Dynamic Nuclear Polarization Nuclear Magnetic Resonance Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the CNRS (UMR 7099), the Université Paris Diderot, the Labex Dynamo (ANR-11-LABX-0011-01), and a fellowship from the Ministère de l’Enseignement Supérieur et de la Recherche (to XLW). We thank Eric Guittet and Christina Sizun for help with the NMR, Oana Ilioaia for advice in microbiology, and Jean-Luc Popot for proofreading the manuscript. Bienvenue à Bérénice.

References

  1. Abdine A, Verhoeven MA, Park KH, Ghazi A, Guittet E, Berrier C, Van Heijenoort C, Warschawski DE (2010) Structural study of the membrane protein MscL using cell-free expression and solid-state NMR. J Magn Reson 204:155–159. doi:10.1016/j.jmr.2010.02.003PubMedGoogle Scholar
  2. Abdine A, Verhoeven MA, Warschawski DE (2011) Cell-free expression and labeling strategies for a new decade in solid-state NMR. N Biotechnol 28:272–276. doi:10.1016/j.nbt.2010.07.014PubMedGoogle Scholar
  3. Ahuja S, Jahr N, Im SC, Vivekanandan S, Popovych N, Le Clair SV, Huang R, Soong R, Xu J, Yamamoto K, Nanga RP, Bridges A, Waskell L, Ramamoorthy A (2013) A model of the membrane-bound cytochrome b5-cytochrome P450 complex from NMR and mutagenesis data. J Biol Chem 288:22080–22095. doi:10.1074/jbc.M112.448225PubMedCentralPubMedGoogle Scholar
  4. Andreas LB, Barnes AB, Corzilius B, Chou JJ, Miller EA, Caporini M, Rosay M, Griffin RG (2013) Dynamic nuclear polarization study of inhibitor binding to the M2(18-60) proton transporter from influenza A. Biochemistry 52:2774–2282. doi:10.1021/bi400150xPubMedCentralPubMedGoogle Scholar
  5. Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M (2005) Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. J Am Chem Soc 127:12965–12974PubMedGoogle Scholar
  6. Arechaga I, Miroux B, Karrasch S, Huijbregts R, de Kruijff B, Runswick MJ, Walker JE (2000) Characterisation of new intracellular membranes in Escherichia coli accompanying large scale over-production of the b subunit of F(1)F(o) ATP synthase. FEBS Lett 482:215–219PubMedGoogle Scholar
  7. Arora A, Abildgaard F, Bushweller JH, Tamm LK (2001) Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat Struct Biol 8:334–338PubMedGoogle Scholar
  8. Assadi-Porter FM, Tonelli M, Maillet E, Hallenga K, Benard O, Max M, Markley JL (2008) Direct NMR detection of the binding of functional ligands to the human sweet receptor, a heterodimeric family 3 GPCR. J Am Chem Soc 130:7212–7213PubMedCentralPubMedGoogle Scholar
  9. Badola P, Sanders CR (1997) Escherichia coli diacylglycerol kinase is an evolutionarily optimized membrane enzyme and catalyzes direct phosphoryl transfer. J Biol Chem 272:24176–24182PubMedGoogle Scholar
  10. Bajaj VS, Mak-Jurkauskas ML, Belenky M, Herzfeld J, Griffin RG (2009) Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization-enhanced solid-state NMR. Proc Natl Acad Sci U S A 106:9244–9249. doi:10.1073/pnas.0900908106PubMedCentralPubMedGoogle Scholar
  11. Bayburt TH, Grinkova YV, Sligar SG (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2:853–856Google Scholar
  12. Bayburt TH, Sligar SG (2010) Membrane protein assembly into nanodiscs. FEBS Lett 584:1721–1727PubMedGoogle Scholar
  13. Bazzacco P, Billon-Denis E, Sharma KS, Catoire LJ, Mary S, Le Bon C, Point E, Banères JL, Durand G, Zito F, Pucci B, Popot JL (2012) Nonionic homopolymeric amphipols: application to membrane protein folding, cell-free synthesis, and solution nuclear magnetic resonance. Biochemistry 51:1416–1430PubMedGoogle Scholar
  14. Beaugrand M, Arnold AA, Hénin J, Warschawski DE, Williamson PTF, Marcotte I (2014) Lipid Concentration and Molar Ratio Boundaries for the Use of Isotropic Bicelles. Langmuir, in pressGoogle Scholar
  15. Berardi MJ, Shih WM, Harrison SC, Chou JJ (2011) Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 476:109–113PubMedCentralPubMedGoogle Scholar
  16. Bocharov EV, Pustovalova YE, Pavlov KV, Volynsky PE, Goncharuk MV, Ermolyuk YS, Karpunin DV, Schulga AA, Kirpichnikov MP, Efremov RG, Maslennikov IV, Arseniev AS (2007) Unique dimeric structure of BNip3 transmembrane domain suggests membrane permeabilization as a cell death trigger. J Biol Chem 282:16256–16266PubMedGoogle Scholar
  17. Bocharov EV, Mineev KS, Volynsky PE, Ermolyuk YS, Tkach EN, Sobol AG, Chupin VV, Kirpichnikov MP, Efremov RG, Arseniev AS (2008) Spatial structure of the dimeric transmembrane domain of the growth factor receptor ErbB2 presumably corresponding to the receptor active state. J Biol Chem 283:6950–6956PubMedGoogle Scholar
  18. Bokoch MP, Zou Y, Rasmussen SG, Liu CW, Nygaard R, Rosenbaum DM, Fung JJ, Choi HJ, Thian FS, Kobilka TS, Puglisi JD, Weis WI, Pardo L, Prosser RS, Mueller L, Kobilka BK (2010) Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 463:108–112PubMedCentralPubMedGoogle Scholar
  19. Bowie JU (2001) Stabilizing membrane proteins. Curr Opin Struct Biol 11:397–340PubMedGoogle Scholar
  20. Cady SD, Schmidt-Rohr K, Wang J, Soto CS, Degrado WF, Hong M (2010) Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463:689–692. doi:10.1038/nature08722PubMedCentralPubMedGoogle Scholar
  21. Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102PubMedGoogle Scholar
  22. Catoire LJ, Zoonens M, van Heijenoort C, Giusti F, Popot JL, Guittet E (2009) Inter- and intramolecular contacts in a membrane protein/surfactant complex observed by heteronuclear dipole-to-dipole cross-relaxation. J Magn Reson 197:91–95PubMedGoogle Scholar
  23. Catoire LJ, Zoonens M, van Heijenoort C, Giusti F, Guittet E, Popot JL (2010a) Solution NMR mapping of water-accessible residues in the transmembrane beta-barrel of OmpX. Eur Biophys J 39:623–630Google Scholar
  24. Catoire LJ, Damian M, Giusti F, Martin A, van Heijenoort C, Popot JL, Guittet E, Banères JL (2010b) Structure of a GPCR ligand in its receptor-bound state: leukotriene B4 adopts a highly constrained conformation when associated to human BLT2. J Am Chem Soc 132:9049–9057Google Scholar
  25. Catoire LJ, Damian M, Baaden M, Guittet E, Banères JL (2011) Electrostatically-driven fast association and perdeuteration allow detection of transferred cross-relaxation for G protein-coupled receptor ligands with equilibrium dissociation constants in the high-to- low nanomolar range. J Biomol NMR 50:191–195PubMedGoogle Scholar
  26. Chae PS, Rasmussen SG, Rana RR, Gotfryd K, Chandra R, Goren MA, Kruse AC, Nurva S, Loland CJ, Pierre Y, Drew D, Popot JL, Picot D, Fox BG, Guan L, Gether U, Byrne B, Kobilka B, Gellman SH (2010) Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat Methods 7:1003–1008PubMedCentralPubMedGoogle Scholar
  27. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265PubMedCentralPubMedGoogle Scholar
  28. Chung KY, Kim TH, Manglik A, Alvares R, Kobilka BK, Prosser RS (2012) Role of detergents in conformational exchange of a G protein-coupled receptor. J Biol Chem 287:36305–36311PubMedCentralPubMedGoogle Scholar
  29. Claasen B, Axmann M, Meinecke R, Meyer B (2005) Direct observation of ligand binding to membrane proteins in living cells by a saturation transfer double difference (STDD) NMR spectroscopy method shows a significantly higher affinity of integrin alpha(IIb)beta3 in native platelets than in liposomes. J Am Chem Soc 127:916–919PubMedGoogle Scholar
  30. Cook GA, Zhang H, Park SH, Wang Y, Opella SJ (2011) Comparative NMR studies demonstrate profound differences between two viroporins: p7 of HCV and Vpu of HIV-1. Biochim Biophys Acta 1808:554–560. doi:10.1016/j.bbamem.2010.08.005PubMedCentralPubMedGoogle Scholar
  31. Czerski L, Sanders CR (2000) Functionality of a membrane protein in bicelles. Anal Biochem 284:327–333PubMedGoogle Scholar
  32. Dahmane T, Damian M, Mary S, Popot JL, Banères JL (2009) Amphipol-assisted in vitro folding of G protein-coupled receptors. Biochemistry 48:6516–6521PubMedGoogle Scholar
  33. Dahmane T, Giusti F, Catoire LJ, Popot JL (2011) Sulfonated amphipols: synthesis, properties, and applications. Biopolymers 95:811–823PubMedGoogle Scholar
  34. De Angelis AA, Nevzorov AA, Park SH, Howell SC, Mrse AA, Opella SJ (2004) High-resolution NMR spectroscopy of membrane proteins in aligned bicelles. J Am Chem Soc 126:15340–15341PubMedGoogle Scholar
  35. De Angelis AA, Howell SC, Nevzorov AA, Opella SJ (2006) Structure determination of a membrane protein with two trans-membrane helices in aligned phospholipid bicelles by solid-state NMR spectroscopy. J Am Chem Soc 128:12256–12267PubMedCentralPubMedGoogle Scholar
  36. Denisov IG, Grinkova YV, Lazarides AA, Sligar SG (2004) Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J Am Chem Soc 126:3477–3478PubMedGoogle Scholar
  37. Dick-Pérez M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M (2011) Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50:989–1000. doi:10.1021/bi101795qPubMedGoogle Scholar
  38. Dürr UH, Waskell L, Ramamoorthy A (2007a) The cytochromes P450 and b5 and their reductases-promising targets for structural studies by advanced solid-state NMR spectroscopy. Biochim Biophys Acta 1768:3235–3259Google Scholar
  39. Dürr UH, Yamamoto K, Im SC, Waskell L, Ramamoorthy A (2007b) Solid-state NMR reveals structural and dynamical properties of a membrane-anchored electron-carrier protein, cytochrome b5. J Am Chem Soc 129:6670–6671Google Scholar
  40. Elter S, Raschle T, Arens S, Gelev V, Etzkorn M, Wagner G (2014) The use of amphipols for NMR structural characterization of 7-TM proteins. J Membr Biol, in pressGoogle Scholar
  41. Emami S, Fan Y, Munro R, Ladizhansky V, Brown LS (2013) Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra. J Biomol NMR 55:147–155. doi:10.1007/s10858-013-9710-5PubMedGoogle Scholar
  42. Etzkorn M, Martell S, Andronesi OC, Seidel K, Engelhard M, Baldus M (2007) Secondary structure, dynamics, and topology of a seven-helix receptor in native membranes, studied by solid-state NMR spectroscopy. Angew Chem Int Ed Engl 46:459–462PubMedGoogle Scholar
  43. Etzkorn M, Raschle T, Hagn F, Gelev V, Rice AJ, Walz T, Wagner G (2013) Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility. Structure 21:394–401PubMedCentralPubMedGoogle Scholar
  44. Fernández C, Adeishvili K, Wüthrich K (2001) Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein OmpX in dihexanoyl phosphatidylcholine micelles. Proc Natl Acad Sci U S A 98:2358–2363PubMedCentralPubMedGoogle Scholar
  45. Frericks HL, Zhou DH, Yap LL, Gennis RB, Rienstra CM (2006) Magic-angle spinning solid-state NMR of a 144 kDa membrane protein complex: E. coli cytochrome bo3 oxidase. J Biomol NMR 36:55–71PubMedGoogle Scholar
  46. Fu R, Wang X, Li C, Santiago-Miranda AN, Pielak GJ, Tian F (2011) In situ structural characterization of a recombinant protein in native Escherichia coli membranes with solid-state magic-angle-spinning NMR. J Am Chem Soc 133:12370–12373. doi:10.1021/ja204062vPubMedCentralPubMedGoogle Scholar
  47. Gabriel NE, Roberts MF (1984) Spontaneous formation of stable unilamellar vesicles. Biochemistry 23:4011–4015PubMedGoogle Scholar
  48. Gautier A, Mott HR, Bostock MJ, Kirkpatrick JP, Nietlispach D (2010) Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy. Nat Struct Mol Biol 17:768–774PubMedCentralPubMedGoogle Scholar
  49. Giusti F, Rieger J, Catoire LJ, Qian S, Calabrese AN, Watkinson TG, Casiraghi M, Radford SE, Ashcroft AE, Popot JL (2014) Synthesis, characterization and applications of a perdeuterated amphipol. J Membr Biol, in pressGoogle Scholar
  50. Glück JM, Wittlich M, Feuerstein S, Hoffmann S, Willbold D, Koenig BW (2009) Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy. J Am Chem Soc 131:12060–12061PubMedGoogle Scholar
  51. Gohon Y, Dahmane T, Ruigrok R, Schuck P, Charvolin D, Rappaport F, Timmins P, Engelman DM, Tribet C, Popot JL, Ebel C (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys J 94:3523–3537PubMedCentralPubMedGoogle Scholar
  52. Gong XM, Choi J, Franzin CM, Zhai D, Reed JC, Marassi FM (2004) Conformation of membrane-associated proapoptotic tBid. J Biol Chem 279:28954–28960PubMedCentralPubMedGoogle Scholar
  53. Gowda GA, Shanaiah N, Raftery D (2012) Isotope enhanced approaches in metabolomics. Adv Exp Med Biol 992:147–164. doi:10.1007/978-94-007-4954-2_8PubMedGoogle Scholar
  54. Hagn F, Etzkorn M, Raschle T, Wagner G (2013) Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc 135:1919–1925PubMedCentralPubMedGoogle Scholar
  55. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EY, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure 16:897–905PubMedCentralPubMedGoogle Scholar
  56. Helenius A, Simons K (1975) Solubilization of membranes by detergents. Biochim Biophys Acta 415:29–79PubMedGoogle Scholar
  57. Hiller M, Krabben L, Vinothkumar KR, Castellani F, van Rossum BJ, Kühlbrandt W, Oschkinat H (2005) Solid-state magic-angle spinning NMR of outer membrane protein G from Escherichia coli. Chembiochem 6:1679–1684PubMedGoogle Scholar
  58. Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, Wagner G (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321:1206–1210PubMedCentralPubMedGoogle Scholar
  59. Hu J, Asbury T, Achuthan S, Li C, Bertram R, Quine JR, Fu R, Cross TA (2007) Backbone structure of the amantadine-blocked trans-membrane domain M2 proton channel from influenza A virus. Biophys J 92:4335–4343PubMedCentralPubMedGoogle Scholar
  60. Hwang PM, Choy WY, Lo EI, Chen L, Forman-Kay JD, Raetz CR, Privé GG, Bishop RE, Kay LE (2002) Solution structure and dynamics of the outer membrane enzyme PagP by NMR. Proc Natl Acad Sci U S A 99:13560–13565PubMedCentralPubMedGoogle Scholar
  61. Inomata K, Ohno A, Tochio H, Isogai S, Tenno T, Nakase I, Takeuchi T, Futaki S, Ito Y, Hiroaki H, Shirakawa M (2009) High-resolution multi dimensional NMR spectroscopy of proteins in human cells. Nature 458:106–109PubMedGoogle Scholar
  62. Ito Y, Selenko P (2010) Cellular structural biology. Curr Opin Struct Biol 20:640–648PubMedGoogle Scholar
  63. Jacso T, Franks WT, Rose H, Fink U, Broecker J, Keller S, Oschkinat H, Reif B (2012) Characterization of membrane proteins in isolated native cellular membranes by dynamic nuclear polarization solid-state NMR spectroscopy without purification and reconstitution. Angew Chem Int Ed Engl 51:432–435. doi:10.1002/anie.201104987PubMedGoogle Scholar
  64. Jordà J, Suarez C, Carnicer M, ten Pierick A, Heijnen JJ, van Gulik W, Ferrer P, Albiol J, Wahl A (2013) Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary 13C flux analysis. BMC Syst Biol 7:17. doi:10.1186/1752-0509-7-17PubMedCentralPubMedGoogle Scholar
  65. Kang CB, Li Q (2011) Solution NMR study of integral membrane proteins. Curr Opin Struct Biol 15:560–569Google Scholar
  66. Ketchem RR, Hu W, Cross TA (1993) High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science 261:1457–1460PubMedGoogle Scholar
  67. Kijac AZ, Li Y, Sligar SG, Rienstra CM (2007) Magic-angle spinning solid-state NMR spectroscopy of nanodisc-embedded human CYP3A4. Biochemistry 46:13696–13703PubMedCentralPubMedGoogle Scholar
  68. Kofuku Y, Ueda T, Okude J, Shiraishi Y, Kondo K, Maeda M, Tsujishita H, Shimada I (2012) Efficacy of the β2-adrenergic receptor is determined by conformational equilibrium in the transmembrane region. Nat Commun 3:1045PubMedCentralPubMedGoogle Scholar
  69. Kulminskaya NV, Pedersen M, Bjerring M, Underhaug J, Miller M, Frigaard NU, Nielsen JT, Nielsen NC (2012) In situ solid-state NMR spectroscopy of protein in heterogeneous membranes: the baseplate antenna complex of Chlorobaculum tepidum. Angew Chem Int Ed Engl 51:6891–6895. doi:10.1002/anie.201201160PubMedGoogle Scholar
  70. Lange A, Giller K, Hornig S, Martin-Eauclaire MF, Pongs O, Becker S, Baldus M (2006) Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440:959–962PubMedGoogle Scholar
  71. Lau TL, Partridge AW, Ginsberg MH, Ulmer TS (2008) Structure of the integrin beta3 transmembrane segment in phospholipid bicelles and detergent micelles. Biochemistry 47:4008–4016PubMedGoogle Scholar
  72. Lau TL, Kim C, Ginsberg MH, Ulmer TS (2009) The structure of the integrin alphaI- Ibbeta3 transmembrane complex explains integrin transmembrane signalling. EMBO J 28:1351–1361PubMedCentralPubMedGoogle Scholar
  73. Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 1666:62–87PubMedGoogle Scholar
  74. Lee D, Walter KF, Brckner AK, Hilty C, Becker S, Griesinger C (2008) Bilayer in small bicelles revealed by lipid-protein interactions using NMR spectroscopy. J Am Chem Soc 130:13822–13823PubMedGoogle Scholar
  75. Linden AH, Lange S, Franks WT, Akbey U, Specker E, van Rossum BJ, Oschkinat H (2011) Neurotoxin II bound to acetylcholine receptors in native membranes studied by dynamic nuclear polarization NMR. J Am Chem Soc 133:19266–19269. doi:10.1021/ja206999cPubMedGoogle Scholar
  76. Liu JJ, Horst R, Katritch V, Stevens RC, Wüthrich K (2012) Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science 335:1106–1110PubMedCentralPubMedGoogle Scholar
  77. Loquet A, Lv G, Giller K, Becker S, Lange A (2011) 13C spin dilution for simplified and complete solid-state NMR resonance assignment of insoluble biological assemblies. J Am Chem Soc 133:4722–4725. doi:10.1021/ja200066sPubMedGoogle Scholar
  78. Lu GJ, Tian Y, Vora N, Marassi FM, Opella SJ (2013) The structure of the mercury transporter MerF in phospholipid bilayers: a large conformational rearrangement results from N-terminal truncation. J Am Chem Soc 135:9299–9302. doi:10.1021/ja4042115PubMedCentralPubMedGoogle Scholar
  79. MacKenzie KR, Prestegard JH, Engelman DM (1997) A transmembrane helix dimer: structure and implications. Science 276:131–133PubMedGoogle Scholar
  80. Mani R, Tang M, Wu X, Buffy JJ, Waring AJ, Sherman MA, Hong M (2006) Membrane-bound dimer structure of a β-hairpin antimicrobial peptide from rotational-echo double-resonance solid-state NMR. Biochemistry 45:8341–8349PubMedGoogle Scholar
  81. McDonnell PA, Opella SJ (1993) Effect of detergent concentration on multidimensional solution NMR spectra of membrane proteins in micelles. J Magn Reson B 102:120–125Google Scholar
  82. McGregor CL, Chen L, Pomroy NC, Hwang P, Go S, Chakrabartty A, Priv GG (2003) Lipopeptide detergents designed for the structural study of membrane proteins. Nat Biotechnol 21:171–176PubMedGoogle Scholar
  83. Miao Y, Qin H, Fu R, Sharma M, Can TV, Hung I, Luca S, Gor’kov PL, Brey WW, Cross TA (2012) M2 proton channel structural validation from full-length protein samples in synthetic bilayers and E. coli membranes. Angew Chem Int Ed Engl 51:8383–8386. doi:10.1002/anie.201204666PubMedCentralPubMedGoogle Scholar
  84. Michalek M, Salnikov ES, Werten S, Bechinger B (2013) Membrane interactions of the amphipathic amino terminus of huntingtin. Biochemistry 52:847–858. doi:10.1021/bi301325qPubMedGoogle Scholar
  85. Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298PubMedGoogle Scholar
  86. Mörs K, Roos C, Scholz F, Wachtveitl J, Dötsch V, Bernhard F, Glaubitz C (2013) Modified lipid and protein dynamics in nanodiscs. Biochim Biophys Acta 1828:1222–1229. doi:10.1016/j.bbamem.2012.12.011PubMedGoogle Scholar
  87. Müller SD, De Angelis AA, Walther TH, Grage SL, Lange C, Opella SJ, Ulrich AS (2007) Structural characterization of the pore forming protein TatAd of the twin-arginine translocase in membranes by solid-state 15N-NMR. Biochim Biophys Acta 1768:3071–3079PubMedGoogle Scholar
  88. Nakano M, Fukuda M, Kudo T, Miyazaki M, Wada Y, Matsuzaki N, Endo H, Handa T (2009) Static and dynamic properties of phospholipid bilayer nanodiscs. J Am Chem Soc 131:8308–8312PubMedGoogle Scholar
  89. Nath A, Atkins WM, Sligar SG (2007) Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46:2059–2069PubMedGoogle Scholar
  90. Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A, Pan AC, Liu CW, Fung JJ, Bokoch MP, Thian FS, Kobilka TS, Shaw DE, Mueller L, Prosser RS, Kobilka BK (2013) The dynamic process of (2)-adrenergic receptor activation. Cell 152:532–542PubMedCentralPubMedGoogle Scholar
  91. Ohashi R, Mu H, Wang X, Yao Q, Chen C (2005) Reverse cholesterol transport and cholesterol efflux in atherosclerosis. Q J Med 98:845–856Google Scholar
  92. Oliver RC, Lipfert J, Fox DA, Lo RH, Doniach S, Columbus L (2013) Dependence of micelle size and shape on detergent alkyl chain length and head group. PLoS ONE 8:e62488. doi:10.1371/journal.pone.0062488PubMedCentralPubMedGoogle Scholar
  93. Opella SJ, Marassi FM, Gesell JJ, Valente AP, Kim Y, Oblatt-Montal M, Montal M (1999) Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy. Nat Struct Biol 6:374–379PubMedCentralPubMedGoogle Scholar
  94. Park SH, Mrse AA, Nevzorov AA, Mesleh MF, Oblatt-Montal M, Montal M, Opella SJ (2003) Three-dimensional structure of the channel-forming trans-membrane domain of virus protein “u” (Vpu) from HIV-1. J Mol Biol 333:409–424PubMedGoogle Scholar
  95. Park SH, Casagrande F, Das BB, Albrecht L, Chu M, Opella SJ (2011a) Local and global dynamics of the G protein-coupled receptor CXCR1. Biochemistry 50:2371–2380. doi:10.1021/bi101568jGoogle Scholar
  96. Park SH, Berkamp S, Cook GA, Chan MK, Viadiu H, Opella SJ (2011b) Nanodiscs versus macrodiscs for NMR of membrane proteins. Biochemistry 50:8983–8985. doi:10.1021/bi201289cGoogle Scholar
  97. Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, Kiefer H, Maier K, De Angelis AA, Marassi FM, Opella SJ (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491:779–783. doi:10.1038/nature11580PubMedCentralPubMedGoogle Scholar
  98. Planchard N, Point E, Dahmane T, Giusti F, Renault M, Le Bon C, Durand G, Milon A, Guittet E, Zoonens M, Popot JL, Catoire LJ (2014) The use of amphipols for solution NMR studies of membrane proteins: advantages and constraints as compared to other solubilizing media. J Membr Biol, in pressGoogle Scholar
  99. Plevin MJ, Boisbouvier J (2012) Isotope-labelling of methyl groups for NMR studies of large proteins. In: Clore M, Potts J (eds) Recent developments in biomolecular NMR. Royal Society of Chemistry, LondonGoogle Scholar
  100. Poget SF, Girvin ME (2007) Solution NMR of membrane proteins in bilayer mimics: small is beautiful, but sometimes bigger is better. Biochim Biophys Acta 1768:3098–3106PubMedCentralPubMedGoogle Scholar
  101. Poget SF, Cahill SM, Girvin ME (2007) Isotropic bicelles stabilize the functional form of a small multidrug-resistance pump for NMR structural studies. J Am Chem Soc 129:2432–2433PubMedCentralPubMedGoogle Scholar
  102. Poget SF, Harris R, Cahill SM, Girvin ME (2010) 1H, 13C, 15N backbone NMR assignments of the Staphylococcus aureus small multidrug-resistance pump (Smr) in a functionally active conformation. Biomol NMR Assign 4:139–142PubMedCentralPubMedGoogle Scholar
  103. Popot JL (2010) Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Ann Rev Biochem 79:737–775PubMedGoogle Scholar
  104. Popot JL, Althoff T, Bagnard D et al (2011) Amphipols from A to Z. Ann Rev Biophys 40:379–408Google Scholar
  105. Potenza D, Vasile F, Belvisi L, Civera M, Araldi EMV (2011) STD and trNOESY NMR study of receptor-ligand interactions in living cancer cells. Chembiochem 12:695–699PubMedGoogle Scholar
  106. Privé GG (2011) Lipopeptide detergents for membrane protein studies. Curr Opin Struct Biol 19:379–385Google Scholar
  107. Raschle T, Hiller S, Yu TY, Rice AJ, Walz T, Wagner G (2009) Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. J Am Chem Soc 131:17777–17779PubMedCentralPubMedGoogle Scholar
  108. Raschle T, Hiller S, Etzkorn M, Wagner G (2010) Nonmicellar systems for solution NMR spectroscopy of membrane proteins. Curr Opin Struct Biol 20:471–479PubMedCentralPubMedGoogle Scholar
  109. Reckel S, Lopez JJ, Löhr F, Glaubitz C, Dötsch V (2012) In-cell solid-state NMR as a tool to study proteins in large complexes. Chembiochem 13:534–537. doi:10.1002/cbic.201100721PubMedGoogle Scholar
  110. Reggie L, Lopez JJ, Collinson I, Glaubitz C, Lorch M (2011) Dynamic nuclear polarization-enhanced solid-state NMR of a 13C-labeled signal peptide bound to lipid-reconstituted Sec translocon. J Am Chem Soc 133:19084–19086. doi:10.1021/ja209378hPubMedGoogle Scholar
  111. Renault M (2008) Etudes structurales et dynamiques de la protéine membranaire KpOmpA par RMN en phase liquide et solide. Dissertation, Université Paul Sabatier, ToulouseGoogle Scholar
  112. Renault M, Tommassen-van Boxtel R, Bos MP, Post JA, Tommassen J, Baldus M (2012a) Cellular solid-state nuclear magnetic resonance spectroscopy. Proc Natl Acad Sci U S A 109:4863–4868. doi:10.1073/pnas.1116478109Google Scholar
  113. Renault M, Pawsey S, Bos MP, Koers EJ, Nand D, Tommassen-van Boxtel R, Rosay M, Tommassen J, Maas WE, Baldus M (2012b) Solid-state NMR spectroscopy on cellular preparations enhanced by dynamic nuclear polarization. Angew Chem Int Ed Engl 51:2998–3001. doi:10.1002/anie.201105984: E coliGoogle Scholar
  114. Ritchie TK, Grinkova YV, Bayburt TH, Denisov IG, Zolnerciks JK, Atkins WM, Sligar SG (2009) Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Method Enzymol 464:211–213Google Scholar
  115. Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH, Rasmussen SG, Choi HJ, Devree BT, Sunahara RK, Chae PS, Gellman SH, Dror RO, Shaw DE, Weis WI, Caffrey M, Gmeiner P, Kobilka BK (2011) Structure and function of an irreversible agonist-(2) adrenoceptor complex. Nature 469:236–240PubMedCentralPubMedGoogle Scholar
  116. Sakakibara D, Sasaki A, Ikeya T, Hamatsu J, Hanashima T, Mishima M, Yoshimasu M, Hayashi N, Mikawa T, Wälchli M, Smith BO, Shirakawa M, Güntert P, Ito Y (2009) Protein structure determination in living cells by in-cell NMR spectroscopy. Nature 458:102–105PubMedGoogle Scholar
  117. Sanders CR, Prestegard JH (1990) Magnetically orientable phospholipid bilayers containing small amounts of a bile salt analogue, CHAPSO. Biophys J 58:447–460PubMedCentralPubMedGoogle Scholar
  118. Sanders CR, Schwonek JP (1992) Characterization of magnetically orientable bilayers in mixtures of dihexanoylphosphatidylcholine and dimyristoylphosphatidylcholine by solid-state NMR. Biochemistry 31:8898–8905PubMedGoogle Scholar
  119. Sanders CR, Landis GC (1995) Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. Biochemistry 34:4030–4040PubMedGoogle Scholar
  120. Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451:591–595PubMedCentralPubMedGoogle Scholar
  121. Selenko P, Wagner G (2007) Looking into live cells with in-cell NMR spectroscopy. J Struct Biol 158:244–253PubMedGoogle Scholar
  122. Shahid SA, Bardiaux B, Franks WT, Krabben L, Habeck M, van Rossum BJ, Linke D (2012) Membrane-protein structure determination by solid-state NMR spectroscopy of microcrystals. Nat Methods 9:1212–1217. doi:10.1038/nmeth.2248PubMedGoogle Scholar
  123. Shenkarev ZO, Lyukmanova EN, Paramonov AS, Shingarova LN, Chupin VV, Kirpichnikov MP, Blommers MJ, Arseniev AS (2010) Lipid-protein nanodiscs as reference medium in detergent screening for high-resolution NMR studies of integral membrane proteins. J Am Chem Soc 132:5628–5629PubMedGoogle Scholar
  124. Shenkarev ZO, Lyukmanova EN, Butenko IO, Petrovskaya LE, Paramonov AS, Shulepko MA, Nekrasova OV, Kirpichnikov MP, Arseniev AS (2013) Lipid-protein nanodiscs promote in vitro folding of transmembrane domains of multi-helical and multimeric membrane proteins. Biochim Biophys Acta 1828:776–784PubMedGoogle Scholar
  125. Shi L, Ahmed MA, Zhang W, Whited G, Brown LS, Ladizhansky V (2009) Three-dimensional solid-state NMR study of a seven-helical integral membrane proton pump-structural insights. J Mol Biol 386:1078–1093PubMedGoogle Scholar
  126. Shi P, Li D, Chen H, Xiong Y, Wang Y, Tian C (2012) In situ 19F NMR studies of an E. coli membrane protein. Protein Sci 21:596–600. doi:10.1002/pro.2040PubMedCentralPubMedGoogle Scholar
  127. Takahashi H, Ayala I, Bardet M, De Paëpe G, Simorre JP, Hediger S (2013) Solid-State NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization. J Am Chem Soc 135:5105–5110. doi:10.1021/ja312501dPubMedGoogle Scholar
  128. Tanford C, Reynolds JA (1976) Characterization of membrane proteins in detergent solutions. Biochim Biophys Acta 457:133–170PubMedGoogle Scholar
  129. Tang M, Sperling LJ, Berthold DA, Schwieters CD, Nesbitt AE, Nieuwkoop AJ, Gennis RB, Rienstra CM (2011) High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data. J Biomol NMR 51:227–233. doi:10.1007/s10858-011-9565-6PubMedCentralPubMedGoogle Scholar
  130. Tang M, Nesbitt AE, Sperling LJ, Berthold DA, Schwieters CD, Gennis RB, Rienstra CM (2013) Structure of the disulfide bond generating membrane protein DsbB in the lipid bilayer. J Mol Biol 425:1670–1682. doi:10.1016/j.jmb.2013.02.009PubMedCentralPubMedGoogle Scholar
  131. Tardy-Laporte C, Arnold AA, Genard B, Gastineau R, Morançais M, Mouget JL, Tremblay R, Marcotte I (2013) A (2)H solid-state NMR study of the effect of antimicrobial agents on intact Escherichia coli without mutating. Biochim Biophys Acta 1828:614–622. doi:10.1016/j.bbamem.2012.09.011PubMedGoogle Scholar
  132. Teriete P, Franzin CM, Choi J, Marassi FM (2007) Structure of the Na, K-ATPase regulatory protein FXYD1 in micelles. Biochemistry 46:6774–6783PubMedCentralPubMedGoogle Scholar
  133. Thompson AA, Liu JJ, Chun E, Wacker D, Wu H, Cherezov V, Stevens RC (2011) GPCR stabilization using the bicelle-like architecture of mixed sterol-detergent micelles. Methods 55:310–317PubMedCentralPubMedGoogle Scholar
  134. Tieleman DP, van der Spoel D, Berendsen HJC (2000) Molecular dynamics simulations of dodecylphosphocholine micelles at three different aggregate sizes: micellar structure and lipid chain relaxation. J Phys Chem B 104:6380–6388Google Scholar
  135. Traaseth NJ, Shi L, Verardi R, Mullen DG, Barany G, Veglia G (2009) Structure and topology of monomeric phospholamban in lipid membranes determined by a hybrid solution and solid-state NMR approach. Proc Natl Acad Sci U S A 106:10165–10170. doi:10.1073/pnas.0904290106PubMedCentralPubMedGoogle Scholar
  136. Triba MN, Warschawski DE, Devaux PF (2005) Reinvestigation by phosphorus NMR of lipid distribution in bicelles. Biophys J 88:1887–1901PubMedCentralPubMedGoogle Scholar
  137. Triba MN, Zoonens M, Popot JL, Devaux PF, Warschawski DE (2006a) Reconstitution and alignment by a magnetic field of a beta-barrel membrane protein in bicelles. Eur Biophys J 35:268–275Google Scholar
  138. Triba MN, Devaux PF, Warschawski DE (2006b) Effects of lipid chain length and unsaturation on bicelles stability. A phosphorus NMR study. Biophys J 91:1357–1367Google Scholar
  139. Tribet C, Audebert R, Popot JL (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci U S A 93:15047–15050PubMedCentralPubMedGoogle Scholar
  140. Tzitzilonis C, Eichmann C, Maslennikov I, Choe S, Riek R (2013) Detergent/nanodisc screening for high-resolution NMR studies of an integral membrane protein containing a cytoplasmic domain. PLoS ONE 8(1):e54378. doi:10.1371PubMedCentralPubMedGoogle Scholar
  141. Ullrich SJ, Hellmich UA, Ullrich S, Glaubitz C (2011) Interfacial enzyme kinetics of a membrane bound kinase analyzed by real-time MAS-NMR. Nat Chem Biol 7:263–270. doi:10.1038/nchembio.543PubMedGoogle Scholar
  142. Vold RR, Prosser RS, Deese AJ (1997) Isotropic solutions of phospholipid bicelles: a new membrane mimetic for high-resolution NMR studies of polypeptides. J Biomol NMR 9:329–335PubMedGoogle Scholar
  143. Wacker D, Fenalti G, Brown MA, Katritch V, Abagyan R, Cherezov V, Stevens RC (2010) Conserved binding mode of human beta2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J Am Chem Soc 132:11443–11445PubMedCentralPubMedGoogle Scholar
  144. Walsh JP, Bell RM (1986) sn-1,2-Diacylglycerol kinase of Escherichia coli. Structural and kinetic analysis of the lipid cofactor dependence. J Biol Chem 261:15062–15069PubMedGoogle Scholar
  145. Warne T, Moukhametzianov R, Baker JG, Nehm R, Edwards PC, Leslie AG, Schertler GF, Tate CG (2011) The structural basis for agonist and partial agonist action on a (1)-adrenergic receptor. Nature 469:241–244PubMedCentralPubMedGoogle Scholar
  146. Warschawski DE (2013) Membrane proteins of known structure determined by NMR. http://www.drorlist.com/nmr/MPNMR.html. Accessed 30 Aug 2013
  147. Warschawski DE, Arnold AA, Beaugrand M, Gravel A, Chartrand É, Marcotte I (2011) Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim Biophys Acta 1808:1957–1974. doi:10.1016/j.bbamem.2011.03.016PubMedGoogle Scholar
  148. Whiles JA, Deems R, Vold RR, Dennis EA (2002) Bicelles in structure-function studies of membrane-associated proteins. Bioorg Chem 30:431–442PubMedGoogle Scholar
  149. Williams JK, Zhang Y, Schmidt-Rohr K, Hong M (2013) pH-dependent conformation, dynamics, and aromatic interaction of the gating tryptophan residue of the influenza M2 proton channel from solid-state NMR. Biophys J 104:1698–1708. doi:10.1016/j.bpj.2013.02.054PubMedCentralPubMedGoogle Scholar
  150. Wittlich M, Thiagarajan P, Koenig BW, Hartmann R, Willbold D (2010) NMR structure of the transmembrane and cytoplasmic domains of human CD4 in micelles. Biochim Biophys Acta 1798:122–127PubMedGoogle Scholar
  151. Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New YorkGoogle Scholar
  152. Yang J, Ma YQ, Page RC, Misra S, Plow EF, Qin J (2009) Structure of an integrin alphaIIb beta3 transmembrane-cytoplasmic heterocomplex provides insight into integrin activation. Proc Natl Acad Sci U S A 106:17729–17734PubMedCentralPubMedGoogle Scholar
  153. Yang J, Aslimovska L, Glaubitz C (2011) Molecular dynamics of proteorhodopsin in lipid bilayers by solid-state NMR. J Am Chem Soc 133:4874–4881. doi:10.1021/ja109766nPubMedGoogle Scholar
  154. Yeh JI, Du S, Tordajada A, Paulo J, Zhang S (2005) Peptergent: peptide detergents that improve stability and functionality of a membrane protein glycerol-3-phosphate dehydrogenase. Biochemistry 44:16912–16919PubMedGoogle Scholar
  155. Yokogawa M, Kobashigawa Y, Yoshida N, Ogura K, Harada K, Inagaki F (2012) NMR analyses of the interaction between the FYVE domain of early endosome antigen 1 (EEA1) and phosphoinositide embedded in a lipid bilayer. J Biol Chem 287:34936–34945PubMedCentralPubMedGoogle Scholar
  156. Zandomeneghi G, Ilg K, Aebi M, Meier BH (2012) On-cell MAS NMR: physiological clues from living cells. J Am Chem Soc 134:17513–17519. doi:10.1021/ja307467pPubMedGoogle Scholar
  157. Zhang Y, Doherty T, Li J, Lu W, Barinka C, Lubkowski J, Hong M (2010) Resonance assignment and three-dimensional structure determination of a human alpha-defensin, HNP-1, by solid-state NMR. J Mol Biol 397:408–422. doi:10.1016/j.jmb.2010.01.030PubMedCentralPubMedGoogle Scholar
  158. Zhao X, Nagai Y, Reeves PJ, Kiley P, Khorana HG, Zhang S (2006) Designer short peptide surfactants stabilize G protein-coupled receptor bovine rhodopsin. Proc Natl Acad Sci U S A 103:17707–17712PubMedCentralPubMedGoogle Scholar
  159. Zoonens M, Catoire LJ, Giusti F, Popot JL (2005) NMR study of a membrane protein in detergent-free aqueous solution. Proc Natl Acad Sci U S A 102:8893–8898PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Laboratory of Physico-Chemical Biology of Membrane Proteins, UMR-CNRS 7099Institute of Physico-Chemical Biology, and Université Paris DiderotParisFrance

Personalised recommendations