Advertisement

Heterogeneity in Tissue Oxygenation: From Physiological Variability in Normal Tissues to Pathophysiological Chaos in Malignant Tumours

  • David K. Harrison
  • Peter Vaupel
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 812)

Abstract

Heterogeneity is a feature of both normal oxygen supply to tissue and of a supply that is disturbed due to a wide range of different pathologies. Here, the physiological importance of heterogeneity of tissue oxygenation is revisited. The anatomical and functional basis for heterogeneity of blood flow, local and regional regulatory mechanisms in normal tissues and the pathophysiology of the failure of regulation will be examined.

Under physiological conditions, regulation of blood flow distributions at global, regional and microregional levels play coordinated roles in ensuring adequate O2 supply to all tissue cells. How this is achieved may be organ-/organ layer-specific, depending on its function and priorities to match local O2 delivery to consumption. Examples where these regulatory mechanisms break down under conditions of ischaemia and shock will also be given.

In contrast, pathologic heterogeneity in tissue oxygenation resulting from uncontrolled, chaotic growth as seen in malignant tumours represents a pathophysiological status that is not predictable which, in general, is associated with chronic and acute hypoxia. This can have fatal consequences due to hypoxia- induced (mal-)adaptive processes, malignant tumour progression and treatment resistance.

Keywords

Heterogeneity Oxygenation Normal Tissue Tumour Microflow Microvasculature 

References

  1. 1.
    Williams LR, Leggett RW (1989) Reference values for resting blood flow to organs of man. Clin Phys Physiol Meas 10:187–217CrossRefPubMedGoogle Scholar
  2. 2.
    Thews G, Vaupel P (2005) Vegetative Physiologie. Springer, HeidelbergGoogle Scholar
  3. 3.
    Harrison DK, Birkenhake S, Knauf S, Hagen N, Beier I, Kessler M (1988) The role of high flow capillary channels in the local oxygen supply to skeletal muscle. Adv Exp Med Biol 222:623–630CrossRefPubMedGoogle Scholar
  4. 4.
    Görnandt L, Kessler M (1973) Tissue pO2 in regenerating liver tissue. In: Kessler M, Bruley DF, Clark LC et al (eds) Oxygen supply. Urban & Schwarzenberg, Munich, pp 288–289Google Scholar
  5. 5.
    Rink R, Kessler M (1973) Signs of hypoxia in the small intestine of the rat during haemorrhagic shock. Adv Exp Med Biol 37A:469–475CrossRefPubMedGoogle Scholar
  6. 6.
    Lund N (1979) Studies on skeletal muscle surface oxygen pressure fields. Dissertation no. 71, Linköping University, LinköpingGoogle Scholar
  7. 7.
    Lübbers DW, Wodick R (1971) Sauerstofftransport im Warmblüterorganismus. Umschau Wiss Techn 13:486–492Google Scholar
  8. 8.
    Klövekorn WP (1986) Das Verhalten der regionalen myokardialen Sauerstoffversorgung unter normalen und pathologishen Bedingungen: Tierexperimentelle Untersuchumgen am schlagenden Herzen. Habilitationsschrift, Ludwig-Maximillians University, MunichGoogle Scholar
  9. 9.
    Sinagowitz E (1977) Die lokale Sauerstoffversorgung der Nierenrinde bei Hydronephrose und Nierenischämie; ihre klinische Bedeutung in der Urologie. Habilitationsschrift, University of Freiburg, Freiburg im BreisgauGoogle Scholar
  10. 10.
    Krogh A (1919) The number and distribution of capillaries in muscles with calculations of oxygen pressure head necessary for supplying the tissues. J Physiol (Lond) 52:409–415CrossRefGoogle Scholar
  11. 11.
    Hoofd L, Degens H (2013) Statistical treatment of oxygenation-related data in muscle tissue. Adv Exp Med Biol 789:137–142CrossRefPubMedGoogle Scholar
  12. 12.
    Harrison DK, Kessler M, Knauf SK (1990) Regulation of capillary blood flow and oxygen supply in skeletal muscle in dogs during hypoxaemia. J Physiol (Lond) 420:431–446CrossRefGoogle Scholar
  13. 13.
    Harrison DK, Kessler M, Birkenhake S, Knauf SK (1990) Local oxygen supply and blood flow regulation in contracting muscle in dogs and rabbits. J Physiol (Lond) 422:227–243CrossRefGoogle Scholar
  14. 14.
    Beier I (1987) Die Verteilung des Sauerstoffpartialdruckes an der Oberfläche des Musculus gracilis der Ratte. Dissertation, Friederich-Alexander University, ErlangenGoogle Scholar
  15. 15.
    Harrison DK, McCollum PT, Newton DJ, Hickman P, Jain AS (1995) Amputation level assessment using lightguide spectrophotometry. Prosthet Orthot Int 19:139–147PubMedGoogle Scholar
  16. 16.
    Vaupel P, Thews O, Kelleher DK, Höckel M (1998) Current status of knowledge and critical issues in tumor oxygenation. Adv Exp Med Biol 454:591–602CrossRefPubMedGoogle Scholar
  17. 17.
    Höckel M, Schlenger K, Knoop C, Vaupel P (1991) Oxygenation of carcinomas of the uterine cervix: evaluation by computerized O2 tension measurements. Cancer Res 51:6098–6102PubMedGoogle Scholar
  18. 18.
    Vaupel P, Schlenger K, Knoop C, Höckel M (1991) Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res 51:3316–3322PubMedGoogle Scholar
  19. 19.
    Wendling P, Manz R, Thews G, Vaupel P (1984) Heterogeneous oxygenation of rectal carcinomas in humans: a critical parameter for preoperative irradiation? Adv Exp Med Biol 180:293–300CrossRefPubMedGoogle Scholar
  20. 20.
    Vaupel P, Höckel M (2001) Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance. Int J Oncol 17:869–879Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  1. 1.Microvascular MeasurementsSt LorenzenItaly
  2. 2.Department of Radiooncology & Radiotherapy, Klinikum rechts der IsarTechnical UniversityMunichGermany

Personalised recommendations