Skip to main content

Cell-Based Microarrays: Recent Advances for Gene Function Analyses

  • Chapter
  • First Online:
Cell-Based Microarrays

Abstract

Reverse transfected cell microarrays (RTCM) are a powerful tool for the systematic analyses of gene functions. With this technology more than a thousand different nucleic acids can be transfected into eukaryotic cells in parallel on a single glass slide. This allows high-throughput analyses of gene functions using gain-of-function, loss-of-function, and mutation approaches. RTCM paved the way for genome-wide gene function analyses in order to determine gene functions involved in the molecular regulation of cell phenotypes in physiologic and pathophysiologic processes. Since RTCM was first introduced in 2001, the technique has been well established. Themethod was successfully used in several genome-wide and large-scale screenings, and novel analysis methods to detect gene functions have been developed. This chapter will summarize the most recent technological developments in the usage of RTCM, including optimization of (1) transfection efficiency, (2) reporter systems and automated data acquisition, (3) spotting density with decreased cross-contamination, and (4) the new development of assays to screen for paracrine gene effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A549:

Human alveolar basal epithelial cells

cDNA:

Complementary DNA

CFP:

Cyan fluorescent protein

COPI/COPII:

Coat protein I/Coat protein II

COX-2:

Cyclooxygenase 2

cPARP:

Cleaved poly ADP ribose polymerase

CRE:

cAMP response element

DNA:

Deoxyribonucleic acid

dsRNA:

Double-stranded ribonucleic acid

ECM:

Extracellular matrix protein

EdU:

5-ethynyl-2′-deoxyuridine

ER:

Endoplasmic reticulum

GBP-1:

Guanylate-binding protein 1

(E)GFP:

(Enhanced) green fluorescent protein

GPCR:

G protein-coupled receptor

GPR160:

G protein-coupled receptor 160

HCT116:

Colon carcinoma cell line

HEK293:

Human embryonic kidney cell line

HEK239T:

Human embryonic kidney cells expressing SV40 large T antigen

HeLa:

Cervix carcinoma cell line

HFIB:

Human fibroblasts

HIV:

Human immunodeficiency virus

HT29:

Colon adenocarcinoma cell line

HUVEC:

Human umbilical vein endothelial cells

ICAM-1:

Intercellular adhesion molecule 1

IFN-α:

Interferon-α

IFN-γ:

Interferon-γ

JNK:

c-Jun N-terminal kinase

K562:

Human erythroleukemia cell line

KPL-4:

Breast cancer cell line

LICM:

Lentivirus-infected cell microarray

LMP:

Low melting point

MAPK:

Mitogen-activated protein kinase

MCF-7:

Breast cancer cell line

MicroSCALE:

Microarrays of spatially confined adhesive lentiviral features

miRNA:

Micro ribonucleic acid

NF-κB:

Nuclear factor-kappa B

NLS:

Nuclear localization signal

NPY:

Neuropeptide Y

PC3:

Prostate cancer cell line

PEST:

Proline–glutamic acid–serine–threonine–protein sequence

PLL:

Poly-l-lysine

RFP:

Red fluorescent protein

RNAi:

Ribonucleic acid interference

RTCM:

Reverse transfected cell microarray

S2R+:

Schneider S2 embryonic drosophila cell line

SHARPIN:

SHANK-associated RH domain interactor

shRNA:

Short hairpin ribonucleic acid

siRNA:

Small interfering ribonucleic acid

SW480:

Colon adenocarcinoma cell line

TNF-α:

Tumor necrosis factor-α

TORC1:

Target of rapamycin complex 1

tsO45G:

Temperature-sensitive CFP-coupled viral membrane protein

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end label

U2OS:

Human osteosarcoma cell line

VCAM-1:

Vascular cell adhesion molecule 1

WiDr:

Colon adenocarcinoma cell line

YFP:

Yellow fluorescent protein

References

  1. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  PubMed  CAS  Google Scholar 

  2. Stürzl M, Konrad A, Sander G, Wies E, Neipel F, Naschberger E, Reipschläger S, Gonin-Laurent N, Horch RE, Kneser U, Hohenberger W, Erfle H, Thurau M (2008) High throughput screening of gene functions in mammalian cells using reverse transfected cell arrays: review and protocol. Comb Chem High Throughput Screen 11:159–172

    Article  PubMed  Google Scholar 

  3. Ziauddin J, Sabatini DM (2001) Microarrays of cells expressing defined cDNAs. Nature 411:107–110

    Article  PubMed  CAS  Google Scholar 

  4. Konrad A, Jochmann R, Kuhn E, Naschberger E, Chudasama P, Stürzl M (2011) Reverse transfected cell microarrays in infectious disease research. Methods Mol Biol 706:107–118

    Article  PubMed  CAS  Google Scholar 

  5. Erfle H, Neumann B, Liebel U, Rogers P, Held M, Walter T, Ellenberg J, Pepperkok R (2007) Reverse transfection on cell arrays for high content screening microscopy. Nat Protoc 2:392–399

    Article  PubMed  CAS  Google Scholar 

  6. Yoshikawa T, Uchimura E, Kishi M, Funeriu DP, Miyake M, Miyake J (2004) Transfection microarray of human mesenchymal stem cells and on-chip siRNA gene knockdown. J Control Release 96:227–232

    Article  PubMed  CAS  Google Scholar 

  7. Uchimura E, Yamada S, Uebersax L, Yoshikawa T, Matsumoto K, Kishi M, Funeriu DP, Miyake M, Miyake J (2005) On-chip transfection of PC12 cells based on the rational understanding of the role of ECM molecules: efficient, non-viral transfection of PC12 cells using collagen IV. Neurosci Lett 378:40–43

    Article  PubMed  CAS  Google Scholar 

  8. Mannherz O, Mertens D, Hahn M, Lichter P (2006) Functional screening for proapoptotic genes by reverse transfection cell array technology. Genomics 87:665–672

    Article  PubMed  CAS  Google Scholar 

  9. Palmer EL, Miller AD, Freeman TC (2006) Identification and characterisation of human apoptosis inducing proteins using cell-based transfection microarrays and expression analysis. BMC Genomics 7:145

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Konrad A, Wies E, Thurau M, Marquardt G, Naschberger E, Hentschel S, Jochmann R, Schulz TF, Erfle H, Brors B, Lausen B, Neipel F, Stürzl M (2009) A systems biology approach to identify the combination effects of human herpesvirus 8 genes on NF-kappaB activation. J Virol 83:2563–2574

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Webb BL, Diaz B, Martin GS, Lai F (2003) A reporter system for reverse transfection cell arrays. J Biomol Screen 8:620–623

    Article  PubMed  CAS  Google Scholar 

  12. Tian L, Wang P, Guo J, Wang X, Deng W, Zhang C, Fu D, Gao X, Shi T, Ma D (2007) Screening for novel human genes associated with CRE pathway activation with cell microarray. Genomics 90:28–34

    Article  PubMed  CAS  Google Scholar 

  13. Silva JM, Mizuno H, Brady A, Lucito R, Hannon GJ (2004) RNA interference microarrays: high-throughput loss-of-function genetics in mammalian cells. Proc Natl Acad Sci U S A 101:6548–6552

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Bailey SN, Ali SM, Carpenter AE, Higgins CO, Sabatini DM (2006) Microarrays of lentiviruses for gene function screens in immortalized and primary cells. Nat Methods 3:117–122

    Article  PubMed  CAS  Google Scholar 

  15. Neumann B, Held M, Liebel U, Erfle H, Rogers P, Pepperkok R, Ellenberg J (2006) High-throughput RNAi screening by time-lapse imaging of live human cells. Nat Methods 3:385–390

    Article  PubMed  CAS  Google Scholar 

  16. Neumann B, Walter T, Heriche JK, Bulkescher J, Erfle H, Conrad C, Rogers P, Poser I, Held M, Liebel U, Cetin C, Sieckmann F, Pau G, Kabbe R, Wunsche A, Satagopam V, Schmitz MH, Chapuis C, Gerlich DW, Schneider R, Eils R, Huber W, Peters JM, Hyman AA, Durbin R, Pepperkok R, Ellenberg J (2010) Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464:721–727

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Kato K, Umezawa K, Miyake M, Miyake J, Nagamune T (2004) Transfection microarray of nonadherent cells on an oleyl poly(ethylene glycol) ether-modified glass slide. Biotechniques 37:444–448, 450, 452.

    Google Scholar 

  18. Ji Q, Yamazaki T, Hanagata N, Lee MV, Hill JP, Ariga K (2012) Silica-based gene reverse transfection: an upright nanosheet network for promoted DNA delivery to cells. Chem Commun (Camb) 48:8496–8498

    Article  CAS  Google Scholar 

  19. Wood KC, Konieczkowski DJ, Johannessen CM, Boehm JS, Tamayo P, Botvinnik OB, Mesirov JP, Hahn WC, Root DE, Garraway LA, Sabatini DM (2012) MicroSCALE screening reveals genetic modifiers of therapeutic response in melanoma. Sci Signal 5:rs4

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Genovesio A, Giardini MA, Kwon YJ, de Macedo Dossin F, Choi SY, Kim NY, Kim HC, Jung SY, Schenkman S, Almeida IC, Emans N, Freitas-Junior LH (2011) Visual genome-wide RNAi screening to identify human host factors required for Trypanosoma cruzi infection. PLoS One 6:e19733

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Genovesio A, Kwon YJ, Windisch MP, Kim NY, Choi SY, Kim HC, Jung S, Mammano F, Perrin V, Boese AS, Casartelli N, Schwartz O, Nehrbass U, Emans N (2011) Automated genome-wide visual profiling of cellular proteins involved in HIV infection. J Biomol Screen 16:945–958

    Article  PubMed  CAS  Google Scholar 

  22. Simpson JC, Cetin C, Erfle H, Joggerst B, Liebel U, Ellenberg J, Pepperkok R (2007) An RNAi screening platform to identify secretion machinery in mammalian cells. J Biotechnol 129:352–365

    Article  PubMed  CAS  Google Scholar 

  23. Simpson JC, Joggerst B, Laketa V, Verissimo F, Cetin C, Erfle H, Bexiga MG, Singan VR, Heriche JK, Neumann B, Mateos A, Blake J, Bechtel S, Benes V, Wiemann S, Ellenberg J, Pepperkok R (2012) Genome-wide RNAi screening identifies human proteins with a regulatory function in the early secretory pathway. Nat Cell Biol 14:764–774

    Article  PubMed  CAS  Google Scholar 

  24. Wheeler DB, Bailey SN, Guertin DA, Carpenter AE, Higgins CO, Sabatini DM (2004) RNAi living-cell microarrays for loss-of-function screens in Drosophila melanogaster cells. Nat Methods 1:127–132

    Article  PubMed  CAS  Google Scholar 

  25. Lindquist RA, Ottina KA, Wheeler DB, Hsu PP, Thoreen CC, Guertin DA, Ali SM, Sengupta S, Shaul YD, Lamprecht MR, Madden KL, Papallo AR, Jones TR, Sabatini DM, Carpenter AE (2011) Genome-scale RNAi on living-cell microarrays identifies novel regulators of Drosophila melanogaster TORC1-S6K pathway signaling. Genome Res 21:433–446

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Rajan S, Djambazian H, Dang HC, Sladek R, Hudson TJ (2011) The living microarray: a high-throughput platform for measuring transcription dynamics in single cells. BMC Genomics 12:115

    Article  PubMed Central  PubMed  Google Scholar 

  27. Rantala JK, Makela R, Aaltola AR, Laasola P, Mpindi JP, Nees M, Saviranta P, Kallioniemi O (2011) A cell spot microarray method for production of high density siRNA transfection microarrays. BMC Genomics 12:162

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Fengler S, Bastiaens PI, Grecco HE, Roda-Navarro P (2012) Optimizing cell arrays for accurate functional genomics. BMC Res Notes 5:358

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Fredlund E, Staaf J, Rantala JK, Kallioniemi O, Borg A, Ringner M (2012) The gene expression landscape of breast cancer is shaped by tumor protein p53 status and epithelial-mesenchymal transition. Breast Cancer Res 14:R113

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Cepeda D, Ng HF, Sharifi HR, Mahmoudi S, Cerrato VS, Fredlund E, Magnusson K, Nilsson H, Malyukova A, Rantala J, Klevebring D, Vinals F, Bhaskaran N, Zakaria SM, Rahmanto AS, Grotegut S, Nielsen ML, Szigyarto CA, Sun D, Lerner M, Navani S, Widschwendter M, Uhlen M, Jirstrom K, Ponten F, Wohlschlegel J, Grander D, Spruck C, Larsson LG, Sangfelt O (2013) CDK-mediated activation of the SCF(FBXO) (28) ubiquitin ligase promotes MYC-driven transcription and tumourigenesis and predicts poor survival in breast cancer. EMBO Mol Med 5:1067–1086

    Article  CAS  Google Scholar 

  31. Cekaite L, Rantala JK, Bruun J, Guriby M, Agesen TH, Danielsen SA, Lind GE, Nesbakken A, Kallioniemi O, Lothe RA, Skotheim RI (2012) MiR-9, -31, and −182 deregulation promote proliferation and tumor cell survival in colon cancer. Neoplasia 14:868–879

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Rantala JK, Pouwels J, Pellinen T, Veltel S, Laasola P, Mattila E, Potter CS, Duffy T, Sundberg JP, Kallioniemi O, Askari JA, Humphries MJ, Parsons M, Salmi M, Ivaska J (2011) SHARPIN is an endogenous inhibitor of beta1-integrin activation. Nat Cell Biol 13:1315–1324

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Kuhn E, Naschberger E, Konrad A, Croner RS, Britzen-Laurent N, Jochmann R, Münstedt H, Stürzl M (2012) A novel chip-based parallel transfection assay to evaluate paracrine cell interactions. Lab Chip 12:1363–1372

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Mahimaidos Manoharan for valuable technical help and Alexander Jakin for help with the graphics.

Funding 

This work was supported by grants of the German Research Foundation (DFG-GK 1071, STU 238/6-1, SFB796), the German Federal Ministry of Education and Research (BMBF, Polyprobe-Study), the FAU Emerging Fields Initiative to M.S., of the German Cancer Aid (109510) to M.S. and E.N., and of the Interdisciplinary Center for Clinical Research (IZKF) of the University Hospital of the University of Erlangen-Nuremberg to M.S. and R.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Stürzl .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Ella Palmer

About this chapter

Cite this chapter

Gaus, D. et al. (2014). Cell-Based Microarrays: Recent Advances for Gene Function Analyses. In: Cell-Based Microarrays. SpringerBriefs in Cell Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0594-2_1

Download citation

Publish with us

Policies and ethics