Advertisement

A Survey of Stanley–Reisner Theory

  • Christopher A. Francisco
  • Jeffrey Mermin
  • Jay Schweig
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 76)

Abstract

We survey the Stanley–Reisner correspondence in combinatorial commutative algebra, describing fundamental applications involving Alexander duality, associated primes, f- and h-vectors, and Betti numbers of monomial ideals.

Keywords

Simplicial Complex Betti Number Hilbert Series Hilbert Function Monomial Ideal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank the referee for his or her careful reading and helpful comments. This work was partially supported by grants from the Simons Foundation (#199124 to Francisco and #202115 to Mermin).

References

  1. 1.
    Bayer, D., Charalambous, H., Popescu, S.: Extremal Betti numbers and applications to monomial ideals. J. Algebra 221(2), 497–512 (1999)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Björner, A., Wachs, M.: Shellable nonpure complexes and posets. I. Trans. Am. Math. Soc. 348(4), 1299–1327 (1996)CrossRefMATHGoogle Scholar
  3. 3.
    Björner, A., Wachs, M.: Shellable nonpure complexes and posets. II. Trans. Am. Math. Soc. 349(10), 3945–3975 (1997)CrossRefMATHGoogle Scholar
  4. 4.
    Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (1993)Google Scholar
  5. 5.
    Eagon, J., Reiner, V.: Resolutions of Stanley-Reisner rings and Alexander duality. J. Pure Appl. Algebra 130(3), 265–275 (1998)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Springer, New York (1995)MATHGoogle Scholar
  7. 7.
    Herzog, J., Hibi, T.: Componentwise linear ideals. Nagoya Math. J. 153, 141–153 (1999)MATHMathSciNetGoogle Scholar
  8. 8.
    Herzog, J., Sbarra, E.: Sequentially Cohen-Macaulay modules and local cohomology. In: Algebra, Arithmetic and Geometry, Part I, II (Mumbai, 2000). Tata Institute of Fundamental Research Studies in Mathematics, vol. 16, pp. 327–340. Tata Institute of Fundamental Research, Mumbai (2002)Google Scholar
  9. 9.
    Herzog, J., Takayama, Y.: Resolutions by mapping cones. The Roos Festschrift volume, 2. Homology Homotopy Appl. 4(2, Pt 2), 277–294 (2002)Google Scholar
  10. 10.
    Hochster, M.: Cohen-Macaulay rings, combinatorics, and simplicial complexes. In: Ring Theory, II (Proceedings of Second Conference, University of Oklahoma, Norman, OK, 1975). Lecture Notes in Pure and Applied Mathematics, vol. 26, pp. 171–223. Dekker, New York (1977)Google Scholar
  11. 11.
    Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra. Graduate Texts in Mathematics, vol. 227. Springer, New York (2004)Google Scholar
  12. 12.
    Morey, S., Villarreal, R.H.: Edge ideals: algebraic and combinatorial properties. In: Progress in Commutative Algebra: Ring Theory, Homology, and Decomposition, pp. 85–126. de Gruyter, Berlin (2012)Google Scholar
  13. 13.
    Peeva, I.: Graded Syzygies. Algebra and Applications, vol. 14. Springer, London (2011)Google Scholar
  14. 14.
    Schenck, H.: Computational Algebraic Geometry. London Mathematical Society Student Texts, vol. 58. Cambridge University Press, Cambridge (2003)Google Scholar
  15. 15.
    Stanley, R.P.: Combinatorics and Commutative Algebra. Progress in Mathematics, 2nd edn., vol. 41. Birkhäuser Boston, Boston (1996)Google Scholar
  16. 16.
    Terai, N.: Alexander duality theorem and Stanley-Reisner rings. Free resolutions of coordinate rings of projective varieties and related topics (Kyoto, 1998). Surikaisekikenkyusho Kokyuroku 1078, 174–184 (1999)MATHMathSciNetGoogle Scholar
  17. 17.
    Villarreal, R.H.: Monomial Algebras. Monographs and Textbooks in Pure and Applied Mathematics, vol. 238. Dekker, New York (2001)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Christopher A. Francisco
    • 1
  • Jeffrey Mermin
    • 1
  • Jay Schweig
    • 1
  1. 1.Department of MathematicsOklahoma State UniversityStillwaterUSA

Personalised recommendations