Skip to main content

Ancillary Testing in Screening for Hydroxychloroquine and Chloroquine Retinopathy

  • Chapter
  • First Online:
Hydroxychloroquine and Chloroquine Retinopathy
  • 1344 Accesses

Abstract

The most important purpose of 4-aminoquinoline retinopathy (4AQR) screening, detecting overdosing, requires no ancillary testing. However, a subsidiary purpose, detecting the rare occurrence of 4AQR among properly dosed patients, requires ancillary testing, because clinical examination is insensitive. In Bayesian reasoning, the sensitivity and specificity of an ancillary test interact with the estimated prior probability of disease to determine the estimated posterior probability of the disease. For a condition of low prior probability a single test is rarely dispositive for management. Instead, the common role for each test is to adjust the clinician’s estimate of the probability of 4AQR before applying another test, until a level of certainty is achieved indicating that the 4-aminoquinoline (4AQ) will be stopped or continued. Testing with 10-2 visual fields, multifocal electroretinography, spectral domain optical coherence tomography (SD-OCT), and fundus autofluorescence is useful for this purpose when applied selectively rather than universally. SD-OCT is especially helpful because it has the lowest test variability, the highest specificity, and similar sensitivity to the other tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4AQs:

4-Aminoquinolines (chloroquine and hydroxychloroquine)

4AQR:

4-Aminoquinoline retinopathy

asb:

Apostilb

C:

Chloroquine

COR:

Coefficient of repeatability

COV:

Coefficient of variation

dB:

Decibel

DTL:

Dawson–Trick–Litzkow electrodes

ERG:

Electroretinogram

FA:

Fluorescein angiography

FDP:

Frequency doubling perimetry

HC:

Hydroxychloroquine

ICC:

Intraclass correlation coefficient

ISCEV:

International Society for Clinical Electrophysiology and Vision

MD:

Mean defect

mfERG:

Multifocal electroretinography

nm:

Nanometer

RNFL:

Retinal nerve fiber layer

SAP:

Standard automated perimetry

S :

Standard deviation of a sample of a normally distributed variable

SD-OCT:

Spectral domain optical coherence tomography

SITA:

Swedish Interactive Treatment Algorithm

TD-OCT:

Time domain optical coherence tomography

X :

Mean of a sample of a normally distributed variable

References

  1. Albert DA, Debois LKL, Lu KF. Antimalarial ocular toxicity, a critical appraisal. J Clin Rheumatol. 1998;4:57–62.

    CAS  PubMed  Google Scholar 

  2. Okun E, Gouras P, Bernstein H, von Sallmann L. Chloroquine retinopathy—a report of eight cases with ERG and Dark-Adaptation findings. Arch Ophthalmol. 1963;63:93–105.

    Google Scholar 

  3. Marks JS. Chloroquine retinopathy: is there a safe daily dose? Ann Rheum Dis. 1982;41:52–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Bienfang D, Coblyn JS, Liang MH, Corzillius M. Hydroxychloroquine retinopathy despite regular ophthalmologic evaluation: a consecutive series. J Rheumatol. 2000;27:2703–6.

    CAS  PubMed  Google Scholar 

  5. Percival SPB, Behrman J. Ophthalmological safety of chloroquine. Br J Ophthalmol. 1969;53:101–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Easterbrook M. The ocular safety of hydroxychloroquine. Semin Arthritis Rheum. 1993;23:62–7.

    CAS  PubMed  Google Scholar 

  7. Henkind P, Carr RE, Siegel IM. Early chloroquine retinopathy: clinical and functional findings. Arch Ophthalmol. 1964;71:157–65.

    CAS  PubMed  Google Scholar 

  8. Kolb H. Electro-oculogram findings in patients treated with antimalarial drugs. Br J Ophthalmol. 1965;49:573–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Graniewski-Wijnands HS, Van Lith GHM, Vijfvinkel-Bruinenga S. Ophthalmological examination of patients taking chloroquine. Doc Ophthalmol. 1979;48:231–4.

    Google Scholar 

  10. Spalton DJ, Roe GMV, Hughes GRV. Hydroxychloroquine, dosage parameters and retinopathy. Lupus. 1993;2:355–8.

    CAS  PubMed  Google Scholar 

  11. Dubois EL. Antimalarials in the management of discoid and systemic lupus erythematosus. Semin Arthritis Rheum. 1978;8:33–51.

    CAS  PubMed  Google Scholar 

  12. Lee AG. Hydroxychloroquine screening. Who needs it, when, how, and why? Br J Ophthalmol. 2005;89:521–2.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Bishara SA, Matamoros N. Evaluation of several tests in screening for chloroquine maculopathy. Eye. 1989;3:777–82.

    PubMed  Google Scholar 

  14. Maksymowych W, Russell AS. Antimalarials in rheumatology: efficacy and safety. Semin Arthritis Rheum. 1987;16:206–21.

    CAS  PubMed  Google Scholar 

  15. Gouras P, Gunkel RD. The EOG in chloroquine and other retinopathies. Arch Ophthalmol. 1963;70:629–39.

    CAS  PubMed  Google Scholar 

  16. Farrell DF. Retinal toxicity to antimalarial drugs: chloroquine and hydroxychloroquine: a neurophysiologic study. Clin Ophthalmol. 2012;6:377–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Almony A, Garg S, Peters RK, Mamet R, Tsong J, Shibuya B, Kitridou R, Sadun AA. Threshold amsler grid as a screening tool for asymptomatic patients on hydroxychloroquine therapy. Br J Ophthalmol. 2005;89:569–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Easterbrook M. The use of Amsler grids in early chloroquine retinopathy. Ophthalmology. 1984;91:1368–72.

    CAS  PubMed  Google Scholar 

  19. Flach AJ. Amsler grids for chloroquine toxicity. Ophthalmology. 2011;118:2099.

    PubMed  Google Scholar 

  20. Heravian J, Saghafi M, Shoeibi N, Hassanzadeh S, Shakeri MT, Sharepoor M. A comparative study of the usefulness of color vision, photostress recovery time, and visual evoked potential tests in the early detection of ocular toxicity from hydroxychloroquine. Int Ophthalmol. 2011;31:283–9.

    PubMed  Google Scholar 

  21. Grierson DJ. Hydroxychloroquine and visual screening in a rheumatology outpatient clinic. Ann Rheum Dis. 1997;56:188–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Cruess AF, Schachat AP, Nicholl J, Augsburger JJ. Chloroquine retinopathy—is fluorescein angiography necessary? Ophthalmology. 1985;92:1127–9.

    CAS  PubMed  Google Scholar 

  23. Missner S, Kellner U. Comparison of different screening methods for chloroquine/hydroxychloroquine retinopathy: multifocal electroretinography, color vision, perimetry, ophthalmoscopy, and fluorescein angiography. Graefe’s Arch Clin Exp Ophthalmol. 2012;250:319–25.

    CAS  Google Scholar 

  24. Banks CN. Melanin: blackguard or red herring? Another look at chloroquine retinopathy. Aust N Z J Ophthalmol. 1987;15:365–70.

    CAS  PubMed  Google Scholar 

  25. Marmor MF, Carr RE, Easterbrook M, et al. Recommendations on screening for chloroquine and hydroxychloroquine retinopathy. Ophthalmology. 2002;109:1377–82.

    PubMed  Google Scholar 

  26. Marmor MF, Kellner U, Lai TYY, Lyons JS, Mieler WF. Revised recommendations on screening for chloroquine and hydroxychloroquine retinopathy. Ophthalmology. 2011;118:415–22.

    PubMed  Google Scholar 

  27. Browning DJ. Impact of the revised American Academy of Ophthalmology guidelines regarding hydroxychloroquine screening on actual practice. Am J Ophthalmol. 2013;155:418–28.

    PubMed  Google Scholar 

  28. Browning DJ. Diabetic retinopathy: evidence based management. New York: Springer; 2010. p. 1–454.

    Google Scholar 

  29. Bartel PR, Roux P, Robinson E, Anderson IF, Brighton SW, Van der Hoven HJ, Becker PJ. Visual function and long-term chloroquine treatment. S Afr Med J. 1994;84:32–4.

    CAS  PubMed  Google Scholar 

  30. Lyons JS, Severns ML. Using multifocal ERG ring ratios to detect and follow Plaquenil retinal toxicity: a review. Doc Ophthalmol. 2009;118:29–36.

    PubMed  Google Scholar 

  31. Garway-Heath DF, Friedman DS. How should results from clinical tests be integrated into the diagnostic process? Ophthalmology. 2006;113:1479–80.

    PubMed  Google Scholar 

  32. Kellner S, Weinitz S, Kellner U. Spectral domain optical coherence tomography detects early stages of chloroquine retinopathy similar to multifocal electroretinography, fundus autofluorescence and near-infrared autofluorescence. Br J Ophthalmol. 2009;93:1444–7.

    CAS  PubMed  Google Scholar 

  33. Jekel JF, Elmore JG, Katz DL. Epidemiology, biostatistics, and preventive medicine. Philadelphia: WB Saunders; 1996. p. 216–7.

    Google Scholar 

  34. Neubauer AS, Samari-Kermani K, Schaller U, Welge-Luben U, Rudolph G, Berninger T. Detecting chloroquine retinopathy: electro-oculogram versus color vision. Br J Ophthalmol. 2003;87:902–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Lai TYY, Chan WM, Li H, Lai RYK, Lam DSC. Multifocal electroretinographic changes in patients receiving hydroxychloroquine therapy. Am J Ophthalmol. 2005;140:794–807.

    PubMed  Google Scholar 

  36. Marmor MF. The dilemma of hydroxychloroquine screening: new information from the multifocal ERG. Am J Ophthalmol. 2005;140:894–5.

    PubMed  Google Scholar 

  37. Easterbrook M. Hydroxychloroquine retinopathy. Ophthalmology. 2001;108:2158–9.

    CAS  PubMed  Google Scholar 

  38. Bonanomi MT, Dantas NC, Medeiros FA. Retinal nerve fiber layer thickness measurements in patients using chloroquine. Clin Experiment Ophthalmol. 2006;34:130–6.

    PubMed  Google Scholar 

  39. Tanga L, Centofanti M, Oddone F, Parravano M, Parisi V, Ziccardi L, Kroegler B, Perricone R, Manni G. Retinal functional changes measured by frequency-doubling technology in patients treated with hydroxychloroquine. Graefe’s Arch Clin Exp Ophthalmol. 2011;249:715–21.

    CAS  Google Scholar 

  40. Xiaoyun MA, Dongyi HE, Linping HE. Assessing chloroquine toxicity in RA patients using retinal nerve fiber layer thickness, multifocal electroretinography and visual field test. Br J Ophthalmol. 2010;94:1632–6.

    CAS  PubMed  Google Scholar 

  41. Hayreh SS, Klugman MR, Beri M, Kimura AE, Podhajsky P. Differentiation of ischemic from non-ischemic central retinal vein occlusion during the early phase. Graefe’s Arch Clin Exp Ophthalmol. 1990;228:201–17.

    CAS  Google Scholar 

  42. Browning DJ, Lee C. The relative sensitivity and specificity of 10-2 visual fields, multifocal electroretinography, and spectral domain OCT in detecting hydroxychloroquine retinopathy. Scientific poster 484. Presented at: American Academy of Ophthalmology 2013 Annual Meeting, 14–19 Nov 2013, New Orleans.

    Google Scholar 

  43. Mavrikakis I, Sfikakis PP, Mavrikakis E, Rougas K, Nikolaou A, Kostopoulos C, Mavrikakis M. The incidence of irreversible retinal toxicity in patients treated with hydroxychloroquine—a reappraisal. Ophthalmology. 2003;110:1321–6.

    PubMed  Google Scholar 

  44. Michaelides M, Stover NB, Francis PJ, Weleber RG. Retinal toxicity associated with hydroxychloroquine and chloroquine: risk factors, screening, and progression despite cessation of therapy. Arch Ophthalmol. 2011;129:30–9.

    CAS  PubMed  Google Scholar 

  45. Fleck BW, Bell AL, Mitchell JD, Thomson BJ, Hurst NP, Nuki G. Screening for antimalarial maculopathy in rheumatology clinics. Br Med J. 1985;291:782–5.

    CAS  Google Scholar 

  46. Easterbrook M. Ocular effects and safety of antimalarial agents. Am J Med. 1988;85:23–9.

    CAS  PubMed  Google Scholar 

  47. Adam MK, Covert DJ, Stepien KE, Han DP. Quantitative assessment of the 103 hexagon multifocal electroretinogram in detection of hydroxychloroquine retinal toxicity. Br J Ophthalmol. 2012;96:723–9.

    PubMed  Google Scholar 

  48. Easterbrook M. Detection of early hydroxychloroquine retinal toxicity enhanced by ring ratio analysis of multifocal electroretinography. Evid Based ophthalmol. 2008;9:50–1.

    Google Scholar 

  49. Elder M, Rahman AMA. Early paracentral visual field loss in patients taking hydroxychloroquine. Arch Ophthalmol. 2006;124:1729–33.

    PubMed  Google Scholar 

  50. Chen E, Brown DM, Benz MS, Fish RH, Wong TP, Kim RY, Major JC. Spectral domain optical coherence tomography as an effective screening test for hydroxychloroquine retinopathy (the “flying saucer” sign). Clin Ophthalmol. 2010;4:1151–8.

    PubMed Central  PubMed  Google Scholar 

  51. Anderson C, Pahk P, Blaha GR, Spindel GP, Alster Y, Rafaeli O, Marx J. Preferential hyperacuity perimetry to detect hydroxychloroquine retinal toxicity. Retina. 2009;29:1188–92.

    PubMed  Google Scholar 

  52. Lyons JS, Severns ML. Detection of early hydroxychloroquine retinal toxicity enhanced by ring ratio analysis of multifocal electroretinography. Am J Ophthalmol. 2007;143:801–9.

    CAS  PubMed  Google Scholar 

  53. Vu BLL, Easterbrook M, Hovis JK. Detection of color vision defects in chloroquine retinopathy. Ophthalmology. 1999;106:1799–804.

    CAS  PubMed  Google Scholar 

  54. Browning DJ. Reply to impact of the revised American Academy of Ophthalmology guidelines regarding hydroxychloroquine screening on actual practice. Am J Ophthalmol. 2013;156:410–1.

    PubMed  Google Scholar 

  55. Hanley JA, Lippman-Hand A. If nothing goes wrong, is everything alright? JAMA. 1983;259:1743–5.

    Google Scholar 

  56. Schachat AP, Chambers WA, Liesegang TJ, Albert DA. Safe and effective. Ophthalmology. 2003;110:2073–4.

    PubMed  Google Scholar 

  57. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327:307–10.

    Google Scholar 

  58. Rynes RI. Ophthalmologic safety of long-term hydroxychloroquine sulfate treatment. Am J Med. 1983;75:35–9.

    CAS  PubMed  Google Scholar 

  59. Massin P, Vicaut E, Haouchine B, Erginay A, Paques M, Gaudric A. Reproducibility of retinal mapping using optical coherence tomography. Arch Ophthalmol. 2001;119:1135–42.

    CAS  PubMed  Google Scholar 

  60. Antonisamy B, Christopher S, Samuel PP. Biostatistics: principles and practice. New Delhi: Tata McGraw Hill; 2010. p. 227–40.

    Google Scholar 

  61. Parks S, Keating D, Williamson TH, Evans AL, Elliott AT, Jay JL. Functional imaging of the retina using the multifocal electroretinograph: a control study. Br J Ophthalmol. 1996;80:831–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Forooghian F, Cukras C, Meyerle CB, Chew EY, Wong WT. Evaluation of time domain and spectral domain optical coherence tomography in the measurement of diabetic macular edema. Invest Ophthalmol Vis Sci. 2008;49:4290–6.

    PubMed Central  PubMed  Google Scholar 

  63. Wolf-Schnurrbusch UEK, Ceklic L, Brinkmann CK, Iliev ME, Frey M, et al. Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci. 2009;50:3432–7.

    PubMed  Google Scholar 

  64. Severin SL, Tour RL, Kershaw RH. Macular function and the photostress test 1. Arch Ophthalmol. 1967;77:2–7.

    CAS  PubMed  Google Scholar 

  65. Altemir I, Pueyo V, Elia N, Polo V, Larrosa JM, Oros D. Reproducibility of optical coherence tomography measurements in children. Am J Ophthalmol. 2013;155:171–6.

    PubMed  Google Scholar 

  66. Feuer WJ. Intraclass correlation analysis may alter conclusions. Invest Ophthalmol Vis Sci. 2007;48:1156–63.

    Google Scholar 

  67. Thomas JW. Visual fields: examination and interpretation. San Francisco: American Academy of Ophthalmology; 1996.

    Google Scholar 

  68. Stone JV. Bayes’ rule: a tutorial introduction to Bayesian analysis. England: Sebtel Press; 2013.

    Google Scholar 

  69. Zarbin MA. Personalized medicine. Bayesian inference as applied to the measurement of glaucomatous visual field loss. JAMA Ophthalmol. 2013;131:837–8.

    PubMed  Google Scholar 

  70. Newman DH. Hippocrates’ shadow. Secrets from the House of Medicine. New York: Simon and Schuster; 2008.

    Google Scholar 

  71. Heijl A, Lindgren G, Olsson J, Asman P. Visual field interpretation with empiric probability maps. Arch Ophthalmol. 1989;107:204–8.

    CAS  PubMed  Google Scholar 

  72. Lai TYY, Ngai JWS, Chan WM, Lam DSC. Visual field and multifocal electroretinography and their correlations in patients on hydroxychloroquine therapy. Doc Ophthalmol. 2006;112:177–87.

    PubMed  Google Scholar 

  73. Mary JH. The field analyzer primer. San Leandro, CA; 1987.

    Google Scholar 

  74. Easterbrook M, Tullo A. Value of Humprey perimetry in the detection of early chloroquine retinopathy. Lens Eye Toxic Res. 1989;6:255–68.

    CAS  PubMed  Google Scholar 

  75. Marmor MF, Chien FY, Johnson MW. Value of red targets and pattern deviation pots in visual field screening for hydroxychloroquine retinopathy. JAMA Ophthalmol. 2013;131:476–80.

    PubMed  Google Scholar 

  76. Alward W. Glaucoma the requisites in ophthalmology. St. Louis: Mosby; 2000. p. 67–70.

    Google Scholar 

  77. So SC, Hedges TR, Schuman JS, Quireza MLA. Evaluation of hydroxychloroquine retinopathy with multifocal electroretinography. Ophthalmic Surg Lasers Imaging. 2003;34:251–8.

    PubMed Central  PubMed  Google Scholar 

  78. Anderson C, Blaha GR, Marx JL. Humphrey visual field findings in hydroxychloroquine toxicity. Eye. 2011;25:1535–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Browning DJ. Hydroxychloroquine and chloroquine retinopathy: screening for drug toxicity. Am J Ophthalmol. 2002;133:649–56.

    CAS  PubMed  Google Scholar 

  80. Vavvas D, Huynh N, Pasquale L, Berson E. Progressive hydroxychloroquine toxicity mimicking low-tension glaucoma after discontinuation of the drug. Acta Ophthalmol. 2010;88:156–7.

    PubMed  Google Scholar 

  81. Heijl A, Lindgren G, Olsson J. Normal variability of static perimetric threshold values across the central visual field. Arch Ophthalmol. 1987;105:1544–9.

    CAS  PubMed  Google Scholar 

  82. Flammer J, Drance SM, Augustiny L, Funkhouse A. Quantification of glaucomatous visual field defects with automated perimetry. Invest Ophthalmol Vis Sci. 1985;26:176–81.

    CAS  PubMed  Google Scholar 

  83. Maturi RK, Yu M, Weleber RG. Multifocal electroretinographic evaluation of long-term hydroxychloroquine users. Arch Ophthalmol. 2004;122:973–81.

    CAS  PubMed  Google Scholar 

  84. Hoskins HD, Magee SD, Drake MV, Kidd MN. Confidence intervals for change in automated visual fields. Br J Ophthalmol. 1988;72:591–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Blomquist PH, Chundru RK. Screening for hydroxychloroquine toxicity by Texas ophthalmologists. J Rheumatol. 2002;29:1665–70.

    PubMed  Google Scholar 

  86. Heijl A, Asman P. A clinical study of perimetric probability maps. Arch Ophthalmol. 1989;107:199–203.

    CAS  PubMed  Google Scholar 

  87. Johnson MW, Vine AK. Hydroxychloroquine therapy in massive total doses without retinal toxicity. Am J Ophthalmol. 1987;104:139–44.

    CAS  PubMed  Google Scholar 

  88. Mititelu M, Wong BJ, Brenner M, Bryar PJ, Jampol LM, Fawzi AA. Progression of hydroxychloroquine toxic effects after drug therapy cessation. New evidence from multimodal imaging. Arch Ophthalmol. 2013;131:1187–97.

    Google Scholar 

  89. Spalton DJ. Retinopathy and antimalarial drugs—the British experience. Lupus. 1996;5:S70–2.

    CAS  PubMed  Google Scholar 

  90. Wolfensberger TJ. Toxicology of the retinal pigment epithelium. In: Marmor MF, Wolfensberger TJ, editors. The retinal pigment epithelium. New York: Oxford University Press; 1998. p. 621–47.

    Google Scholar 

  91. Weisinger HS, Pesudovs K, Collin HB. Management of patients undergoing hydroxychloroquine (Plaquenil) therapy. Clin Exp Optom. 2000;83:32–6.

    PubMed  Google Scholar 

  92. Weiner A, Sandberg MA, Gaudio AR, Kini MM, Berson EL. Hydroxychloroquine retinopathy. Am J Ophthalmol. 1991;112:528–34.

    CAS  PubMed  Google Scholar 

  93. Hart WM, Burde RM, Johnston GP, Drews RC. Static perimetry in chloroquine retinopathy—perifoveal patterns of visual field depression. Arch Ophthalmol. 1984;102:377–80.

    PubMed  Google Scholar 

  94. Akman F, Cerman E, Yenice O, Kazokoglu H. Two cases with chloroquine and hydroxychloroquine maculopathy. Marmara Med J. 2011;24:68–72.

    Google Scholar 

  95. Salu P, Uvijls A, van den Brande P, Leroy BP. Normalization of generalized retinal function and progression of maculopathy after cessation of therapy in a case of severe hydroxychloroquine retinopathy with 19 years follow-up. Doc Ophthalmol. 2010;120:251–64.

    PubMed  Google Scholar 

  96. Schwartz SG, Mieler WF. Retinal and choroidal manifestations of systemic medications. In: Arevalo JF, editor. Retinal and choroidal manifestations of selected systemic diseases. New York: Springer; 2013. p. 479–92.

    Google Scholar 

  97. Razeghinejad MR, Torkaman F, Amini H. Blue-yellow perimetry can be an early detector of hydroxychloroquine and chloroquine retinopathy. Med Hypotheses. 2005;65:629–30.

    CAS  PubMed  Google Scholar 

  98. Angi M, Romano V, Valldeperas X, Romano F, Romano M. Macular sensitivity changes for detection of chloroquine toxicity in asymptomatic patient. Int Ophthalmol. 2010;30:195–7.

    PubMed  Google Scholar 

  99. Carr RE, Gouras P, Gunkel RD. Chloroquine retinopathy. Early detection by retinal threshold test. Arch Ophthalmol. 1966;75:171–8.

    CAS  PubMed  Google Scholar 

  100. Bernstein H. Ocular safety of hydroxychloroquine sulfate (Plaquenil). South Med J. 1992;85:274–9.

    CAS  PubMed  Google Scholar 

  101. Sutter EE, Tran D. The field topography of ERG components in man-I. The photopic luminance response. Vision Res. 1992;32:433–46.

    CAS  PubMed  Google Scholar 

  102. Lai TYY, Chan WM, Lai RYK, Ngai JWS, Li H, Lam DSC. The clinical applications of multifocal electroretinography: a systematic review. Surv Ophthalmol. 2007;52:61–96.

    PubMed  Google Scholar 

  103. Marmor MF, Hood DC, Keating D, Kondo M, Seeliger MW, Miyake Y. Guidelines for basic multifocal electroretinography (mfERG). Doc Ophthalmol. 2003;106:105–15.

    PubMed  Google Scholar 

  104. Nebbioso M, Grenga R, Karavitas P. Early detection of macular changes with multifocal ERG in patients on antimalarial drug therapy. J Ocul Pharmacol Ther. 2009;25:249–58.

    CAS  PubMed  Google Scholar 

  105. Ng J, Bearse Jr MA, Schneck ME, Barez S, Adams AJ. Local diabetic retinopathy prediction by multifocal ERG delays over 3 years. Invest Ophthalmol Vis Sci. 2008;49:1622–8.

    PubMed  Google Scholar 

  106. Yoshii M, Yanashima K, Matsuno K, Wakaguri T, Kikuchi Y, Okisaka S. Relationship between visual field defect and multifocal electroretinogram. Jpn J Ophthalmol. 1998;42:136–41.

    CAS  PubMed  Google Scholar 

  107. Schimitek T, Bach M. The effect of luminance on the multifocal ERG. Doc Ophthalmol. 2006;113:187–92.

    Google Scholar 

  108. Hood DC. Assessing retinal function with the multifocal technique. Prog Retin Eye Res. 2000;19:607–46.

    CAS  PubMed  Google Scholar 

  109. Tzekov RT, Gerth C, Werner JS. Senescence of human multifocal electroretinogram components: a localized approach. Graefe’s Arch Clin Exp Ophthalmol. 2004;242:549–60.

    Google Scholar 

  110. Moschos MN, Moschos MM, Apostopoulos M, Mallias JA, Bouros C, Theodossiadis GP. Assessing hydroxychloroquine toxicity by the multifocal ERG. Doc Ophthalmol. 2004;108:47–53.

    PubMed  Google Scholar 

  111. Meigen T, Friedrich A. Zur reproduzierbarkeit von multifokalen ERG-Ableitungen. Ophthalmologe. 2002;99:713–8.

    CAS  PubMed  Google Scholar 

  112. Keating D, Parks S, Evans A. Technical aspects of multifocal ERG recording. Doc Ophthalmol. 2000;100:77–98.

    CAS  PubMed  Google Scholar 

  113. Seiple W, Vajaranant TS, Szlyk JP, Clemens C, Holopigian K, Paliga J, Badawi D, Carr RE. Multifocal electroretinography as a function of age: the importance of normative values for older adults. Invest Ophthalmol Vis Sci. 2003;44:1783–92.

    PubMed  Google Scholar 

  114. Gundogan FC, Sobaci G, Bayraktar MZ. Intra-sessional and inter-sessional variability of multifocal electroretinogram. Doc Ophthalmol. 2008;117:175–83.

    PubMed  Google Scholar 

  115. Tam A, Chan H, Brown B, Yap M. The effects of forward light scattering on the multifocal electroretinogram. Curr Eye Res. 2004;28:63–72.

    PubMed  Google Scholar 

  116. Tzekov R. Ocular toxicity due to chloroquine and hydroxychloroquine: electrophysiological and visual function correlates. Doc Ophthalmol. 2005;110:111–20.

    PubMed  Google Scholar 

  117. Teoh SC-B, Lim J, Koh A, Lim T, Fu E. Abnormalities on the multifocal electroretinogram may precede clinical signs of hydroxychloroquine retinotoxicity. Eye. 2006;20:129–32.

    PubMed  Google Scholar 

  118. Harrison WW, Bearse Jr MA, Ng JS, Barez S, Schneck ME, Adams AJ. Reproducibility of the mfERG between instruments. Doc Ophthalmol. 2009;119:67–78.

    PubMed Central  PubMed  Google Scholar 

  119. Chang WH, Katz BJ, Warner JE, Vitale AT, Creel D, Digre KB. A novel method for screening the multifocal electroretinogram in patients using hydroxychloroquine. Retina. 2008;28:1478–86.

    PubMed  Google Scholar 

  120. Bearse Jr MA, Adams AJ, Han Y, Schneck ME, Ng J, Bronson-Castain K, Barez S. A multifocal electroretinogram model predicting the development of diabetic retinopathy. Prog Retin Eye Res. 2006;25:425–48.

    PubMed Central  PubMed  Google Scholar 

  121. Yoshii M, Yanashima K, Wakaguri T, Sakemi F, Kikuchi Y, Suzuki S, Okisaka S. A basic investigation of multifocal electroretinogram: reproducibility and effect of luminance. Jpn J Ophthalmol. 2000;44:122–7.

    CAS  PubMed  Google Scholar 

  122. Kondo M, Miyake Y, Horiguchi M, Suzuki S, Tanikawa A. Clinical evaluation of the multifocal electroretinogram. Invest Ophthalmol Vis Sci. 1995;36:2146–50.

    CAS  PubMed  Google Scholar 

  123. Parks S, Keating D, Evans A, Williamson TH, Lay JL, Elliott AT. Comparison of repeatability of the multifocal electroretinogram and Humphrey perimeter. Doc Ophthalmol. 1997;92:281–9.

    CAS  Google Scholar 

  124. Mendonca RHF, Maia Jr OO, Yukihiko Takahashi W. Electrophysiologic findings in chloroquine maculopathy. Doc Ophthalmol. 2007;115:117–9.

    Google Scholar 

  125. Gonzalez P, Parks S, Dolan F, Keating D. The effects of pupil size on the multifocal electroretinogram. Doc Ophthalmol. 2004;109:67–72.

    CAS  PubMed  Google Scholar 

  126. Keating D, Parks S, Malloch C, Evans A. A comparison of CRT and digital stimulus delivery methods in the multifocal ERG. Doc Ophthalmol. 2001;102:95–114.

    CAS  PubMed  Google Scholar 

  127. Otto T, Bach M. Retest variability and diurnal effects in the pattern electroretinogram. Doc Ophthalmol. 1997;92:311–23.

    CAS  Google Scholar 

  128. Han Y, Bearse Jr MA, Schneck ME, Barez S, Jacobsen CH, Adams AJ. Multifocal electroretinogram delays predict sites of subsequent diabetic retinopathy. Invest Ophthalmol Vis Sci. 2004;45:948–54.

    PubMed  Google Scholar 

  129. Chappelow AV, Marmor MF. Effects of pre-adaptation conditions and ambient room lighting on the multifocal ERG. Doc Ophthalmol. 2002;105:23–31.

    PubMed  Google Scholar 

  130. Chen JC, Brown B, Schmid KL. Changes in implicit time of the multifocal electroretinogram response following contrast adaptation. Curr Eye Res. 2006;31:549–56.

    PubMed  Google Scholar 

  131. Chan HL, Siu AW. Effect of optical defocus on multifocal erg responses. Clin Exp Optom. 2003;86:317–22.

    PubMed  Google Scholar 

  132. Bultmann S, Rohrschneider K. Reproducibility of multifocal ERG using the scanning laser ophthalmoscope. Graefe’s Arch Clin Exp Ophthalmol. 2002;240:841–5.

    Google Scholar 

  133. Seeliger MW, Narfstrom K, Reinhard J, Zrenner E, Sutter E. Continuous monitoring of the stimulated area in multifocal ERG. Doc Ophthalmol. 2000;100:167–84.

    CAS  Google Scholar 

  134. Seiple W, Greenstein VC, Holopigian K, Carr RE, Hood DC. A method for comparing psychophysical and multifocal electroretinographic increment thresholds. Vision Res. 2002;42:257–69.

    PubMed  Google Scholar 

  135. Kretschmann U, Bock M, Gockeln R, Zrenner E. Clinical applications of multifocal electroretinography. Doc Ophthalmol. 2000;100:99–113.

    CAS  PubMed  Google Scholar 

  136. Janaky M, Palffy A, Deak A, Szilagyi M, Benedek G. Multifocal ERG reveals several patterns of cone degeneration in retinitis pigmentosa with concentric narrowing of the visual field. Invest Ophthalmol Vis Sci. 2007;48:383–9.

    PubMed  Google Scholar 

  137. Mohidin N, Yap MK, Jacobs RJ. The repeatability and variability of the multifocal electroretinogram for four different electrode types. Ophthalmic Physiol Opt. 1997;17:530–5.

    CAS  PubMed  Google Scholar 

  138. Kellner U, Renner AB, Tillack H. Fundus autofluorescence and mfERG for early detection of retinal alterations in patients using chloroquine/hydroxychloroquine. Invest Ophthalmol Vis Sci. 2006;47:3531–8.

    PubMed  Google Scholar 

  139. Kellner U, Kraus H, Foerster MH. Multifocal ERG in chloroquine retinopathy: regional variance in retinal dysfunction. Graefe’s Arch Clin Exp Ophthalmol. 2000;238:94–7.

    CAS  Google Scholar 

  140. Kretschmann U, Seeliger MW, Ruether K, Usui T, Apfelstedt-Sylla E, Zrenner E. Multifocal electroretinography in patients with Stargardt’s macular dystrophy. Br J Ophthalmol. 1998;82:267–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Browning DJ, Lee C. The coefficient of repeatability for multifocal electroretinography measurements in normal volunteers and patients taking hydroxychloroquine. Scientific poster 483. Presented at American Academy of Ophthalmology 2013 Annual Meeting, 14–19 Nov 2013, New Orleans.

    Google Scholar 

  142. Penrose PJ, Tzekov RT, Sutter EE, Fu AD, Allen Jr AW, Fung WE, Oxford KW. Multifocal electroretinography evaluation for early detection of retinal dysfunction in patients taking hydroxychloroquine. Retina. 2003;23:503–12.

    PubMed  Google Scholar 

  143. Aoyagi K, Kimura Y, Isono H, Akigawa H, Sugawara T. Reproducibility and wave analysis of multifocal electroretinography. Nihon Ganka Gakkai Zasshi. 1998;102:340–7.

    CAS  PubMed  Google Scholar 

  144. Kondo M, Miyake T, Horiguchi M, Suzuki S, Ho Y, Tanikawa A. Normal values of retinal response densities in multifocal electroretinogram. Nihon Ganka Gakkai Zasshi. 1996;100:810–6.

    CAS  PubMed  Google Scholar 

  145. Bergholz R, Schroeter J, Ruther K. Evaluation of risk factors for retinal damage due to chloroquine and hydroxychloroquine. Br J Ophthalmol. 2010;94:1637–42.

    CAS  PubMed  Google Scholar 

  146. Marmor MF. Comparison of screening procedures in hydroxychloroquine toxicity. Arch Ophthalmol. 2012;130:461–9.

    CAS  PubMed  Google Scholar 

  147. Gilbert ME, Savino PJ. Missing the Bull’s Eye. Surv Ophthalmol. 2007;52:440–2.

    PubMed  Google Scholar 

  148. Maturi RK, Folk JC, Nichols B, Oetting TT, Kardon RH. Hydroxychloroquine retinopathy. Arch Ophthalmol. 1999;117:1262–3.

    CAS  PubMed  Google Scholar 

  149. Marmor MF. Author reply. Ophthalmology. 2011;118:2099–100.

    Google Scholar 

  150. Garcia-Martin E, Pinilla I, Idoipe M, Fuertes I, Pueyo V. Intra and interoperator reproducibility of retinal nerve fibre and macular thickness measurements using Cirrus Fourier-domain OCT. Acta Ophthalmol. 2011;89:e23–9.

    PubMed  Google Scholar 

  151. Menke M, Daov S, Knecht P, Sturm V. Reproducibility of retinal thickness measurements in healthy subjects using spectralis optical coherence tomography. Am J Ophthalmol. 2009;147:467–72.

    PubMed  Google Scholar 

  152. Diabetic Retinopathy Clinical Research Network. Reproducibility of macular thickness and volume using Zeiss optical coherence tomography in patients with diabetic macular edema. Ophthalmology. 2007;114:1520–5.

    PubMed Central  Google Scholar 

  153. Menke MN, Knecht P, Sturm V, Dabov S, Funk J. Reproducibility of nerve fiber layer thickness measurements using 3D fourier-domain OCT. Invest Ophthalmol Vis Sci. 2008;49:5386–91.

    PubMed  Google Scholar 

  154. Pasadhika S, Fishman GA. Effects of chronic exposure to hydroxychloroquine or chloroquine on inner retinal structures. Eye. 2009;24:340–6.

    PubMed  Google Scholar 

  155. Pasadhika S, Fishman GA, Choi D, Shahidi M. Selective thinning of the perifoveal inner retina as an early sign of hydroxychloroquine retinal toxicity. Eye. 2010;24:756–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Kellner U, Kellner S, Weinitz S. Chloroquine retinopathy: lipofuscin- and melanin-related fundus autofluorescence, optical coherence tomography and multifocal electroretinography. Doc Ophthalmol. 2008;116:119–27.

    PubMed  Google Scholar 

  157. Stepien KE, Han DP, Schell J, Godara P, Rha J, Carroll J. Spectral-domain optical coherence tomography and adaptive optics may detect hydroxychloroquine retinal toxicity before symptomatic vision loss. Trans Am Ophthalmol Soc. 2009;107:28–34.

    PubMed Central  PubMed  Google Scholar 

  158. Fung AE. Patient complains of central shimmering lights, subtle OCT changes with hydroxychloroquine use. Ocul Surg News. 2013;31:25–6.

    Google Scholar 

  159. Rodriguez-Padilla JA, Hedges III TR, Monson B, Srinivasan V, Wojtkowski M, Reichel E, Duker JS, Schuman JS, Fujimoto JG. High-speed ultra-high-resolution optical coherence tomography findings in hydroxychloroquine retinopathy. Arch Ophthalmol. 2007;125:775–80.

    PubMed Central  PubMed  Google Scholar 

  160. Easterbrook M. Spectral domain optical coherence tomography detects early stages of chloroquine retinopathy similar to multifocal electroretinography, fundus autofluorescence and near-infrared autofluorescence. Evid-Based Ophthalmol. 2010;11:162–3.

    Google Scholar 

  161. Fung AE, Samy CN, Rosenfeld PJ. Optical coherence tomography findings in hydroxychloroquine and chloroquine-associated maculopathy. Retin Cases Brief Rep. 2007;1:128–30.

    Google Scholar 

  162. Fontaine F, Rougier MB, Korobelnik JF. Optical coherence tomography in hydroxychloroquine retinopathy: two observational case reports. Retin Cases Brief Rep. 2007;1:131–3.

    Google Scholar 

  163. Feeney L. Lipofuscin and melanin of human retinal pigment epithelium. Fluorescence, enzyme cytochemical, and ultrastructural studies. Invest Ophthalmol Vis Sci. 1978;17:583–600.

    CAS  PubMed  Google Scholar 

  164. Kelmenson AT, Brar VS, Murthy RK, Chalam KV. Fundus autofluorescence and spectral domain optical coherence tomography in early detection of Plaquenil maculopathy. Eur J Ophthalmol. 2010;20:785–8.

    PubMed  Google Scholar 

  165. Neville HE, Maundry-Sewry CA, McDougall J, Sewell JR, Dubowitz V. Chloroquine-induced cytosomes with curvilinear profiles in muscle. Muscle Nerve. 1979;2:376–81.

    CAS  PubMed  Google Scholar 

  166. Labriola LT, Jeng D, Fawzi AA. Retinal toxicity of systemic medications. Int Ophthalmol Clin. 2012;52:149–66.

    PubMed  Google Scholar 

  167. Gorovoy I, Gorovoy JB. Advances in ophthalmic monitoring for hydroxychloroquine toxicity. J Clin Rheumatol. 2013;19:46–7.

    PubMed  Google Scholar 

  168. Kearns TP, Hollenhorst RW. Chloroquine retinopathy. Arch Ophthalmol. 1966;76:378–84.

    CAS  PubMed  Google Scholar 

  169. Shearer RV, Dubois EL. Ocular changes induced by long-term hydroxychloroquine (Plaquenil) therapy. Am J Ophthalmol. 1967;64:245–52.

    CAS  PubMed  Google Scholar 

  170. Tehrani R, Ostrowski RA, Hariman R, Jay WM. Ocular toxicity of hydroxychloroquine. Semin Ophthalmol. 2008;23:201–9.

    PubMed  Google Scholar 

  171. Lozier JR, Friedlander MH. Complications of antimalarial therapy. Int Ophthalmol Clin. 1989;29:172–8.

    CAS  PubMed  Google Scholar 

  172. American Academy of Optometry. Monitoring ocular toxicity of selected medications. www.aoa.org/optometrists/education-and-training/clinical-care/monitoring-ocular-toxicity-of-selected-medications. Accessed 5 July 2013.

  173. Easterbrook M. Screening for antimalarial toxicity. Can J Ophthalmol. 1993;28:51–2.

    CAS  PubMed  Google Scholar 

  174. Ormrod JN. Two cases of chloroquine-inducted retinal damage. Br Med J. 1962;1:918–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Easterbrook M. Comparison of threshold and standard Amsler grid testing in patients with established antimalarial retinopathy. Can J Ophthalmol. 1992;27:240–2.

    CAS  PubMed  Google Scholar 

  176. Easterbrook M. The sensitivity of Amsler grid testing in early chloroquine retinopathy. Trans Ophthalmol Soc UK. 1985;104:204–7.

    PubMed  Google Scholar 

  177. Morin JD. Discussion. Ophthalmology. 1984;91:1372.

    Google Scholar 

  178. Blomquist PH. Screening for hydroxychloroquine toxicity. Comp Ophthalmol Update. 2000;1:245–50.

    Google Scholar 

  179. Schuchard RA. Validity and interpretation of Amsler grid reports. Arch Ophthalmol. 1993;111:776–80.

    CAS  PubMed  Google Scholar 

  180. Flach AJ. Improving the risk-benefit relationship and informed consent for patients treated with hydroxychloroquine. Trans Am Ophthalmol Soc. 2007;105:191–7.

    PubMed Central  PubMed  Google Scholar 

  181. Brown M, Marmor M, Vaegan, Zrenner E, Brigell M, Bach M. ISCEV standard for clinical electro-oculography (EOG). Doc Ophthalmol. 2006;113:205–12.

    PubMed Central  PubMed  Google Scholar 

  182. Arden GB, Barrada A. Analysis of the electro-oculograms of a series of normal subjects. Br J Ophthalmol. 1962;46:468–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Reijmer CN, Tijssen JGP, Kok GA, Van Lith GHM. Interpretation of the electro-oculogram of patients taking chloroquine. Doc Ophthalmol. 1979;48:273–6.

    Google Scholar 

  184. Arden GB, Kolb H. Antimalarial therapy and early retinal changes in patients with rheumatoid arthritis. Br Med J. 1966;1:270–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Pinckers A, Broekhnyse RM. The EOG in rheumatoid arthritis. Acta Ophthalmol. 1983;61:831–7.

    CAS  Google Scholar 

  186. Butler I. Retinopathy following the use of chloroquine and allied substances. Ophthalmologica. 1965;149:204–8.

    CAS  PubMed  Google Scholar 

  187. Carr RE, Henkind P, Rothfield N, Siegel IM. Ocular toxicity of antimalarial drugs-long-term follow-up. Am J Ophthalmol. 1968;66:738–44.

    CAS  PubMed  Google Scholar 

  188. Wachtmeister L. Oscillatory potentials in the retina: what do they reveal? Prog Retin Eye Res. 1998;17:485–521.

    CAS  PubMed  Google Scholar 

  189. Birch DG, Hood DC, Locke KG, Hoffman DR, Tzekov RT. Quantitative electroretinogram measures of phototransduction in cone and rod photoreceptors. Normal aging, progression with disease, and test-retest variability. Arch Ophthalmol. 2002;120:1045–51.

    PubMed  Google Scholar 

  190. Rosenthal AR, Kolb H, Bergsma D, Huxsoll D, Hopkins JL. Chloroquine retinopathy in the rhesus monkey. Invest Ophthalmol Vis Sci. 1978;17:1158–75.

    CAS  PubMed  Google Scholar 

  191. McConnell DG, Wachtel J, Havener WH. Observations on experimental chloroquine retinopathy. Arch Ophthalmol. 1964;71:552–3.

    CAS  PubMed  Google Scholar 

  192. Ivanina TA, Zueva MV, Lebedeva MN, Bogoslovsky AI, Bunin AJ. Ultrastructural alterations in rat and cat retina and pigment epithelium induced by chloroquine. Graefe’s Arch Clin Exp Ophthalmol. 1983;220:32–8.

    CAS  Google Scholar 

  193. Giorgi D, Rosati C, Verrastro G, Grandinetti F. What’s the right patient management for early diagnosis of hydroxychloroquine retinal toxicity? Recenti Prog Med. 1996;87:308.

    CAS  PubMed  Google Scholar 

  194. Schmidt B, Muller-Limmroth W. Electroretino-graphic examinations following application of chloroquine. Acta Ophthalmol Supp. 1962;70:245–51.

    Google Scholar 

  195. Tzekov RT, Serrato A, Marmor MF. ERG findings in patients using hydroxychloroquine. Doc Ophthalmol. 2004;108:87–97.

    PubMed  Google Scholar 

  196. Grutzner P. Acquired color vision defects secondary to retinal drug toxicity. Ophthalmologica. 1969;158:592–604.

    PubMed  Google Scholar 

  197. Easterbrook M. Clinical characteristics of hydroxychloroquine retinopathy. Evid Based Ophthalmol. 2011;12:132–3.

    Google Scholar 

  198. Warner AE. Early hydroxychloroquine macular toxicity. Arthritis Rheum. 2001;44:1959–61.

    CAS  PubMed  Google Scholar 

  199. Nozik RA, Weinstock FJ, Vignos PJ. Ocular complications of chloroquine: series and case presentation with simple method for early detection of retinopathy. Am J Ophthalmol. 1964;58:774–8.

    CAS  PubMed  Google Scholar 

  200. Nylander U. Ocular damage in chloroquine therapy. Acta Ophthalmol. 1966;44:335–8.

    CAS  Google Scholar 

  201. Payne JF, Hubbard III GB, Aaberg Sr TM, Yan J. Clinical characteristics of hydroxychloroquine retinopathy. Br J Ophthalmol. 2010;95:245–50.

    PubMed  Google Scholar 

  202. Yam JCS, Kwok AKH. Ocular toxicity of hydroxychloroquine. Hong Kong Med J. 2006;12:294–304.

    CAS  PubMed  Google Scholar 

  203. Morsman CDG, Livesey SJ, Richards IM, Jessop JD, Mills PV. Screening for hydroxychloroquine retinal toxicity: is it necessary? Eye. 1990;4:572–6.

    PubMed  Google Scholar 

  204. Pulido JS, Barkmeier AJ, Leavitt JA. Screening for hydroxychloroquine toxicity. Ophthalmology. 2012;119:207.

    PubMed  Google Scholar 

  205. Gonasun LM, Potts AM. In vitro inhibition of protein synthesis in the retinal pigment epithelium by chloroquine. Invest Ophthalmol Vis Sci. 1974;13:107–15.

    CAS  Google Scholar 

  206. Chader GJ, Pepperberg DR, Crouch R, Wiggert B. Retinoids and the retinal pigment epithelium. In: Marmor MF, Wolfensberger TJ, editors. The retinal pigment epithelium. New York: Oxford University Press; 1998. p. 135–51.

    Google Scholar 

  207. Khamis ARA, Easterbrook M. Critical flicker fusion frequency in early chloroquine retinopathy. Can J Ophthalmol. 1983;18:217–9.

    PubMed  Google Scholar 

  208. Marmor MF, Kellner U, Lai TYY, Lyons JS, Mieler WF. Author response. Ophthalmology. 2012;119:207–8.

    Google Scholar 

  209. Neubauer AS, Stiefelmeyer S, Berninger T, Arden GB, Rudolph G. The multifocal pattern electroretinogram in chloroquine retinopathy. Ophthalmic Res. 2004;36:106–13.

    PubMed  Google Scholar 

  210. Thorne JE, Maguire AM. Retinopathy after long term, standard doses of hydroxychloroquine. Br J Ophthalmol. 1999;83:1201–2.

    CAS  PubMed  Google Scholar 

  211. Easterbrook M. Long-term course of antimalarial maculopathy after cessation of treatment. Can J Ophthalmol. 1992;27:237–9.

    CAS  PubMed  Google Scholar 

  212. Ibrahim MA, Sepah YJ, Symons RCA, Channa R, Hatef E, Khwaja A, Bittencourt M, Heo J, Do DV, Nguyen M. Spectral - and time-domain optical coherence tomography measurements of macular thickness in normal eyes and in diabetic macular edema. Eye. 2012;26:454–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  213. Hirasawa H, Araie M, Tomidokoro A, Saito H, Iwase A, Ohkubo S, et al. Reproducibility of thickness measurements of macular inner retinal layers using SD-OCT with or without correction of ocular rotation. Invest Ophthalmol Vis Sci. 2013;54:2562–70.

    PubMed  Google Scholar 

  214. Leung CK, Cheung CY, Weinreb RN, Lee G, Lin D, Pang CP, Lam DSC. Comparison of macular thickness measurements between time domain and spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2008;49:4893–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Browning, D.J. (2014). Ancillary Testing in Screening for Hydroxychloroquine and Chloroquine Retinopathy. In: Hydroxychloroquine and Chloroquine Retinopathy. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0597-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0597-3_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0596-6

  • Online ISBN: 978-1-4939-0597-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics