The Human Gut Microbiome and Its Role in Obesity and the Metabolic Syndrome

Chapter
Part of the Nutrition and Health book series (NH)

Abstract

The gut microbiota helps balance key vital functions for the host, including immunity and nutritional status. Studies have also linked the microbiome to human mood and behavior, as well as many gut disorders, eczema, and a number of systemic disorders (Azad et al., CMAJ 185:385–394, 2013). Changes in the gut microbiota composition and/or activity may be implicated in the control of inflammation, fat storage, and altered glucose response in obese patients. Dietary short-chain fatty acids appear to be “indirect nutrients” produced by the gut microbiota that can modulate adiposity and immunity as well as send signals to the gut to produce hormones that regulate appetite, permeability, and inflammation. Numerous data have been published regarding differences in the composition of the gut microbiota in obesity. Taken together, the data currently published suggest that specific changes in the gut microbiota occur in overweight or obese patients and are either positively or negatively linked with adiposity, inflammation, and glucose or lipid homeostasis. Manipulation of the microbiota though diet can promote healthy weight loss by altering gut function and metabolism. Probiotics and prebiotics are interesting research tools to assess the relevance of specific bacteria in obesity. Prebiotics may lessen obesity and related metabolic stress by modulating gut peptides involved in the control of appetite and gut barrier function.

Keywords

Obesity Gut microbiome Dysbiosis Diet Prebiotics Probiotics Fecal bacteriotherapy 

References

  1. 1.
    Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari RS, et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ. 2013;185(5):385–94. PubMed PMID: 23401405. Epub 2013/02/13. Eng.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Conlan S, Kong HH, Segre JA. Species-level analysis of DNA sequence data from the NIH Human Microbiome Project. PLoS One. 2012;7(10):e47075. PubMed PMID: 23071716. Pubmed Central PMCID: 3468466. Epub 2012/10/17. eng.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, et al. The NIH Human Microbiome Project. Genome Res. 2009;19(12):2317–23. PubMed PMID: 19819907. Pubmed Central PMCID: 2792171. Epub 2009/10/13. eng.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Sears CL. A dynamic partnership: celebrating our gut flora. Anaerobe. 2005;11(5):247–51. PubMed PMID: 16701579. Epub 2006/05/17. eng.PubMedGoogle Scholar
  5. 5.
    Garcia-Mazcorro JF, Suchodolski JS, Jones KR, Clark-Price SC, Dowd SE, Minamoto Y, et al. Effect of the proton pump inhibitor omeprazole on the gastrointestinal bacterial microbiota of healthy dogs. FEMS Microbiol Ecol. 2012;80(3):624–36. PubMed PMID: 22324305. Epub 2012/02/14. eng.PubMedGoogle Scholar
  6. 6.
    Krznaric Z, Vranesic Bender D, Kunovic A, Kekez D, Stimac D. Gut microbiota and obesity. Dig Dis. 2012;30(2):196–200. PubMed PMID: 22722438. Epub 2012/06/23. eng.PubMedGoogle Scholar
  7. 7.
    Iyengar SR, Walker WA. Immune factors in breast milk and the development of atopic disease. J Pediatr Gastroenterol Nutr. 2012;55(6):641–7. PubMed PMID: 22684347. Epub 2012/06/12. eng.PubMedGoogle Scholar
  8. 8.
    Barclay AR, Russell RK, Wilson ML, Gilmour WH, Satsangi J, Wilson DC. Systematic review: the role of breastfeeding in the development of pediatric inflammatory bowel disease. J Pediatr. 2009;155(3):421–6. PubMed PMID: 19464699. Epub 2009/05/26. eng.PubMedGoogle Scholar
  9. 9.
    Carpenter L, Beral V, Strachan D, Ebi-Kryston KL, Inskip H. Respiratory symptoms as predictors of 27 year mortality in a representative sample of British adults. BMJ. 1989;299(6695):357–61. PubMed PMID: 2506967. Pubmed Central PMCID: 1837252. Epub 1989/08/05. eng.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Strachan DP. Family size, infection and atopy: the first decade of the “hygiene hypothesis”. Thorax. 2000;55 Suppl 1:S2–10. PubMed PMID: 10943631. Pubmed Central PMCID: 1765943. Epub 2000/08/16. eng.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Sheikh A, Strachan DP. The hygiene theory: fact or fiction? Curr Opin Otolaryngol Head Neck Surg. 2004;12(3):232–6. PubMed PMID: 15167035. Epub 2004/05/29. eng.PubMedGoogle Scholar
  12. 12.
    Bach JF, Chatenoud L. The hygiene hypothesis: an explanation for the increased frequency of insulin-dependent diabetes. Cold Spring Harb Perspect Med. 2012;2(2):a007799. PubMed PMID: 22355800. Pubmed Central PMCID: 3281594. Epub 2012/02/23. eng.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Little P, Stuart B, Moore M, et al. Amoxicillin for acute lower-respiratory-tract infection in primary care when pneumonia is not suspected: a 12-country, randomised, placebo-controlled trial. Lancet Infect Dis. 2013;13(2): 123–9. Epub December 19, 2012.PubMedGoogle Scholar
  14. 14.
    Sharland M. The use of antibacterials in children: a report of the Specialist Advisory Committee on Antimicrobial Resistance (SACAR) Paediatric Subgroup. J Antimicrob Chemother. 2007;60 Suppl 1:i15–26. PubMed PMID: 17656377. Epub 2007/09/14. eng.PubMedGoogle Scholar
  15. 15.
    Jernberg C, Lofmark S, Edlund C, Jansson JK. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007;1(1):56–66. PubMed PMID: 18043614. Epub 2007/11/29. eng.PubMedGoogle Scholar
  16. 16.
    Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A. 2011;108 Suppl 1:4554–61. PubMed PMID: 20847294. Pubmed Central PMCID: 3063582. Epub 2010/09/18. eng.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Fung I, Garrett JP, Shahane A, Kwan M. Do bugs control our fate? The influence of the microbiome on autoimmunity. Curr Allergy Asthma Rep. 2012;12(6):511–9. PubMed PMID: 22886439. Epub 2012/08/14. eng.PubMedGoogle Scholar
  18. 18.
    Kozyrskyj AL, Bahreinian S, Azad MB. Early life exposures: impact on asthma and allergic disease. Curr Opin Allergy Clin Immunol. 2011;11(5):400–6. PubMed PMID: 21772139. Epub 2011/07/21. eng.PubMedGoogle Scholar
  19. 19.
    Cernadas M. It takes a microbiome: commensals, immune regulation, and allergy. Am J Respir Crit Care Med. 2011;184(2):149–50. PubMed PMID: 21765026. Epub 2011/07/19. eng.PubMedGoogle Scholar
  20. 20.
    Hviid A, Svanstrom H, Frisch M. Antibiotic use and inflammatory bowel diseases in childhood. Gut. 2011;60(1): 49–54. PubMed PMID: 20966024. Epub 2010/10/23. eng.PubMedGoogle Scholar
  21. 21.
  22. 22.
    Jukes TH, Williams WL. Nutritional effects of antibiotics. Pharmacol Rev. 1953;5(4):381–420. PubMed PMID: 13120335. Epub 1953/12/01. eng.PubMedGoogle Scholar
  23. 23.
    Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488(7413):621–6. PubMed PMID: 22914093. Epub 2012/08/24. eng.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Bager P, Simonsen J, Nielsen NM, Frisch M. Cesarean section and offspring's risk of inflammatory bowel disease: a national cohort study. Inflamm Bowel Dis. 2012;18(5):857–62. PubMed PMID: 21739532. Epub 2011/07/09. eng.PubMedGoogle Scholar
  25. 25.
    Negele K, Heinrich J, Borte M, von Berg A, Schaaf B, Lehmann I, et al. Mode of delivery and development of atopic disease during the first 2 years of life. Pediatr Allergy Immunol. 2004;15(1):48–54. PubMed PMID: 14998382. Epub 2004/03/05. eng.PubMedGoogle Scholar
  26. 26.
    Cotten CM, Taylor S, Stoll B, Goldberg RN, Hansen NI, Sanchez PJ, et al. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatrics. 2009;123(1):58–66. PubMed PMID: 19117861. Pubmed Central PMCID: 2760222. Epub 2009/01/02. eng.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971–5. PubMed PMID: 20566857. Pubmed Central PMCID: 2900693. Epub 2010/06/23. eng.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Salminen S, Gibson GR, McCartney AL, Isolauri E. Influence of mode of delivery on gut microbiota composition in seven year old children. Gut. 2004;53(9):1388–9. PubMed PMID: 15306608. Pubmed Central PMCID: 1774211. Epub 2004/08/13. eng.PubMedCentralPubMedGoogle Scholar
  29. 29.
    De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691–6. Pubmed Central PMCID: 2930426. Epub 2010/08/04. eng.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8. PubMed PMID: 21885731. Pubmed Central PMCID: 3368382. Epub 2011/09/03. eng.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–80. PubMed PMID: 21508958. Epub 2011/04/22. eng.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature. 2010;464(7290):908–12. PubMed PMID: 20376150. Epub 2010/04/09. eng.PubMedGoogle Scholar
  33. 33.
    Macfarlane GT, Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int. 2012;95(1):50–60. PubMed PMID: 22468341. Epub 2012/04/04. eng.PubMedGoogle Scholar
  34. 34.
    Layden BT, Angueira AR, Brodsky M, Durai V, Lowe Jr WL. Short chain fatty acids and their receptors: new metabolic targets. Transl Res. 2013;161(3):131–40. PubMed PMID: 23146568. Epub 2012/11/14. Eng.PubMedGoogle Scholar
  35. 35.
    Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–23. PubMed PMID: 15505215. Pubmed Central PMCID: 524219. Epub 2004/10/27. eng.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Leblanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013;24(2):160–8. PubMed PMID: 22940212. Epub 2012/09/04. Eng.PubMedGoogle Scholar
  37. 37.
    Ivanov II, Honda K. Intestinal commensal microbes as immune modulators. Cell Host Microbe. 2012;12(4): 496–508. PubMed PMID: 23084918. Pubmed Central PMCID: 3516493. Epub 2012/10/23. eng.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Yu LC, Wang JT, Wei SC, Ni YH. Host-microbial interactions and regulation of intestinal epithelial barrier function: from physiology to pathology. World J Gastrointest Pathophysiol. 2012;3(1):27–43. PubMed PMID: 22368784. Pubmed Central PMCID: 3284523. Epub 2012/03/01. eng.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Miyake Y, Yamamoto K. Role of gut microbiota in liver diseases. Hepatol Res. 2013;43(2):139–46. PubMed PMID: 22970713. Epub 2012/09/14. Eng.PubMedGoogle Scholar
  40. 40.
    Kelly CJ, Colgan SP, Frank DN. Of microbes and meals: the health consequences of dietary endotoxemia. Nutr Clin Pract. 2012;27(2):215–25. PubMed PMID: 22378797. Epub 2012/03/02. eng.PubMedCentralPubMedGoogle Scholar
  41. 41.
    Wilson ID, Nicholson JK. The role of gut microbiota in drug response. Curr Pharm Des. 2009;15(13):1519–23. PubMed PMID: 19442168. Epub 2009/05/16. eng.PubMedGoogle Scholar
  42. 42.
    Petersson J, Carlstrom M, Schreiber O, Phillipson M, Christoffersson G, Jagare A, et al. Gastroprotective and blood pressure lowering effects of dietary nitrate are abolished by an antiseptic mouthwash. Free Radic Biol Med. 2009;46(8):1068–75. PubMed PMID: 19439233. Epub 2009/05/15. eng.PubMedGoogle Scholar
  43. 43.
    Swann J, Wang Y, Abecia L, Costabile A, Tuohy K, Gibson G, et al. Gut microbiome modulates the toxicity of hydrazine: a metabonomic study. Mol Biosyst. 2009;5(4):351–5. PubMed PMID: 19396371. Epub 2009/04/28. eng.PubMedGoogle Scholar
  44. 44.
    Forsythe P, Kunze WA. Voices from within: gut microbes and the CNS. Cell Mol Life Sci. 2013;70(1):55–69. PubMed PMID: 22638926. Epub 2012/05/29. Eng.PubMedGoogle Scholar
  45. 45.
    Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 2009;6(5):306–14. PubMed PMID: 19404271. Epub 2009/05/01. eng.PubMedGoogle Scholar
  46. 46.
    Forsythe P, Sudo N, Dinan T, Taylor VH, Bienenstock J. Mood and gut feelings. Brain Behav Immun. 2010;24(1): 9–16. PubMed PMID: 19481599. Epub 2009/06/02. eng.PubMedGoogle Scholar
  47. 47.
    Boltin D, Niv Y. Ghrelin, Helicobacter pylori and body mass: is there an association? Isr Med Assoc J. 2012;14(2):130–2. PubMed PMID: 22693798. Epub 2012/06/15. eng.PubMedGoogle Scholar
  48. 48.
    Francois F, Roper J, Joseph N, Pei Z, Chhada A, Shak JR, et al. The effect of H. pylori eradication on meal-associated changes in plasma ghrelin and leptin. BMC Gastroenterol. 2011;11:37. PubMed PMID: 21489301. Pubmed Central PMCID: 3089783. Epub 2011/04/15. eng.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Chacko Y, Holtmann GJ. Helicobacter pylori eradication and weight gain: has it opened a Pandora’s box? Aliment Pharmacol Ther. 2011;34(2):256. PubMed PMID: 21679208. Epub 2011/06/18. eng.PubMedGoogle Scholar
  50. 50.
    Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482(7384):179–85. PubMed PMID: 22297845. Pubmed Central PMCID: 3276682. Epub 2012/02/03. eng.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Machado MV, Cortez-Pinto H. Gut microbiota and nonalcoholic fatty liver disease. Ann Hepatol. 2012;11(4): 440–9. PubMed PMID: 22700625. Epub 2012/06/16. eng.PubMedGoogle Scholar
  52. 52.
    Wigg AJ, Roberts-Thomson IC, Dymock RB, McCarthy PJ, Grose RH, Cummins AG. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut. 2001;48(2):206–11. PubMed PMID: 11156641. Pubmed Central PMCID: 1728215. Epub 2001/01/13. eng.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Lichtman SN, Keku J, Schwab JH, Sartor RB. Hepatic injury associated with small bowel bacterial overgrowth in rats is prevented by metronidazole and tetracycline. Gastroenterology. 1991;100(2):513–9. PubMed PMID: 1985047. Epub 1991/02/01. eng.PubMedGoogle Scholar
  54. 54.
    Howitt MR, Garrett WS. A complex microworld in the gut: gut microbiota and cardiovascular disease connectivity. Nat Med. 2012;18(8):1188–9. PubMed PMID: 22869188. Epub 2012/08/08. eng.PubMedGoogle Scholar
  55. 55.
    Martinez I, Perdicaro DJ, Brown AW, Hammons S, Carden TJ, Carr TP, et al. Diet-induced alterations of host cholesterol metabolism are likely to affect the gut microbiota composition in hamsters. Appl Environ Microbiol. 2013;79(2):516–24. PubMed PMID: 23124234. Epub 2012/11/06. eng.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5(2):e9085. PubMed PMID: 20140211. Pubmed Central PMCID: 2816710. Epub 2010/02/09. eng.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Membrez M, Blancher F, Jaquet M, Bibiloni R, Cani PD, Burcelin RG, et al. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J. 2008;22(7):2416–26. PubMed PMID: 18326786. Epub 2008/03/11. eng.PubMedGoogle Scholar
  58. 58.
    Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–6. PubMed PMID: 23985870.PubMedGoogle Scholar
  59. 59.
    Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500(7464):585–8. PubMed PMID: 23985875.PubMedGoogle Scholar
  60. 60.
    Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3(4):213–23. PubMed PMID: 18407065. Epub 2008/04/15. eng.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3. PubMed PMID: 17183309. Epub 2006/12/22. eng.PubMedGoogle Scholar
  62. 62.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31. PubMed PMID: 17183312. Epub 2006/12/22. eng.PubMedGoogle Scholar
  63. 63.
    Dhurandhar NV. Infectobesity: obesity of infectious origin. J Nutr. 2001;131(10):2794S–7. PubMed PMID: 11584109. Epub 2001/10/05. eng.PubMedGoogle Scholar
  64. 64.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4. PubMed PMID: 19043404. Pubmed Central PMCID: 2677729. Epub 2008/12/02. eng.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Gough E, Shaikh H, Manges AR. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect Dis. 2011;53(10):994–1002. PubMed PMID: 22002980. Epub 2011/10/18. eng.PubMedGoogle Scholar
  66. 66.
    Kalliomaki M, Collado MC, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr. 2008;87(3):534–8. PubMed PMID: 18326589. Epub 2008/03/11. eng.PubMedGoogle Scholar
  67. 67.
    Santacruz A, Collado MC, Garcia-Valdes L, Segura MT, Martin-Lagos JA, Anjos T, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr. 2010;104(1):83–92. PubMed PMID: 20205964. Epub 2010/03/09. eng.PubMedGoogle Scholar
  68. 68.
    Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A. 2009;106(7):2365–70. PubMed PMID: 19164560. Pubmed Central PMCID: 2629490. Epub 2009/01/24. eng.PubMedCentralPubMedGoogle Scholar
  69. 69.
    Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond). 2008;32(11):1720–4. PubMed PMID: 18779823. Epub 2008/09/10. eng.Google Scholar
  70. 70.
    Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18(1):190–5. PubMed PMID: 19498350. Epub 2009/06/06. eng.Google Scholar
  71. 71.
    Collado MC, Isolauri E, Laitinen K, Salminen S. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr. 2008;88(4):894–9. PubMed PMID: 18842773. Epub 2008/10/10. eng.PubMedGoogle Scholar
  72. 72.
    Santacruz A, Marcos A, Warnberg J, Marti A, Martin-Matillas M, Campoy C, et al. Interplay between weight loss and gut microbiota composition in overweight adolescents. Obesity (Silver Spring). 2009;17(10):1906–15. PubMed PMID: 19390523. Epub 2009/04/25. eng.Google Scholar
  73. 73.
    Nadal I, Santacruz A, Marcos A, Warnberg J, Garagorri JM, Moreno LA, et al. Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. Int J Obes (Lond). 2009;33(7):758–67. PubMed PMID: 19050675. Epub 2008/12/04. eng.Google Scholar
  74. 74.
    Greenblum S, Turnbaugh PJ, Borenstein E. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A. 2012;109(2):594–9. PubMed PMID: 22184244. Pubmed Central PMCID: 3258644. Epub 2011/12/21. eng.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1241214. PubMed PMID: 24009397.PubMedGoogle Scholar
  76. 76.
    Sabate JM, Jouet P, Harnois F, Mechler C, Msika S, Grossin M, et al. High prevalence of small intestinal bacterial overgrowth in patients with morbid obesity: a contributor to severe hepatic steatosis. Obes Surg. 2008;18(4): 371–7. PubMed PMID: 18286348. Epub 2008/02/21. eng.PubMedGoogle Scholar
  77. 77.
    Goodson JM, Groppo D, Halem S, Carpino E. Is obesity an oral bacterial disease? J Dent Res. 2009;88(6):519–23. PubMed PMID: 19587155. Pubmed Central PMCID: 2744897. Epub 2009/07/10. eng.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Xu J, Gordon JI. Honor thy symbionts. Proc Natl Acad Sci U S A. 2003;100(18):10452–9. PubMed PMID: 12923294. Pubmed Central PMCID: 193582. Epub 2003/08/19. eng.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Haight TH, Pierce WE. Effect of prolonged antibiotic administration of the weight of healthy young males. J Nutr. 1955;56(1):151–61. PubMed PMID: 14368380. Epub 1955/05/10. eng.PubMedGoogle Scholar
  80. 80.
    Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, Bogardus C, Gordon JI, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr. 2011;94(1): 58–65. Pubmed Central PMCID: 3127503. Epub 2011/05/06. eng.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Backhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 2007;104(3):979–84. PubMed PMID: 17210919. Pubmed Central PMCID: 1764762. Epub 2007/01/11. eng.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Mandard S, Zandbergen F, van Straten E, Wahli W, Kuipers F, Muller M, et al. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J Biol Chem. 2006;281(2):934–44. PubMed PMID: 16272564. Epub 2005/11/08. eng.PubMedGoogle Scholar
  83. 83.
    Rabot S, Membrez M, Bruneau A, Gerard P, Harach T, Moser M, et al. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J. 2010;24(12):4948–59. PubMed PMID: 20724524. Epub 2010/08/21. eng.PubMedGoogle Scholar
  84. 84.
    Reinhardt C, Reigstad CS, Backhed F. Intestinal microbiota during infancy and its implications for obesity. J Pediatr Gastroenterol Nutr. 2009;48(3):249–56. PubMed PMID: 19271298. Epub 2009/03/10. eng.PubMedGoogle Scholar
  85. 85.
    Holst JJ. Glucagon and glucagon-like peptides 1 and 2. Results Probl Cell Differ. 2010;50:121–35. PubMed PMID: 19960378. Epub 2009/12/05. eng.PubMedGoogle Scholar
  86. 86.
    Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58(8):1091–103. Pubmed Central PMCID: 2702831. Epub 2009/02/26. eng.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Cani PD, Hoste S, Guiot Y, Delzenne NM. Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of rats. Br J Nutr. 2007;98(1):32–7. PubMed PMID: 17367575. Epub 2007/03/21. eng.PubMedGoogle Scholar
  88. 88.
    Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A. 2008;105(43):16767–72. PubMed PMID: 18931303. Pubmed Central PMCID: 2569967. Epub 2008/10/22. eng.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Geurts L, Lazarevic V, Derrien M, Everard A, Van Roye M, Knauf C, et al. Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: impact on apelin regulation in adipose tissue. Front Microbiol. 2011;2:149. PubMed PMID: 21808634. Pubmed Central PMCID: 3139240. Epub 2011/08/03. eng.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Ding S, Lund PK. Role of intestinal inflammation as an early event in obesity and insulin resistance. Curr Opin Clin Nutr Metab Care. 2011;14(4):328–33. PubMed PMID: 21587067. Epub 2011/05/19. eng.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Creely SJ, McTernan PG, Kusminski CM, Fisher FM, Da Silva NF, Khanolkar M, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;292(3):E740–7. PubMed PMID: 17090751. Epub 2006/11/09. eng.PubMedGoogle Scholar
  92. 92.
    Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007;50(11):2374–83. PubMed PMID: 17823788. Epub 2007/09/08. eng.PubMedGoogle Scholar
  93. 93.
    Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, Prada PO, Hirabara SM, Schenka AA, et al. Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes. 2007;56(8): 1986–98. PubMed PMID: 17519423. Epub 2007/05/24. eng.PubMedGoogle Scholar
  94. 94.
    Al-Attas OS, Al-Daghri NM, Al-Rubeaan K, da Silva NF, Sabico SL, Kumar S, et al. Changes in endotoxin levels in T2DM subjects on anti-diabetic therapies. Cardiovasc Diabetol. 2009;8:20. PubMed PMID: 19368716. Pubmed Central PMCID: 2674418. Epub 2009/04/17. eng.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228–31. PubMed PMID: 20203013. Epub 2010/03/06. eng.PubMedGoogle Scholar
  96. 96.
    Yang RZ, Lee MJ, Hu H, Pollin TI, Ryan AS, Nicklas BJ, et al. Acute-phase serum amyloid A: an inflammatory adipokine and potential link between obesity and its metabolic complications. PLoS Med. 2006;3(6):e287. PubMed PMID: 16737350. Pubmed Central PMCID: 1472697. Epub 2006/06/02. eng.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72. PubMed PMID: 17456850. Epub 2007/04/26. eng.PubMedGoogle Scholar
  98. 98.
    Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–81. PubMed PMID: 18305141. Epub 2008/02/29. eng.PubMedGoogle Scholar
  99. 99.
    Ma X, Hua J, Li Z. Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells. J Hepatol. 2008;49(5):821–30. PubMed PMID: 18674841. Pubmed Central PMCID: 2588670. Epub 2008/08/05. eng.PubMedCentralPubMedGoogle Scholar
  100. 100.
    Lesniewska V, Rowland I, Cani PD, Neyrinck AM, Delzenne NM, Naughton PJ. Effect on components of the intestinal microflora and plasma neuropeptide levels of feeding Lactobacillus delbrueckii, Bifidobacterium lactis, and inulin to adult and elderly rats. Appl Environ Microbiol. 2006;72(10):6533–8. PubMed PMID: 17021202. Pubmed Central PMCID: 1610326. Epub 2006/10/06. eng.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. J Physiol. 2009;587(Pt 17): 4153–8. PubMed PMID: 19491241. Pubmed Central PMCID: 2754355. Epub 2009/06/06. eng.PubMedCentralPubMedGoogle Scholar
  102. 102.
    Dewulf EM, Cani PD, Neyrinck AM, Possemiers S, Van Holle A, Muccioli GG, et al. Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPARgamma-related adipogenesis in the white adipose tissue of high-fat diet-fed mice. J Nutr Biochem. 2011;22(8):712–22. PubMed PMID: 21115338. Epub 2010/12/01. eng.PubMedGoogle Scholar
  103. 103.
    Bjursell M, Admyre T, Goransson M, Marley AE, Smith DM, Oscarsson J, et al. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am J Physiol Endocrinol Metab. 2011;300(1):E211–20. PubMed PMID: 20959533. Epub 2010/10/21. eng.PubMedGoogle Scholar
  104. 104.
    Aronsson L, Huang Y, Parini P, Korach-Andre M, Hakansson J, Gustafsson JA, et al. Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4). PLoS One. 2010;5(9):e13087. PubMed PMID: 20927337. Pubmed Central PMCID: 2948012. Epub 2010/10/12. eng.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Gondalia SV, Palombo EA, Knowles SR, Cox SB, Meyer D, Austin DW. Molecular characterisation of gastrointestinal microbiota of children with autism (with and without gastrointestinal dysfunction) and their neurotypical siblings. Autism Res. 2012;5(6):419–27. PubMed PMID: 22997101. Epub 2012/09/22. eng.PubMedGoogle Scholar
  106. 106.
    Louis P. Does the human gut microbiota contribute to the etiology of autism spectrum disorders? Dig Dis Sci. 2012;57(8):1987–9. PubMed PMID: 22736019. Epub 2012/06/28. eng.PubMedGoogle Scholar
  107. 107.
    Russell SL, Finlay BB. The impact of gut microbes in allergic diseases. Curr Opin Gastroenterol. 2012;28(6): 563–9. PubMed PMID: 23010680. Epub 2012/09/27. eng.PubMedGoogle Scholar
  108. 108.
    Butler RN. Non-invasive tests in animal models and humans: a new paradigm for assessing efficacy of biologics including prebiotics and probiotics. Curr Pharm Des. 2008;14(14):1341–50. PubMed PMID: 18537657. Epub 2008/06/10. eng.PubMedGoogle Scholar
  109. 109.
    Bruzzese E, Volpicelli M, Squeglia V, Bruzzese D, Salvini F, Bisceglia M, et al. A formula containing galacto- and fructo-oligosaccharides prevents intestinal and extra-intestinal infections: an observational study. Clin Nutr. 2009;28(2):156–61. PubMed PMID: 19231042. Epub 2009/02/24. eng.PubMedGoogle Scholar
  110. 110.
    Quigley EM. Prebiotics and probiotics: their role in the management of gastrointestinal disorders in adults. Nutr Clin Pract. 2012;27(2):195–200. PubMed PMID: 22127952. Epub 2011/12/01. eng.PubMedGoogle Scholar
  111. 111.
    Clark MJ, Robien K, Slavin JL. Effect of prebiotics on biomarkers of colorectal cancer in humans: a systematic review. Nutr Rev. 2012;70(8):436–43. PubMed PMID: 22835137. Epub 2012/07/28. eng.PubMedGoogle Scholar
  112. 112.
    Komiyama Y, Mitsuyama K, Masuda J, Yamasaki H, Takedatsu H, Andoh A, et al. Prebiotic treatment in experimental colitis reduces the risk of colitic cancer. J Gastroenterol Hepatol. 2011;26(8):1298–308. PubMed PMID: 21303406. Epub 2011/02/10. eng.PubMedGoogle Scholar
  113. 113.
    Rafter J, Bennett M, Caderni G, Clune Y, Hughes R, Karlsson PC, et al. Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am J Clin Nutr. 2007;85(2):488–96. PubMed PMID: 17284748. Epub 2007/02/08. eng.PubMedGoogle Scholar
  114. 114.
    Legette LL, Lee W, Martin BR, Story JA, Campbell JK, Weaver CM. Prebiotics enhance magnesium absorption and inulin-based fibers exert chronic effects on calcium utilization in a postmenopausal rodent model. J Food Sci. 2012;77(4):H88–94. PubMed PMID: 22394255. Epub 2012/03/08. eng.PubMedGoogle Scholar
  115. 115.
    Grootaert C, Marzorati M, Van den Abbeele P, Van de Wiele T, Possemiers S. Prebiotics to manage the microbial control of energy homeostasis. Benef Microbes. 2011;2(4):305–18. PubMed PMID: 22146690. Epub 2011/12/08. eng.PubMedGoogle Scholar
  116. 116.
    Cani PD, Lecourt E, Dewulf EM, Sohet FM, Pachikian BD, Naslain D, et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr. 2009;90(5):1236–43. PubMed PMID: 19776140. Epub 2009/09/25. eng.PubMedGoogle Scholar
  117. 117.
    Cani PD, Delzenne NM. The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des. 2009;15(13):1546–58. PubMed PMID: 19442172. Epub 2009/05/16. eng.PubMedGoogle Scholar
  118. 118.
    Cani PD, Knauf C, Iglesias MA, Drucker DJ, Delzenne NM, Burcelin R. Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes. 2006;55(5):1484–90. PubMed PMID: 16644709. Epub 2006/04/29. eng.PubMedGoogle Scholar
  119. 119.
    Druart C, Neyrinck AM, Dewulf EM, De Backer FC, Possemiers S, Van de Wiele T, et al. Implication of fermentable carbohydrates targeting the gut microbiota on conjugated linoleic acid production in high-fat-fed mice. Br J Nutr. 2013;110(6):998–1011. PubMed PMID: 23507010.PubMedGoogle Scholar
  120. 120.
    Delzenne NM, Neyrinck AM, Cani PD. Gut microbiota and metabolic disorders: how prebiotic can work? Br J Nutr. 2013;109 Suppl 2:S81–5. PubMed PMID: 23360884.PubMedGoogle Scholar
  121. 121.
    Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22): 9066–71. PubMed PMID: 23671105. Pubmed Central PMCID: 3670398.PubMedCentralPubMedGoogle Scholar
  122. 122.
    Collado MC, Isolauri E, Laitinen K, Salminen S. Effect of mother’s weight on infant’s microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am J Clin Nutr. 2010;92(5):1023–30. PubMed PMID: 20844065. Epub 2010/09/17. eng.PubMedGoogle Scholar
  123. 123.
    Kanaya N, Chen S. Conjugated linoleic acid reduces body weight gain in ovariectomized female C57BL/6J mice. Nutr Res. 2010;30(10):714–21. PubMed PMID: 21056287. Pubmed Central PMCID: 3000560. Epub 2010/11/09. eng.PubMedCentralPubMedGoogle Scholar
  124. 124.
    Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1(6):6ra14. PubMed PMID: 20368178. Pubmed Central PMCID: 2894525. Epub 2010/04/07. eng.PubMedCentralPubMedGoogle Scholar
  125. 125.
    Cani PD, Delzenne NM. Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Curr Opin Pharmacol. 2009;9(6):737–43. PubMed PMID: 19628432. Epub 2009/07/25. eng.PubMedGoogle Scholar
  126. 126.
    Abrams SA, Griffin IJ, Hawthorne KM, Ellis KJ. Effect of prebiotic supplementation and calcium intake on body mass index. J Pediatr. 2007;151(3):293–8. PubMed PMID: 17719942. Epub 2007/08/28. eng.PubMedGoogle Scholar
  127. 127.
    Genta S, Cabrera W, Habib N, Pons J, Carillo IM, Grau A, et al. Yacon syrup: beneficial effects on obesity and insulin resistance in humans. Clin Nutr. 2009;28(2):182–7. PubMed PMID: 19254816. Epub 2009/03/04. eng.PubMedGoogle Scholar
  128. 128.
    Maurer AD, Chen Q, McPherson C, Reimer RA. Changes in satiety hormones and expression of genes involved in glucose and lipid metabolism in rats weaned onto diets high in fibre or protein reflect susceptibility to increased fat mass in adulthood. J Physiol. 2009;587(Pt 3):679–91. PubMed PMID: 19064620. Pubmed Central PMCID: 2670089. Epub 2008/12/10. eng.PubMedCentralPubMedGoogle Scholar
  129. 129.
    Maurer AD, Reimer RA. Maternal consumption of high-prebiotic fibre or -protein diets during pregnancy and lactation differentially influences satiety hormones and expression of genes involved in glucose and lipid metabolism in offspring in rats. Br J Nutr. 2011;105(3):329–38. PubMed PMID: 21129233. Epub 2010/12/07. eng.PubMedGoogle Scholar
  130. 130.
    Maurer AD, Eller LK, Hallam MC, Taylor K, Reimer RA. Consumption of diets high in prebiotic fiber or protein during growth influences the response to a high fat and sucrose diet in adulthood in rats. Nutr Metab. 2010;7:77. PubMed PMID: 20920272. Pubmed Central PMCID: 2958159. Epub 2010/10/06. eng.Google Scholar
  131. 131.
    Parnell JA, Reimer RA. Differential secretion of satiety hormones with progression of obesity in JCR:LA-corpulent rats. Obesity (Silver Spring). 2008;16(4):736–42. PubMed PMID: 18239578. Epub 2008/02/02. eng.Google Scholar
  132. 132.
    Parnell JA, Reimer RA. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr. 2009;89(6):1751–9. PubMed PMID: 19386741. Epub 2009/04/24. eng.PubMedGoogle Scholar
  133. 133.
    Li S, Wu WC, He CY, Han Z, Jin DY, Wang L. Change of intestinal mucosa barrier function in the progress of non-alcoholic steatohepatitis in rats. World J Gastroenterol. 2008;14(20):3254–8. PubMed PMID: 18506935. Pubmed Central PMCID: 2712862. Epub 2008/05/29. eng.PubMedCentralPubMedGoogle Scholar
  134. 134.
    Vajro P, Paolella G, Fasano A. Microbiota and gut-liver axis: a mini-review on their influences on obesity and obesity related liver disease. J Pediatr Gastroenterol Nutr. 2013;56(5):461–8. PubMed PMID: 23287807. Epub 2013/01/05. Eng.PubMedCentralPubMedGoogle Scholar
  135. 135.
    Muccioli GG, Naslain D, Backhed F, Reigstad CS, Lambert DM, Delzenne NM, et al. The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol. 2010;6:392. PubMed PMID: 20664638. Pubmed Central PMCID: 2925525. Epub 2010/07/29. eng.PubMedCentralPubMedGoogle Scholar
  136. 136.
    Van M. [Elie Metchnikoff, 1845-1916]. Voeding. 1964;25:351–6. PubMed PMID: 14260770. Epub 1964/07/15. Elie metchnikoff 1845-1916. dut.Google Scholar
  137. 137.
    Rettger LF. The influence of milk feeding on mortality and growth, and on the character of the intestinal flora. J Exp Med. 1915;21(4):365–88. PubMed PMID: 19867878. Pubmed Central PMCID: 2125318. Epub 1915/04/01. eng.PubMedCentralPubMedGoogle Scholar
  138. 138.
    Guzel-Seydim ZB, Kok-Tas T, Greene AK, Seydim AC. Review: functional properties of kefir. Crit Rev Food Sci Nutr. 2011;51(3):261–8. PubMed PMID: 21390946. Epub 2011/03/11. eng.PubMedGoogle Scholar
  139. 139.
    Ho JN, Choi JW, Lim WC, Kim MK, Lee IY, Cho HY. Kefir inhibits 3T3-L1 adipocyte differentiation through down-regulation of adipogenic transcription factor expression. J Sci Food Agric. 2013;93(3):485–90. PubMed PMID: 22821258. Epub 2012/07/24. Eng.PubMedGoogle Scholar
  140. 140.
    Kim EK, An SY, Lee MS, Kim TH, Lee HK, Hwang WS, et al. Fermented kimchi reduces body weight and improves metabolic parameters in overweight and obese patients. Nutr Res. 2011;31(6):436–43. PubMed PMID: 21745625. Epub 2011/07/13. eng.PubMedGoogle Scholar
  141. 141.
    Akhter M, Inoue M, Kurahashi N, Iwasaki M, Sasazuki S, Tsugane S. Dietary soy and isoflavone intake and risk of colorectal cancer in the Japan public health center-based prospective study. Cancer Epidemiol Biomarkers Prev. 2008;17(8):2128–35. PubMed PMID: 18708407. Epub 2008/08/19. eng.PubMedGoogle Scholar
  142. 142.
    Yamamoto S, Sobue T, Kobayashi M, Sasaki S, Tsugane S. Soy, isoflavones, and breast cancer risk in Japan. J Natl Cancer Inst. 2003;95(12):906–13. PubMed PMID: 12813174. Epub 2003/06/19. eng.PubMedGoogle Scholar
  143. 143.
    Velasquez MT, Bhathena SJ. Role of dietary soy protein in obesity. Int J Med Sci. 2007;4(2):72–82. PubMed PMID: 17396158. Pubmed Central PMCID: 1838825. Epub 2007/03/31. eng.PubMedCentralPubMedGoogle Scholar
  144. 144.
    Pauline T, Dipti P, Anju B, Kavimani S, Sharma SK, Kain AK, et al. Studies on toxicity, anti-stress and hepato-protective properties of Kombucha tea. Biomed Environ Sci. 2001;14(3):207–13. PubMed PMID: 11723720. Epub 2001/11/29. eng.PubMedGoogle Scholar
  145. 145.
    Bhattacharya S, Gachhui R, Sil PC. Hepatoprotective properties of kombucha tea against TBHP-induced oxidative stress via suppression of mitochondria dependent apoptosis. Pathophysiology. 2011;18(3):221–34. PubMed PMID: 21388793. Epub 2011/03/11. eng.PubMedGoogle Scholar
  146. 146.
    Murugesan GS, Sathishkumar M, Jayabalan R, Binupriya AR, Swaminathan K, Yun SE. Hepatoprotective and curative properties of Kombucha tea against carbon tetrachloride-induced toxicity. J Microbiol Biotechnol. 2009;19(4):397–402. PubMed PMID: 19420997. Epub 2009/05/08. eng.PubMedGoogle Scholar
  147. 147.
    Aloulou A, Hamden K, Elloumi D, Ali MB, Hargafi K, Jaouadi B, et al. Hypoglycemic and antilipidemic properties of kombucha tea in alloxan-induced diabetic rats. BMC Complement Altern Med. 2012;12:63. PubMed PMID: 22591682. Pubmed Central PMCID: 3403982. Epub 2012/05/18. eng.PubMedCentralPubMedGoogle Scholar
  148. 148.
    Hartmann AM, Burleson LE, Holmes AK, Geist CR. Effects of chronic kombucha ingestion on open-field behaviors, longevity, appetitive behaviors, and organs in c57-bl/6 mice: a pilot study. Nutrition. 2000;16(9):755–61. PubMed PMID: 10978857. Epub 2000/09/09. eng.PubMedGoogle Scholar
  149. 149.
    SungHee Kole A, Jones HD, Christensen R, Gladstein J. A case of Kombucha tea toxicity. J Intensive Care Med. 2009;24(3):205–7. PubMed PMID: 19460826. Epub 2009/05/23. eng.PubMedGoogle Scholar
  150. 150.
    Kombucha—toxicity alert. Crit Path AIDS Proj. 1994;(30):31–2. PubMed PMID: 11362190. Epub 1994/01/01. eng.Google Scholar
  151. 151.
    Vijayaraghavan R, Singh M, Rao PV, Bhattacharya R, Kumar P, Sugendran K, et al. Subacute (90 days) oral toxicity studies of Kombucha tea. Biomed Environ Sci. 2000;13(4):293–9. PubMed PMID: 11351863. Epub 2001/05/16. eng.PubMedGoogle Scholar
  152. 152.
    Mozaffarian D, Hao T, Rimm EB, Willett WC, Hu FB. Changes in diet and lifestyle and long-term weight gain in women and men. N Engl J Med. 2011;364(25):2392–404. PubMed PMID: 21696306.PubMedCentralPubMedGoogle Scholar
  153. 153.
    Chung KH, Shin KO, Yoon JA, Choi KS. Study on the obesity and nutrition status of housewives in Seoul and Kyunggi area. Nutr Res Pract. 2011;5(2):140–9. PubMed PMID: 21556228. Pubmed Central PMCID: 3085803. Epub 2011/05/11. eng.PubMedCentralPubMedGoogle Scholar
  154. 154.
    Chang BJ, Park SU, Jang YS, Ko SH, Joo NM, Kim SI, et al. Effect of functional yogurt NY-YP901 in improving the trait of metabolic syndrome. Eur J Clin Nutr. 2011;65(11):1250–5. PubMed PMID: 21697819. Epub 2011/06/24. eng.PubMedGoogle Scholar
  155. 155.
    Carlsson M, Gustafson Y, Haglin L, Eriksson S. The feasibility of serving liquid yoghurt supplemented with probiotic bacteria, Lactobacillus rhamnosus LB 21, and Lactococcus lactis L1A—a pilot study among old people with dementia in a residential care facility. J Nutr Health Aging. 2009;13(9):813–9. PubMed PMID: 19812872. Epub 2009/10/09. eng.PubMedGoogle Scholar
  156. 156.
    Diepvens K, Soenen S, Steijns J, Arnold M, Westerterp-Plantenga M. Long-term effects of consumption of a novel fat emulsion in relation to body-weight management. Int J Obes (Lond). 2007;31(6):942–9. PubMed PMID: 17299383. Epub 2007/02/15. eng.Google Scholar
  157. 157.
    Zemel MB, Richards J, Mathis S, Milstead A, Gebhardt L, Silva E. Dairy augmentation of total and central fat loss in obese subjects. Int J Obes (Lond). 2005;29(4):391–7. PubMed PMID: 15672113. Epub 2005/01/27. eng.Google Scholar
  158. 158.
    Lee M, Chae S, Cha Y, Park Y. Supplementation of Korean fermented soy paste doenjang reduces visceral fat in overweight subjects with mutant uncoupling protein-1 allele. Nutr Res. 2012;32(1):8–14. PubMed PMID: 22260858. Epub 2012/01/21. eng.PubMedGoogle Scholar
  159. 159.
    Tai MW, Sweet BV. Nattokinase for prevention of thrombosis. Am J Health Syst Pharm. 2006;63(12):1121–3. PubMed PMID: 16754735. Epub 2006/06/07. eng.PubMedGoogle Scholar
  160. 160.
    Jungbauer A, Medjakovic S. Phytoestrogens and the metabolic syndrome. J Steroid Biochem Mol Biol. 2014;139:277–89. PubMed PMID: 23318879. Epub 2013/01/16. Eng.PubMedGoogle Scholar
  161. 161.
    Torre-Villalvazo I, Tovar AR, Ramos-Barragan VE, Cerbon-Cervantes MA, Torres N. Soy protein ameliorates metabolic abnormalities in liver and adipose tissue of rats fed a high fat diet. J Nutr. 2008;138(3):462–8. PubMed PMID: 18287350. Epub 2008/02/22. eng.PubMedGoogle Scholar
  162. 162.
    Takemura N, Okubo T, Sonoyama K. Lactobacillus plantarum strain No. 14 reduces adipocyte size in mice fed high-fat diet. Exp Biol Med (Maywood). 2010;235(7):849–56.Google Scholar
  163. 163.
    Andreasen AS, Larsen N, Pedersen-Skovsgaard T, Berg RM, Moller K, Svendsen KD, et al. Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects. Br J Nutr. 2010;104(12):1831–8. PubMed PMID: 20815975. Epub 2010/09/08. eng.PubMedGoogle Scholar
  164. 164.
    Kadooka Y, Sato M, Imaizumi K, Ogawa A, Ikuyama K, Akai Y, et al. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr. 2010;64(6):636–43. PubMed PMID: 20216555. Epub 2010/03/11. eng.PubMedGoogle Scholar
  165. 165.
    Woodard GA, Encarnacion B, Downey JR, Peraza J, Chong K, Hernandez-Boussard T, et al. Probiotics improve outcomes after Roux-en-Y gastric bypass surgery: a prospective randomized trial. J Gastrointest Surg. 2009;13(7):1198–204. PubMed PMID: 19381735. Epub 2009/04/22. eng.PubMedGoogle Scholar
  166. 166.
    Luoto R, Kalliomaki M, Laitinen K, Isolauri E. The impact of perinatal probiotic intervention on the development of overweight and obesity: follow-up study from birth to 10 years. Int J Obes (Lond). 2010;34(10):1531–7. PubMed PMID: 20231842. Epub 2010/03/17. eng.Google Scholar
  167. 167.
    Aroniadis OC, Brandt LJ. Fecal microbiota transplantation: past, present and future. Curr Opin Gastroenterol. 2013;29(1):79–84. PubMed PMID: 23041678. Epub 2012/10/09. eng.PubMedGoogle Scholar
  168. 168.
    Borody TJ, Warren EF, Leis SM, Surace R, Ashman O, Siarakas S. Bacteriotherapy using fecal flora: toying with human motions. J Clin Gastroenterol. 2004;38(6):475–83. PubMed PMID: 15220681. Epub 2004/06/29. eng.PubMedGoogle Scholar
  169. 169.
    Eiseman B, Silen W, Bascom GS, Kauvar AJ. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery. 1958;44(5):854–9. PubMed PMID: 13592638. Epub 1958/11/01. eng.PubMedGoogle Scholar
  170. 170.
    Joeres-Nguyen-Xuan TH, Boehm SK, Joeres L, Schulze J, Kruis W. Survival of the probiotic Escherichia coli Nissle 1917 (EcN) in the gastrointestinal tract given in combination with oral mesalamine to healthy volunteers. Inflamm Bowel Dis. 2010;16(2):256–62. PubMed PMID: 19637333. Epub 2009/07/29. eng.PubMedGoogle Scholar
  171. 171.
    Bennet JD, Brinkman M. Treatment of ulcerative colitis by implantation of normal colonic flora. Lancet. 1989;1(8630):164. PubMed PMID: 2563083. Epub 1989/01/21. eng.PubMedGoogle Scholar
  172. 172.
    Damman CJ, Miller SI, Surawicz CM, Zisman TL. The microbiome and inflammatory bowel disease: is there a therapeutic role for fecal microbiota transplantation? Am J Gastroenterol. 2012;107(10):1452–9. PubMed PMID: 23034604. Epub 2012/10/05. eng.PubMedGoogle Scholar
  173. 173.
    Borody TJ, Leis S, Campbell J, Torres M, Nowak A. Fecal microbiota transplantation (FMT) in multiple sclerosis. Am J Gastroenterol. 2011;106:S352.Google Scholar
  174. 174.
    Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature. 2008;455(7216):1109–13. PubMed PMID: 18806780. Pubmed Central PMCID: 2574766. Epub 2008/09/23. eng.PubMedCentralPubMedGoogle Scholar
  175. 175.
    Vrieze A, Holleman F, Zoetendal EG, de Vos WM, Hoekstra JB, Nieuwdorp M. The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia. 2010;53(4):606–13. PubMed PMID: 20101384. Pubmed Central PMCID: 2830587. Epub 2010/01/27. eng.PubMedCentralPubMedGoogle Scholar
  176. 176.
    Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913–6 e7. PubMed PMID: 22728514. Epub 2012/06/26. eng.PubMedGoogle Scholar
  177. 177.
    El-Matary W, Simpson R, Ricketts-Burns N. Fecal microbiota transplantation: are we opening a can of worms? Gastroenterology. 2012;143(2):e19. author reply e-20. PubMed PMID: 22732575. Epub 2012/06/27. eng.PubMedGoogle Scholar
  178. 178.
    Brandt LJ, Aroniadis OC, Mellow M, Kanatzar A, Kelly C, Park T, et al. Long-term follow-up of colonoscopic fecal microbiota transplant for recurrent Clostridium difficile infection. Am J Gastroenterol. 2012;107(7): 1079–87. PubMed PMID: 22450732. Epub 2012/03/28. eng.PubMedGoogle Scholar
  179. 179.
    Brandt LJ. Fecal transplantation for the treatment of Clostridium difficile infection. Gastroenterol Hepatol. 2012;8(3):191–4. PubMed PMID: 22675283. Pubmed Central PMCID: 3365524. Epub 2012/06/08. eng.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Division of Gastroenterology and HepatologyJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Louvain Drug Research InstituteUniversité Catholique de LouvainBrusselsBelgium

Personalised recommendations