Advertisement

Lipidic Cubic Phase Technologies for Structural Studies of Membrane Proteins

Chapter

Abstract

Lipidic cubic phase (LCP) is a gel-like liquid crystalline membrane-mimetic matrix. It has been successfully used to stabilize and crystallize challenging membrane proteins, such as G protein-coupled receptors, the structure of which is often difficult to obtain by other methods. Despite many advantages, the LCP crystallization method has not been widely adopted because of difficulties associated with handling highly viscous LCP material. Recent advances in the development of tools and instruments for LCP crystallization are aimed at facilitating the research in this area and to help structural biologists in integrating these technologies in their working routine.

Keywords

Fluorescence Recovery After Photobleaching Detergent Micelle Crystallization Trial Linac Coherent Light Source Host Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported in part by the NIH Common Fund in Structural Biology grant P50 GM073197. We thank K. Kadyshevskaya for making the figures, A. Walker and C. Klasen for assistance with the manuscript preparation.

References

  1. Ai X, Caffrey M (2000) Membrane protein crystallization in lipidic mesophases: detergent effects. Biophys J 79:394–405PubMedCentralPubMedCrossRefGoogle Scholar
  2. Barauskas J, Landh T (2003) Phase behavior of the phytantriol/water system. Langmuir 19:9562–9565CrossRefGoogle Scholar
  3. Borshchevskiy V, Moiseeva E, Kuklin A, Buldt G, Hato M, Gordeliy V (2010) Isoprenoid-chained lipid β-XylOC16+4-A novel molecule for in meso membrane protein crystallization. J Cryst Growth 312:3326–3330CrossRefGoogle Scholar
  4. Boutet S, Lomb L, Williams GJ et al (2012) High-resolution protein structure determination by serial femtosecond crystallography. Science 337:362–364PubMedCentralPubMedCrossRefGoogle Scholar
  5. Briggs J, Chung H, Caffrey M (1996) The temperature-composition phase diagram and mesophase structure characterization of the monoolein/water system. J Physique II 6:723–751CrossRefGoogle Scholar
  6. Caffrey M (2008) On the mechanism of membrane protein crystallization in lipidic mesophases. Cryst Growth Des 8:4244–4254CrossRefGoogle Scholar
  7. Caffrey M (2009) Crystallizing membrane proteins for structure determination: use of lipidic mesophases. Annu Rev Biophys 38:29–51PubMedCrossRefGoogle Scholar
  8. Caffrey M, Cherezov V (2009) Crystallizing membrane proteins using lipidic mesophases. Nat Protoc 4:706–731PubMedCentralPubMedCrossRefGoogle Scholar
  9. Caffrey M, Porter C (2010) Crystallizing membrane proteins for structure determination using lipidic mesophases. J Vis Exp 45:e1712. doi:10.3791/1712Google Scholar
  10. Chapman HN, Fromme P, Barty A et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–77PubMedCentralPubMedCrossRefGoogle Scholar
  11. Cheng A, Hummel B, Qiu H, Caffrey M (1998) A simple mechanical mixer for small viscous lipid-containing samples. Chem Phys Lipids 95:11–21PubMedCrossRefGoogle Scholar
  12. Cherezov V (2011) Lipidic cubic phase technologies for membrane protein structural studies. Curr Opin Struct Biol 21:559–566PubMedCentralPubMedCrossRefGoogle Scholar
  13. Cherezov V, Caffrey M (2003) Nano-volume plates with excellent optical properties for fast, inexpensive crystallization screening of membrane proteins. J Appl Crystallogr 36:1372–1377CrossRefGoogle Scholar
  14. Cherezov V, Caffrey M (2005) A simple and inexpensive nanoliter-volume dispenser for highly viscous materials used in membrane protein crystallization. J Appl Crystallogr 38:398–400CrossRefGoogle Scholar
  15. Cherezov V, Caffrey M (2007) Membrane protein crystallization in lipidic mesophases. A mechanism study using X-ray microdiffraction. Faraday Discuss 136:195–212PubMedCrossRefGoogle Scholar
  16. Cherezov V, Fersi H, Caffrey M (2001) Crystallization screens: compatibility with the lipidic cubic phase for in meso crystallization of membrane proteins. Biophys J 81:225–242PubMedCentralPubMedCrossRefGoogle Scholar
  17. Cherezov V, Clogston J, Misquitta Y, Abdel-Gawad W, Caffrey M (2002) Membrane protein crystallization in meso: lipid type-tailoring of the cubic phase. Biophys J 83:3393–3407Google Scholar
  18. Cherezov V, Peddi A, Muthusubramaniam L, Zheng YF, Caffrey M (2004) A robotic system for crystallizing membrane and soluble proteins in lipidic mesophases. Acta Crystallogr D Biol Crystallogr 60:1795–1807PubMedCrossRefGoogle Scholar
  19. Cherezov V, Clogston J, Papiz MZ, Caffrey M (2006a) Room to move: crystallizing membrane proteins in swollen lipidic mesophases. J Mol Biol 357:1605–1618CrossRefGoogle Scholar
  20. Cherezov V, Yamashita E, Liu W, Zhalnina M, Cramer WA, Caffrey M (2006b) In meso structure of the cobalamin transporter, BtuB, at 1.95 A resolution. J Mol Biol 364:716–734CrossRefGoogle Scholar
  21. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265PubMedCentralPubMedCrossRefGoogle Scholar
  22. Cherezov V, Liu J, Hanson MA, Griffith MT, Stevens R (2008) LCP-FRAP Assay for pre-screening membrane proteins for in meso crystallization. Cryst Growth Des 8:4307–4315PubMedCentralPubMedCrossRefGoogle Scholar
  23. Cherezov V, Hanson MA, Griffith MT, Hilgart MC, Sanishvili R, Nagarajan V, Stepanov S, Fischetti RF, Kuhn P, Stevens RC (2009) Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 µm size X-ray synchrotron beam. J R Soc Interface 6:S587–S597PubMedCentralPubMedCrossRefGoogle Scholar
  24. Cherezov V, Abola E, Stevens RC (2010) Recent progress in the structure determination of GPCRs, a membrane protein family with high potential as pharmaceutical targets. Method Mol Biol 654:141–168CrossRefGoogle Scholar
  25. Clogston J (2005) Applications of the lipidic cubic phase: from controlled release and uptake to in meso crystallization of membrane proteins. Dissertation, The Ohio State UniversityGoogle Scholar
  26. Chun E, Thompson AA, Liu W, Roth CR, Griffith MT, Katritch V, Kunken J, Xu F, Cherezov V, Hanson MA, Stevens RC (2012) Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20:967–976PubMedCentralPubMedCrossRefGoogle Scholar
  27. Coleman BE, Cwynar V, Hart DJ, Havas F, Mohan JM, Patterson S, Ridenour S, Schmidt M, Smith E, Wells AJ (2004) Modular approach to the synthesis of unsaturated 1-monoacyl glycerols. Synlett 8:1339–1342Google Scholar
  28. Congreve M, Langmead C, Marshall FH (2011) The use of GPCR structures in drug design. Adv Pharmacol 62:1–36PubMedCrossRefGoogle Scholar
  29. Conn CE, Darmanin C, Mulet X, Kirby N, Drummond CJ (2012) High-throughput in situ analysis of the structural evolution of the monoolein cubic phase under crystallogenesis conditions. Soft Matter 8:2310–2321CrossRefGoogle Scholar
  30. Darmanin C, Conn CE, Newman J, Mulet J, Seabrook SA, Liang Y-L, Hawley A, Kirby N, Varghese JN, Drummond CJ (2012) High-throughput production and structural characterization of libraries of self-assembly lipidic cubic phase materials. ACS Comb Sci 14:247–252PubMedCrossRefGoogle Scholar
  31. Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution. Nature 318:618–624PubMedCrossRefGoogle Scholar
  32. DePonte DP, Weierstall U, Schmidt K, Warner J, Starodub D, Spence JCH, Doak RB (2008) Gas dynamic virtual nozzle for generation of microscopic droplet streams. J Phys D: Appl Phys 41:195505CrossRefGoogle Scholar
  33. Fagerberg L, Jonasson K, von Heijne G, Uhlen M, Berglund L (2010) Prediction of the human membrane proteome. Proteomics 10:1141–1149PubMedCrossRefGoogle Scholar
  34. Faham S, Bowie JU (2002) Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J Mol Biol 316:1–6PubMedCrossRefGoogle Scholar
  35. Fairman JW, Dautin N, Wojtowicz D, Liu W, Noinaj N, Barnard TJ, Udho E, Przytycka TM, Cherezov V, Buchanan SK (2012) Crystal structures of the outer membrane domain of intimin and invasin from enterohemorrhagic E. coli and enteropathogenic Y. pseudotuberculosis. Structure 20:1233–1243PubMedCentralPubMedCrossRefGoogle Scholar
  36. Fromme P, Spence JCH (2011) Femtosecond nanocrystallography using X-ray lasers for membrane protein structure determination. Curr Opin Struct Biol 21:509–516PubMedCentralPubMedCrossRefGoogle Scholar
  37. Fu Y, Weng Y, Hong W-X, Zhang Q (2010) Efficient synthesis of unsaturated 1-Monoacyl glycerols for in meso crystallization of membrane proteins. Synlett 2011:809–812PubMedCentralPubMedGoogle Scholar
  38. Hanson MA, Brooun A, Baker KA, Jaakola VP, Roth C, Chien EY, Alexandrov A, Velasquez J, Davis L, Griffith M, Moy K, Ganser-Pornillos BK, Hua Y, Kuhn P, Ellis S, Yeager M, Stevens RC (2007) Profiling of membrane protein variants in a baculovirus system by coupling cell-surface detection with small-scale parallel expression. Protein Expr Purif 56:85–92PubMedCentralPubMedCrossRefGoogle Scholar
  39. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EY, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure 16:897–905PubMedCentralPubMedCrossRefGoogle Scholar
  40. Hato M, Yamashita J, Shiono M (2009) Aqueous phase behavior of lipids with isoprenoid type hydrophobic chains. J Phys Chem B 113:10196–10209PubMedCrossRefGoogle Scholar
  41. Hyde ST, Andersson S, Ericsson B, Larsson K (1984) A cubic structure consisting of a lipid bilayer forming an infinite periodic minimum surface of the gyroid type in the glycerolmonooleat-water system. Z Kristallogr 168:213–219CrossRefGoogle Scholar
  42. Johansson LC, Arnlund D, White TA et al (2012) Lipidic phase membrane protein serial femtosecond crystallography. Nat Method 9:263–265CrossRefGoogle Scholar
  43. Joseph JS, Liu W, Kunken J, Weiss TM, Tsuruta H, Cherezov V (2011) Characterization of lipid matrices for membrane protein crystallization by high-throughput small angle X-ray scattering. Methods 55:342–349PubMedCentralPubMedCrossRefGoogle Scholar
  44. Kato HE, Zhang F, Yizhar O, Ramakrishnan C, Nishizawa T, Hirata K, Ito J, Aita Y, Tsukazaki T, Hayashi S, Hegemann P, Maturana AD, Ishitani R, Deisseroth K, Nureki O (2012) Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482:369–374PubMedCentralPubMedCrossRefGoogle Scholar
  45. Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556PubMedCentralPubMedCrossRefGoogle Scholar
  46. Kirian RA, White TA, Holton JM, Chapman HN, Fromme P, Barty A, Lomb L, Aquila A, Maia FR, Martin AV, Fromme R, Wang X, Hunter MS, Schmidt KE, Spence JC (2011) Structure-factor analysis of femtosecond microdiffraction patterns from protein nanocrystals. Acta Crystallogr A 67:131–140PubMedCentralPubMedCrossRefGoogle Scholar
  47. Kissick DJ, Gualtieri EJ, Simpson GJ, Cherezov V (2010) Nonlinear optical imaging of integral membrane protein crystals in lipidic mesophases. Analyt Chem 82:491–497CrossRefGoogle Scholar
  48. Kors CA, Wallace E, Davies DR, Li L, Laible PD, Nollert P (2009) Effects of impurities on membrane-protein crystallization in different systems. Acta Crystallogr D: Biol Crystallogr 65:1062–1073CrossRefGoogle Scholar
  49. Kulkarni CV, Wachter W, Iglesias-Salto G, Engelskirchen S, Ahualli S (2011) Monoolein: a magic lipid? Phys Chem Chem Phys 13:3004–3021PubMedCrossRefGoogle Scholar
  50. Landau EM, Rosenbusch JP (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci U S A 93:14532–14535PubMedCentralPubMedCrossRefGoogle Scholar
  51. Li D, Caffrey M (2011) Lipid cubic phase as a membrane mimetic for integral membrane protein enzymes. Proc Natl Acad Sci U S A 108:8639–8644PubMedCentralPubMedCrossRefGoogle Scholar
  52. Li D, Boland C, Aragao D, Walsh K, Caffrey M (2012) Harvesting and cryo-cooling crystals of membrane proteins grown in lipidic mesophases for structure determination by macromolecular crystallography. J Vis Exp 67:e4001. doi:10.3791/4001PubMedGoogle Scholar
  53. Li D, Lee J, Caffrey M (2011) Crystallizing membrane proteins in lipidic mesophases. A host lipid screen. Cryst Growth Des 11:530–537Google Scholar
  54. Li D, Lyons JA, Pye VE, Vogeley L, Aragao D, Kenyon CP, Shah ST, Doherty C, Aherne M, Caffrey M (2013a) Crystal structure of the integral membrane diacylglycerol kinase. Nature 497:521–524CrossRefGoogle Scholar
  55. Li D, Shah ST, Caffrey M (2013b) Host lipid and temperature as important screening variables for crystallizing integral membrane proteins in lipidic mesophases. Trials with diacylglycerol kinase. Cryst Growth Des 13:2846–2857CrossRefGoogle Scholar
  56. Li L, Fu Q, Kors CA, Stewart L, Nollert P, Laible PD, Ismagilov RF (2010) A Plug-based microfluidic system for dispensing Lipidic Cubic Phase (LCP) material validated by crystallizing membrane proteins in lipidic mesophases. Microfluid Nanofluidics 8:789–798PubMedCentralPubMedCrossRefGoogle Scholar
  57. Liao J, Li H, Zeng W, Sauer DB, Belmares R, Jiang Y (2012) Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger. Science 335:686–690PubMedCrossRefGoogle Scholar
  58. Liu W, Caffrey MC (2005) Gramicidin structure and dispositon in highly curved membranes. J Struct Biol 150:23–40PubMedCrossRefGoogle Scholar
  59. Liu W, Cherezov V (2011) Crystallization of membrane proteins in lipidic mesophases. J Vis Exp 49:e2501. doi:10.3791/2501Google Scholar
  60. Liu W, Hanson MA, Stevens RC, Cherezov V (2010) LCP-Tm: an assay to measure and understand stability of membrane proteins in a membrane environment. Biophys J 98:1539–1548PubMedCentralPubMedCrossRefGoogle Scholar
  61. Liu W, Wacker D, Gati C et al (2013) Serial femtosecond crystallography of G protein-coupled receptors in lipidic cubic phase. Science 342:1521–1524Google Scholar
  62. Luecke H, Schobert B, Richter H-T, Cartailler J-P, Lanyi JK (1999) Structure of bacteriorhodopsin at 1.55 Å resolution. J Mol Biol 291:899–911PubMedCrossRefGoogle Scholar
  63. Madden JT, Toth SJ, Dettmar CM, Newman JA, Oglesbee RA, Hedderich HG, Everly RM, Becker M, Ronau JA, Buchanan SK, Cherezov V, Morrow ME, Xu S, Ferguson D, Makarov O, Das C, Fischetti R, Simpson GJ (2013) Integrated nonlinear optical imaging microscope for on-axis crystal detection and centering at a synchrotron beamline. J Synchrotron Radiat 20:531–540PubMedCentralPubMedCrossRefGoogle Scholar
  64. McPherson A (2004) Introduction to protein crystallization. Methods 34:254–265PubMedCrossRefGoogle Scholar
  65. Michel H (1991) General and practical aspects of membrane protein crystallization. Crystallization of membrane proteins. CRC Press Inc., Boca Raton, pp 73–88Google Scholar
  66. Misquitta Y, Caffrey M (2003) Detergents destabilize the cubic phase of monoolein: implications for membrane protein crystallization. Biophys J 85:3084–3096PubMedCentralPubMedCrossRefGoogle Scholar
  67. Misquitta Y, Cherezov V, Havas F, Patterson S, Mohan JM, Wells AJ, Hart DJ, Caffrey M (2004a) Rational design of lipid for membrane protein crystallization. J Struct Biol 148:169–175CrossRefGoogle Scholar
  68. Misquitta LV, Misquitta Y, Cherezov V, Slattery O, Mohan JM, Hart D, Zhalnina M, Cramer WA, Caffrey M (2004b) Membrane protein crystallization in lipidic mesophases with tailored bilayers. Structure 12:2113–2124CrossRefGoogle Scholar
  69. Murgia S, Caboi F, Monduzzi M, Ljusberg-Wahren H, Nylander T (2002) Acyl migration and hydrolysis in monoolein-based systems. Progr Colloid Polym Sci 120:41–46CrossRefGoogle Scholar
  70. Navarro J, Landau EM, Fahmy K (2002) Receptor-dependent G-protein activation in lipidic cubic phase. Biopolymers 67:167–177PubMedCrossRefGoogle Scholar
  71. Nazaruk E, Bilewicz R, Lindblom G, Lindholm-Sethson B (2008) Cubic phases in biosensing systems. Analyt Bioanalyt Chem 391:1569–1578CrossRefGoogle Scholar
  72. Neutze R, Wouts R, Van der Spoel D, Weckert E, Hajdu J (2000) Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406:752–757PubMedCrossRefGoogle Scholar
  73. Nollert P, Landau EM (1998) Enzymic release of crystals from lipidic cubic phases. Biochem Soc Trans 26:709–713PubMedGoogle Scholar
  74. Nollert P, Qiu H, Caffrey M, Rosenbusch JP, Landau EM (2001) Molecular mechanism for the crystallization of bacteriorhodopsin in lipidic cubic phases. FEBS Lett 504:179–186PubMedCrossRefGoogle Scholar
  75. Owen RL, Rudiño-Piñera E, Garman EF (2006) Experimental determination of the radiation dose limit for cryocooled protein crystals. Proc Natl Acad Sci U S A 103:4912–4917PubMedCentralPubMedCrossRefGoogle Scholar
  76. Pebay-Peyroula E, Rummel G, Rosenbusch JP, Landau EM (1997) X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 277:1676–1681PubMedCrossRefGoogle Scholar
  77. Pedersen BP, Morth JP, Nissen P (2009) Structure determination using poorly diffracting membrane-protein crystals: the H+-ATPase and Na+, K+-ATPase case history. Acta Crystallogr D Biol Crystallogr 66:309–313CrossRefGoogle Scholar
  78. Perry SLS, Roberts GWG, Tice JDJ, Gennis RB, Kenis PJ (2009) Microfluidic generation of lipidic mesophases for membrane protein crystallization. Cryst Growth Des 9:2566–2569PubMedCentralPubMedCrossRefGoogle Scholar
  79. Pieper U, Schlessinger A, Kloppmann E, Chang GA, Chou JJ, Dumont ME, Fox BG, Fromme P, Hendrickson WA, Malkowski MG, Rees DC, Stokes DL, Stowell MH, Wiener MC, Rost B, Stroud RM, Stevens RC, Sali A (2013) Coordinating the impact of structural genomics on the human α-helical transmembrane proteome. Nat Struct Mol Biol 20:135–138PubMedCentralPubMedCrossRefGoogle Scholar
  80. Qiu H, Caffrey M (2000) The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials 21:223–234PubMedCrossRefGoogle Scholar
  81. Rask-Andersen M, Almen MS, Schioth HB (2011) Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10:579–590PubMedCrossRefGoogle Scholar
  82. Rasmussen SGF, Choi H-J, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387PubMedCrossRefGoogle Scholar
  83. Rasmussen SGF, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011) Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477:549–555PubMedCentralPubMedCrossRefGoogle Scholar
  84. Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318:1266–1273PubMedCrossRefGoogle Scholar
  85. Rummel G, Hardmeyer A, Widmer C, Chiu ML, Nollert P, Locher KP, Pedruzzi II, Landau EM, Rosenbusch JP (1998) Lipidic cubic phases: new matrices for the three-dimensional crystallization of membrane proteins. J Struct Biol 121:82–91PubMedCrossRefGoogle Scholar
  86. Sennoga C, Heron A, Seddon JM, Templer RH, Hankamer B (2003) Membrane-protein crystallization in cubo: temperature-dependent phase behaviour of monoolein-detergent mixtures. Acta Crystallogr D Biol Crystallogr 59:239–246PubMedCrossRefGoogle Scholar
  87. Shah JC, Sadhale Y, Chilukuri DM (2001) Cubic phase gels as drug delivery systems. Adv Drug Deliver Rev 47:229–250CrossRefGoogle Scholar
  88. Siu FY, He M, de Graaf C, Han GW, Yang D, Zhang Z, Zhou C, Xu Q, Wacker D, Joseph JS, Liu W, Lau J, Cherezov V, Katritch V, Wang MW, Stevens RC (2013) Structure of the human glucagon class B G-protein-coupled receptor. Nature 499:444–449PubMedCrossRefGoogle Scholar
  89. Smith JL, Fischetti RF, Yamamoto M (2012) Micro-crystallography comes of age. Curr Opin Struct Biol 22:602–612PubMedCentralPubMedCrossRefGoogle Scholar
  90. Stevens RC, Cherezov V, Katritch V, Abagyan R, Kuhn P, Rosen H, Wuthrich K (2013) The GPCR network: a large-scale collaboration to determine human GPCR structure and function. Nat Rev Drug Discov 12:25–34PubMedCentralPubMedCrossRefGoogle Scholar
  91. Takeda K, Sato H, Hino T, Kono M, Fukuda K, Sakurai I, Okada T, Kouyama T (1998) A novel three-dimensional crystal of bacteriorhodopsin obtained by successive fusion of the vesicular assemblies. J Mol Biol 283:463–474PubMedCrossRefGoogle Scholar
  92. Toepke MW, Beebe DJ (2006) PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6:1484–1486PubMedCrossRefGoogle Scholar
  93. Wacker D, Fenalti G, Brown MA, Katritch V, Abagyan R, Cherezov V, Stevens RC (2010) Conserved binding mode of human beta2-adrenergic receptor inverse agonists and antagonists revealed by X-ray crystallography. J Am Chem Soc 132:11443–11445PubMedCentralPubMedCrossRefGoogle Scholar
  94. Wadsten P, Wöhri AB, Snijder A, Katona G, Gardiner AT, Cogdell RJ, Neutze R, Engström S (2006) Lipidic sponge phase crystallization of membrane proteins. J Mol Biol 364:44–53PubMedCrossRefGoogle Scholar
  95. Wampler RD, Kissick DJ, Dehen CJ, Gualtieri EJ, Grey JL, Wang HF, Thompson DH, Cheng JX, Simpson GJ (2008) Selective detection of protein crystals by second harmonic microscopy. J Am Chem Soc 130:14076–14077PubMedCrossRefGoogle Scholar
  96. Wang H, Nieh M, Hobbie E, Glinka CJ, Katsaras J (2003) Kinetic pathway of the bilayered-micelle to perforated-lamellae transition. Phys Rev E 67:060902CrossRefGoogle Scholar
  97. Wang C, Wu H, Katritch V, Han GW, Huang X-P, Liu W, Siu FY, Roth BL, Cherezov V, Stevens RC (2013) Structure of the human smoothened receptor bound to an antitumour agent. Nature 497:338–343PubMedCentralPubMedCrossRefGoogle Scholar
  98. Whiles JA, Deems R, Vold RR, Dennis EA (2002) Bicelles in structure-function studies of membrane-associated proteins. Bioorg Chem 30:431–442PubMedCrossRefGoogle Scholar
  99. Wiener MC (2004) A pedestrian guide to membrane protein crystallization. Methods 34:364–372PubMedCrossRefGoogle Scholar
  100. Weierstall U, James D, Wang D et al (2014) Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat Commun 5:3309Google Scholar
  101. Xu F, Liu W, Hanson MA, Stevens RC, Cherezov V (2011) Development of an automated high throughput LCP-FRAP assay to guide membrane protein crystallization in lipid mesophases. Cryst Growth Des 11:1193–1201PubMedCentralPubMedCrossRefGoogle Scholar
  102. Yamashita J, Shiono M, Hato M (2008) New lipid family that forms inverted cubic phases in equilibrium with excess water: molecular structure-aqueous phase structure relationship for lipids with 5, 9, 13, 17-tetramethyloctadecyl and 5, 9, 13, 17-tetramethyloctadecanoyl chains. J Phys Chem B 112:12286–12296PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Andrii Ishchenko
    • 1
  • Enrique Abola
    • 1
  • Vadim Cherezov
    • 1
  1. 1.Department of Integrated Structural and Computational BiologyThe Scripps Research InstituteLa JollaUSA

Personalised recommendations