Single-Cell Microfluidic Cytometry for Next-Generation High-Throughput Biology and Drug Discovery

Part of the SpringerBriefs in Cell Biology book series (SBCB)


The cell is the smallest unit of life. Commensurate with its importance in biology and medicine, it has traditionally been the focus of technologies seeking to add to our understanding of physiological processes relating to life, death, and disease. Over the past decade, our understanding of cellular complexity has been bolstered by the advent of increasingly precise techniques for the investigation of cellular phenomena. Microfluidic cell cytometry combines analysis on the single cell level with integrated separation and processing techniques and has emerged as one of the most powerful techniques in this context. This chapter will encompass an overview of the current landscape and novel trends as well as challenges facing the technologies in this new field.


Circulate Tumor Cell High Throughput Screening PDMS Membrane High Content Screening Microwell Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Charge-coupled device


Cluster of differentiation


Complementarity determining region


Complementary metal-oxide semiconductor


Circulating tumor cell


Deformability cytometry


DNA-encoded antibody libraries


Deoxyribonucleic acid


Enzyme-linked immunosorbent assay


Epithelial to mesenchymal transition


Epithelial cell adhesion molecule


Field of view


Hospital-acquired infection (also healthcare-associated infection)


High-content screening


Human immunodeficiency virus


High-throughput screening


Interferon gamma


Immuno-spot array assay chip


Michigan Cancer Foundation-7


Mesenchymal to epithelial transition


Mechanically induced trapping of molecular interaction


Polymerase chain reaction


Phorbol 12-myristate 13-acetate




Ribonucleic acid


Reverse transcription polymerase chain reaction


Single-cell barcode chip


Single molecule array


Serial time-encoded amplified microscopy


Transcription factor


Tumor necrosis factor alpha


  1. 1.
    Watt FM, Huck WTS (2013) Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol 14:467–473. doi: 10.1038/nrm3620 PubMedCrossRefGoogle Scholar
  2. 2.
    Miller CJ, Davidson LA (2013) The interplay between cell signalling and mechanics in developmental processes. Nat Rev Genet 14:733–744. doi: 10.1038/nrg3513 PubMedCrossRefGoogle Scholar
  3. 3.
    Wozniak MA, Chen CS (2009) Mechanotransduction in development: a growing role for contractility. Nat Rev Mol Cell Biol 10:34–43. doi: 10.1038/nrm2592 PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10:63–73. doi: 10.1038/nrm2597 PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer 9:108–122. doi: 10.1038/nrc2544 PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Weaver WM, Milisavljevic V, Miller JF, Di Carlo D (2012) Fluid flow induces biofilm formation in Staphylococcus epidermidis polysaccharide intracellular adhesin-positive clinical isolates. Appl Environ Microbiol. Available: Accessed 10 July 2012.
  7. 7.
    Jiang N, He J, Weinstein JA, Penland L, Sasaki S et al (2013) Lineage structure of the human antibody repertoire in response to influenza vaccination. Sci Transl Med 5:171ra19. doi: 10.1126/scitranslmed.3004794 PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S (2012) Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol 10:39–50. doi: 10.1038/nrmicro2695 Google Scholar
  9. 9.
    Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122. doi: 10.1038/nrd1008 PubMedCrossRefGoogle Scholar
  10. 10.
    Jones S (2007) Biofilms: How does your biofilm grow? Nat Rev Microbiol 5:168–169. doi: 10.1038/nrmicro1626 Google Scholar
  11. 11.
    Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633. doi: 10.1038/nrmicro2415 PubMedGoogle Scholar
  12. 12.
    Potter JD (2007) Morphogens, morphostats, microarchitecture and malignancy. Nat Rev Cancer 7:464–474. doi: 10.1038/nrc2146 PubMedCrossRefGoogle Scholar
  13. 13.
    Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33. doi: 10.1038/nrg1748 PubMedCrossRefGoogle Scholar
  14. 14.
    Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  15. 15.
    Brabletz T (2012) EMT and MET in metastasis: where are the cancer stem cells? Cancer Cell 22:699–701. doi: 10.1016/j.ccr.2012.11.009 PubMedCrossRefGoogle Scholar
  16. 16.
    Thiery JP, Acloque H, Huang RYJ, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890. doi: 10.1016/j.cell.2009.11.007 PubMedCrossRefGoogle Scholar
  17. 17.
    Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J (2012) Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22:725–736. doi: 10.1016/j.ccr.2012.09.022 PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Korpal M, Ell BJ, Buffa FM, Ibrahim T, Blanco MA et al (2011) Direct targeting of Sec23a by miR-200 s influences cancer cell secretome and promotes metastatic colonization. Nat Med 17:1101–1108. doi: 10.1038/nm.2401 PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Magee JA, Piskounova E, Morrison SJ (2012) Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21:283–296. doi: 10.1016/j.ccr.2012.03.003 PubMedCrossRefGoogle Scholar
  20. 20.
    Hölzel M, Bovier A, Tüting T (2013) Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance? Nat Rev Cancer 13:365–376. doi: 10.1038/nrc3498 PubMedCrossRefGoogle Scholar
  21. 21.
    Labelle M, Begum S, Hynes RO (2011) Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20:576–590. doi: 10.1016/j.ccr.2011.09.009 PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Dalerba P, Kalisky T, Sahoo D, Rajendran PS, Rothenberg ME et al (2011) Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol 29:1120–1127. doi: 10.1038/nbt.2038 PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Gossett DR, Tse HTK, Lee SA, Ying Y, Lindgren AG et al (2012) Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci U S A 109:7630–7635. doi: 10.1073/pnas.1200107109 PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Di Carlo D (2012) A mechanical biomarker of cell state in medicine. J Lab Autom 17:32–42. doi: 10.1177/2211068211431630 PubMedGoogle Scholar
  25. 25.
    Tse HTK, Gossett DR, Moon YS, Masaeli M, Sohsman M et al (2013) Quantitative diagnosis of malignant pleural effusions by single-cell mechanophenotyping. Sci Transl Med 5:212ra163. doi: 10.1126/scitranslmed.3006559 PubMedCrossRefGoogle Scholar
  26. 26.
    Kim S, Han S-I, Park M-J, Jeon C-W, Joo Y-D et al (2013) Circulating tumor cell microseparator based on lateral magnetophoresis and immunomagnetic nanobeads. Anal Chem 85:2779–2786. doi: 10.1021/ac303284u PubMedCrossRefGoogle Scholar
  27. 27.
    Xu W, Cao L, Chen L, Li J, Zhang X-F et al (2011) Isolation of circulating tumor cells in patients with hepatocellular carcinoma using a novel cell separation strategy. Clin Cancer Res 17:3783–3793. doi: 10.1158/1078-0432.CCR-10-0498 PubMedCrossRefGoogle Scholar
  28. 28.
    Kang JH, Krause S, Tobin H, Mammoto A, Kanapathipillai M et al (2012) A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells. Lab Chip 12:2175–2181. doi: 10.1039/C2LC40072C PubMedCrossRefGoogle Scholar
  29. 29.
    Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235–1239. doi: 10.1038/nature06385 PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Lu Y-T, Zhao L, Shen Q, Garcia MA, Wu D, et al. (n.d.) NanoVelcro Chip for CTC enumeration in prostate cancer patients. Methods. Available: Accessed 29 October 2013.
  31. 31.
    Hur SC, Mach AJ, Di Carlo D (2011) High-throughput size-based rare cell enrichment using microscale vortices. Biomicrofluidics 5. Available: Accessed 29 October 2013.
  32. 32.
    Mach AJ, Kim JH, Arshi A, Hur SC, Carlo DD (2011) Automated cellular sample preparation using a Centrifuge-on-a-Chip. Lab Chip 11:2827–2834. doi: 10.1039/C1LC20330D PubMedCrossRefGoogle Scholar
  33. 33.
    Sollier E, Go DE, Che J, Gossett DR, O’Byrne S, et al. (2013) Size-selective collection of circulating tumor cells using Vortex technology. Lab Chip. Available: Accessed 29 October 2013.
  34. 34.
    Shi Q, Qin L, Wei W, Geng F, Fan R et al (2012) Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc Natl Acad Sci U S A 109:419–424. doi: 10.1073/pnas.1110865109 PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Fan R, Vermesh O, Srivastava A, Yen BKH, Qin L et al (2008) Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat Biotech 26:1373–1378. doi: 10.1038/nbt.1507 CrossRefGoogle Scholar
  36. 36.
    Chambers HF, DeLeo FR (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7:629–641. doi: 10.1038/nrmicro2200 PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Otto M (2009) Staphylococcus epidermidis—the “accidental” pathogen. Nat Rev Microbiol 7:555–567. doi: 10.1038/nrmicro2182 PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Dolgin E (2010) Sequencing of superbugs seen as key to combating their spread. Nat Med 16:1054–1054. doi: 10.1038/nm1010-1054a Google Scholar
  39. 39.
    Dolgin E (2011) “Game changer” antibiotic and others in works for superbug. Nat Med 17: 10–10. doi: 10.1038/nm0111-10 PubMedCrossRefGoogle Scholar
  40. 40.
    Chen D, Du W, Liu Y, Liu W, Kuznetsov A et al (2008) The chemistrode: A droplet-based microfluidic device for stimulation and recording with high temporal, spatial, and chemical resolution. Proc Natl Acad Sci 105:16843–16848. doi: 10.1073/pnas.0807916105 PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Boedicker JQ, Vincent ME, Ismagilov RF (2009) Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angew Chem Int Ed Engl 48:5908–5911. doi: 10.1002/anie.200901550 PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Boedicker JQ, Li L, Kline TR, Ismagilov RF (2008) Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 8:1265–1272. doi: 10.1039/B804911D PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Molloy S (2010) Quorum sensing: Setting the threshold. Nat Rev Microbiol 8:388–389. doi: 10.1038/nrmicro2374 CrossRefGoogle Scholar
  44. 44.
    Keller L, Surette MG (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4:249–258. doi: 10.1038/nrmicro1383 PubMedCrossRefGoogle Scholar
  45. 45.
    Kastrup CJ, Boedicker JQ, Pomerantsev AP, Moayeri M, Bian Y et al (2008) Spatial localization of bacteria controls coagulation of human blood by “quorum acting”. Nat Chem Biol 4:742–750PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Rissin DM, Kan CW, Campbell TG, Howes SC, Fournier DR et al (2010) Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat Biotechnol 28:595–599. doi: 10.1038/nbt.1641 PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Hatch AC, Fisher JS, Tovar AR, Hsieh AT, Lin R et al (2011) 1-Million droplet array with wide-field fluorescence imaging for digital PCR. Lab Chip 11:3838–3845. doi: 10.1039/c1lc20561g PubMedCrossRefGoogle Scholar
  48. 48.
    Teste B, Ali-Cherif A, Viovy JL, Malaquin L (2013) A low cost and high throughput magnetic bead-based immuno-agglutination assay in confined droplets. Lab Chip 13:2344–2349. doi: 10.1039/c3lc50353d PubMedCrossRefGoogle Scholar
  49. 49.
    Sakakihara S, Araki S, Iino R, Noji H (2010) A single-molecule enzymatic assay in a directly accessible femtoliter droplet array. Lab Chip 10:3355–3362. doi: 10.1039/C0LC00062K PubMedCrossRefGoogle Scholar
  50. 50.
    Chin CD, Laksanasopin T, Cheung YK, Steinmiller D, Linder V et al (2011) Microfluidics-based diagnostics of infectious diseases in the developing world. Nat Med 17:1015–1019. doi: 10.1038/nm.2408 PubMedCrossRefGoogle Scholar
  51. 51.
    Mathonet P, Ullman CG (2013) The application of next generation sequencing to the understanding of antibody repertoires. Front B Cell Biol 4:265. doi: 10.3389/fimmu.2013.00265 Google Scholar
  52. 52.
    Love JC, Ronan JL, Grotenbreg GM, van der Veen AG, Ploegh HL (2006) A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat Biotechnol 24:703–707. doi: 10.1038/nbt1210 PubMedCrossRefGoogle Scholar
  53. 53.
    Yamanaka YJ, Szeto GL, Gierahn TM, Forcier TL, Benedict KF et al (2012) Cellular barcodes for efficiently profiling single-cell secretory responses by microengraving. Anal Chem 84:10531–10536. doi: 10.1021/ac302264q PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Han Q, Bagheri N, Bradshaw EM, Hafler DA, Lauffenburger DA et al (2012) Polyfunctional responses by human T cells result from sequential release of cytokines. Proc Natl Acad Sci 109:1607–1612. doi: 10.1073/pnas.1117194109 PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Varadarajan N, Kwon DS, Law KM, Ogunniyi AO, Anahtar MN et al (2012) Rapid, efficient functional characterization and recovery of HIV-specific human CD8+ T cells using microengraving. Proc Natl Acad Sci 109:3885–3890. doi: 10.1073/pnas.1111205109 PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Jin A, Ozawa T, Tajiri K, Obata T, Kondo S et al (2009) A rapid and efficient single-cell manipulation method for screening antigen-specific antibody–secreting cells from human peripheral blood. Nat Med 15:1088–1092. doi: 10.1038/nm.1966 PubMedCrossRefGoogle Scholar
  57. 57.
    Tay S, Hughey JJ, Lee TK, Lipniacki T, Quake SR et al (2010) Single-cell NF-kappaB dynamics reveal digital activation and analogue information processing. Nature 466:267–271. doi: 10.1038/nature09145 PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Ozcan A, Demirci U (2008) Ultra wide-field lens-free monitoring of cells on-chip. Lab Chip 8:98–106. doi: 10.1039/b713695a PubMedCrossRefGoogle Scholar
  59. 59.
    Su T-W, Seo S, Erlinger A, Ozcan A (2008) Multi-angle LUCAS for high-throughput on-chip cytometry. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Conf 2008:1854–1855. doi: 10.1109/IEMBS.2008.4649543 Google Scholar
  60. 60.
    Su T-W, Erlinger A, Tseng D, Ozcan A (2010) Compact and light-weight automated semen analysis platform using lensfree on-chip microscopy. Anal Chem 82:8307–8312. doi: 10.1021/ac101845q PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Su T-W, Xue L, Ozcan A (2012) High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories. Proc Natl Acad Sci U S A 109:16018–16022. doi: 10.1073/pnas.1212506109 PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Coskun AF, Sencan I, Su T-W, Ozcan A (2011) Lensfree fluorescent on-chip imaging of transgenic Caenorhabditis elegans over an ultra-wide field-of-view. PloS One 6:e15955. doi: 10.1371/journal.pone.0015955 PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Stybayeva G, Mudanyali O, Seo S, Silangcruz J, Macal M et al (2010) Lensfree holographic imaging of antibody microarrays for high-throughput detection of leukocyte numbers and function. Anal Chem 82:3736–3744. doi: 10.1021/ac100142a PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Goda K, Tsia KK, Jalali B (2009) Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature 458:1145–1149. doi: 10.1038/nature07980 PubMedCrossRefGoogle Scholar
  65. 65.
    Goda K, Ayazi A, Gossett DR, Sadasivam J, Lonappan CK et al (2012) High-throughput single-microparticle imaging flow analyzer. Proc Natl Acad Sci U S A 109:11630–11635. doi: 10.1073/pnas.1204718109 PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Gencoglu A, Olney D, Lalonde A, Koppula KS, Lapizco-Encinas BH (2013) Dynamic microparticle manipulation with an electroosmotic flow gradient with low frequency alternating current dielectrophoresis. Electrophoresis. doi: 10.1002/elps.201300385 PubMedGoogle Scholar
  67. 67.
    Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HTK et al (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397:3249–3267. doi: 10.1007/s00216-010-3721-9 PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Capitanio M, Pavone FS (2013) Interrogating biology with force: single molecule high-resolution measurements with optical tweezers. Biophys J 105:1293–1303. doi: 10.1016/j.bpj.2013.08.007 PubMedCrossRefGoogle Scholar
  69. 69.
    Roth KB, Eggleton CD, Neeves KB, Marr DWM (2013) Measuring cell mechanics by optical alignment compression cytometry. Lab Chip 13:1571–1577. doi: 10.1039/c3lc41253a PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Zhou J, Papautsky I (2013) Fundamentals of inertial focusing in microchannels. Lab Chip 13:1121–1132. doi: 10.1039/C2LC41248A PubMedCrossRefGoogle Scholar
  71. 71.
    Lee W, Amini H, Stone HA, Di Carlo D (2010) Dynamic self-assembly and control of microfluidic particle crystals. Proc Natl Acad Sci U S A 107:22413–22418. doi: 10.1073/pnas.1010297107 PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Gossett DR, Tse HTK, Dudani JS, Goda K, Woods TA et al (2012) Inertial manipulation and transfer of microparticles across laminar fluid streams. Small Weinh Bergstr Ger 8:2757–2764. doi: 10.1002/smll.201200588 CrossRefGoogle Scholar
  73. 73.
    Amini H, Sollier E, Masaeli M, Xie Y, Ganapathysubramanian B et al (2013) Engineering fluid flow using sequenced microstructures. Nat Commun 4:1826. doi: 10.1038/ncomms2841 PubMedCrossRefGoogle Scholar
  74. 74.
    Maerkl SJ, Quake SR (2007) A systems approach to measuring the binding energy landscapes of transcription factors. Science 315:233–237. doi: 10.1126/science.1131007 PubMedCrossRefGoogle Scholar
  75. 75.
    Fordyce PM, Gerber D, Tran D, Zheng J, Li H et al (2010) De novo identification and biophysical characterization of transcription-factor binding sites with microfluidic affinity analysis. Nat Biotechnol 28:970–975. doi: 10.1038/nbt.1675 PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Hong JW, Studer V, Hang G, Anderson WF, Quake SR (2004) A nanoliter-scale nucleic acid processor with parallel architecture. Nat Biotechnol 22:435–439. doi: 10.1038/nbt951 PubMedCrossRefGoogle Scholar
  77. 77.
    Martin L, Meier M, Lyons SM, Sit RV, Marzluff WF et al (2012) Systematic reconstruction of RNA functional motifs with high-throughput microfluidics. Nat Methods 9:1192–1194. doi: 10.1038/nmeth.2225 PubMedCrossRefGoogle Scholar
  78. 78.
    Ramakrishnan R, Qin J, Jones RC, Weaver LS (2013) Integrated Fluidic Circuits (IFCs) for digital PCR. Methods Mol Biol Clifton NJ 949:423–431. doi: 10.1007/978-1-62703-134-9_27 CrossRefGoogle Scholar
  79. 79.
    Kiss MM, Ortoleva-Donnelly L, Beer NR, Warner J, Bailey CG et al (2008) High-throughput quantitative polymerase chain reaction in picoliter droplets. Anal Chem 80:8975–8981PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Gardner SN, Hiddessen AL, Williams PL, Hara C, Wagner MC et al (2009) Multiplex primer prediction software for divergent targets. Nucleic Acids Res 37:6291–6304. doi:10.1093/nar/gkp659PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Ella Palmer 2014

Authors and Affiliations

  1. 1.Department of BioengineeringUniversity of CaliforniaLos AngelesUSA
  2. 2.Molecular Screening Shared ResourcesCalifornia NanoSystems InstituteLos AngelesUSA

Personalised recommendations