Skip to main content

An Overview of Cancer Metabolism

  • Chapter
  • First Online:
Book cover Correlation-based network analysis of cancer metabolism

Part of the book series: SpringerBriefs in Systems Biology ((BRIEFSBIOSYS))

  • 828 Accesses

Abstract

The metabolome is considered the closest entity to the phenotype of a biological system. It displays the changes made at higher hierarchical levels such as the proteome, transcriptome and genome. For many diseases including cancer, studying the metabolome enables us to gain a better understanding of global biological response of cancer cells in the progression of the disease. Revealing the complexity of the metabolome is particularly advantageous to understand the phenotypic function of a cancer cell that is governed by the preceding levels (proteins, transcription factors and genes).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bardella C, Pollard PJ, Tomlinson I (2011) SDH mutations in cancer. Biochim Biophys Acta 1807(11):1432–1443. doi:10.1016/j.bbabio.2011.07.003

    Article  CAS  PubMed  Google Scholar 

  • Bardos JI, Athcroft M (2004) Hypoxia-inducible factor-1 and oncogenic signalling. Bioessays 26(3):262–269. doi:10.1002/bies.20002

    Article  CAS  PubMed  Google Scholar 

  • Bensaad K, Tsuruta A, Selak MA, Vidal MNC, Nakano K, Bartrons R, Gottlieb E, Vousden KH (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126(1):107–120. doi:10.1016/j.cell.2006.05.036

    Article  CAS  PubMed  Google Scholar 

  • Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, Witkiewicz AK, Vander Heiden MG, Migneco G, Chiavarina B, Frank PG, Capozza F, Flomenberg N, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2010) The reverse Warburg effect glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle 9(10):1960–1971

    Article  CAS  PubMed  Google Scholar 

  • Burrows N, Resch J, Cowen RL, von Wasielewski R, Hoang-Vu C, West CM, Williams KJ, Brabant G (2010) Expression of hypoxia-inducible factor 1 alpha in thyroid carcinomas. Endocr Relat Cancer 17(1):61–72. doi:10.1677/erc-08-0251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chan SHP, Barbour RL (1983) Adenine-nucleotide transport in hepatoma mitochondria—charaterization of factors influencing the kinetics of ADP and ATP uptake. Biochimica Biophysica Acta 723 (1):104–113. doi:10.1016/0005-2728(83)90014-2

    Article  CAS  Google Scholar 

  • Chen JQ, Russo J (2012) Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. Biochim Biophy Acta 1826(2):370–384. doi:10.1016/j.bbcan.2012.06.004

    CAS  Google Scholar 

  • Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008a) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452(7184):230–274. doi:10.1038/nature06734

    Article  CAS  Google Scholar 

  • Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC (2008b) Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452(7184):181–127. doi:10.1038/nature06667

    Article  CAS  Google Scholar 

  • Csibi A, Fendt SM, Li CG, Poulogiannis G, Choo AY, Chapski DJ, Jeong SM, Dempsey JM, Parkhitko A, Morrison T, Henske EP, Haigis MC, Cantley LC, Stephanopoulos G, Yu J, Blenis J (2013) The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153(4):840–854. doi:10.1016/j.cell.2013.04.023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cuezva JM, Sanchez-Arago M, Sala S, Blanco-Rivero A, Ortega AD (2007) A message emerging from development: the repression of mitochondrial beta-F1-ATPase expression in cancer. J Bioenerg Biomembr 39(3):259–265. doi:10.1007/s10863-007-9087-9

    Article  CAS  PubMed  Google Scholar 

  • Dang CV, Kim J-w, Gao P, Yustein J (2008) Hypoxia and metabolism—opinion—the interplay between MYC and HIF in cancer. Nat Rev Cancer 8(1):51–56. doi:10.1038/nrc2274

    Article  CAS  PubMed  Google Scholar 

  • DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 104(49):19345–19350. doi:10.1073/pnas.0709747104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7(1):11–20. doi:10.1016/j.cmet.2007.10.002

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Ruiz R, Rigoulet M, Devin A (2011) The Warburg and Crabtree effects: on the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim Biophys Acta 1807(6):568–576. doi:10.1016/j.bbabio.2010.08.010

    Article  CAS  PubMed  Google Scholar 

  • Gallagher CN, Carpenter KL, Grice P, Howe DJ, Mason A, Timofeev I, Menon DK, Kirkpatrick PJ, Pickard JD, Sutherland GR, Hutchinson PJ (2009) The human brain utilizes lactate via the tricarboxylic acid cycle: a C-13-labelled microdialysis and high-resolution nuclear magnetic resonance study. Brain 132:2839–2849. doi:10.1093/brain/awp202

    Article  PubMed  Google Scholar 

  • Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G (2013) Metabolic targets for cancer therapy. Nat Rev Drug Discov 12(11):829–846. doi:10.1038/nrd4145

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Cao I, Song MS, Hobbs RM, Laurent G, Giorgi C, de Boer VCJ, Anastasiou D, Ito K, Sasaki AT, Rameh L, Carracedo A, Vander Heiden MG, Cantley LC, Pinton P, Haigis MC, Pandolfi PP (2012) Systemic elevation of PTEN induces a tumor-suppressive metabolic state. Cell 149(1):49–62. doi:10.1016/j.cell.2012.02.030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee CH, Inoki K, Karbowniczek M, Petroulakis E, Sonenberg N, Henske EP, Guan KL (2007) Constitutive mTOR activation in TSC mutants sensitizes cells to energy starvation and genomic damage via p53. Embo J 26(23):4812–4823. doi:10.1038/sj.emboj.7601900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuno T, Goto I (1992) Glutaminase and glutamine-synthetase activities in human cirrhotic liver and hepatocellular-carcinoma. Cancer Res 52(5):1192–1194

    CAS  PubMed  Google Scholar 

  • Matsuno T, Hirai H (1989) Glutamine-synthetase and glutaminase activities in various hepatoma-cells. Biochem Int 19(2):219–225

    CAS  PubMed  Google Scholar 

  • Mazurek S, Boschek CB, Hugo F, Eigenbrodt E (2005) Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol 15(4):300–308. doi:10.1016/j.semcancer.2005.04.009

    Article  CAS  PubMed  Google Scholar 

  • Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, Casimiro MC, Wang CG, Pestell RG, Martinez-Outschoorn UE, Howell A, Sotgia F, Lisanti MP (2010) Transcriptional evidence for the “Reverse Warburg Effect” in human breast cancer tumor stroma and metastasis: similarities with oxidative stress, inflammation, Alzheimer’s disease, and “Neuron-Glia Metabolic Coupling”. Aging 2(4):185–199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pierotti MA, Berrino F, Gariboldi M, Melani C, Mogavero A, Negri T, Pasanisi P, Pilotti S (2013) Targeting metabolism for cancer treatment and prevention: metformin, an old drug with multi-faceted effects. Oncogene 32(12):1475–1487. doi:10.1038/onc.2012.181

    Article  CAS  PubMed  Google Scholar 

  • Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, Cantley LC (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 101(10):3329–3335. doi:10.1073/pnas.0308061100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, DallaFavera R, Dang CV (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A 94(13):6658–6663. doi:10.1073/pnas.94.13.6658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelley MJ, Gallez B, Wahl ML, Feron O, Dewhirst MW (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118(12):3930–3942. doi:10.1172/jci36843

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tong WH, Sourbier C, Kovtunovych G, Jeong SY, Vira M, Ghosh M, Romero VV, Sougrat R, Vaulont S, Viollet B, Kim YS, Lee S, Trepe J, Srinivasan R, Bratslavsky G, Yang YF, Linehan WM, Rouault TA (2011) The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels. Cancer Cell 20(3):315–327. doi:10.1016/j.ccr.2011.07.018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vousden KH, Ryan KM (2009) p53 and metabolism. Nat Rev Cancer 9(10):691–700. doi:10.1038/nrc2715

    Article  CAS  PubMed  Google Scholar 

  • Warburg O (1956) Origin of cancer cells. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  • Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8(6):519–530. doi:10.1085/jgp.8.6.519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou GC, Myers R, Li Y, Chen YL, Shen XL, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108(8):1167–1174. doi:10.1172/jci13505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily G. Armitage .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Authors

About this chapter

Cite this chapter

Armitage, E., Kotze, H., Williams, K. (2014). An Overview of Cancer Metabolism. In: Correlation-based network analysis of cancer metabolism. SpringerBriefs in Systems Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0615-4_1

Download citation

Publish with us

Policies and ethics