Advertisement

Obesity and Metabolic Syndrome: Etiopathogenic Analysis

  • Emilio González-JiménezEmail author
  • Gerard E. Mullin
Chapter
Part of the Nutrition and Health book series (NH)

Abstract

Obesity is a global pandemic and has become a serious health problem worldwide by producing considerable morbidity and mortality. Thus it is imperative for the scientific community to become familiar with the key etiological factors that are ultimately responsible for the development of obesity. The objective of this chapter is to review the important events involved in the pathophysiology of obesity leading to the dysregulation of energy balance, appetite, and metabolism.

Keywords

Obesity Physiology Pathophysiology Metabolic syndrome 

References

  1. 1.
    Aguilar Cordero MJ, Gonzalez Jimenez E, Garcia Garcia CJ, Garcia Lopez PA, Alvarez Ferre J, Padilla Lopez CA, et al. Obesity in a school children population from Granada: assessment of the efficacy of an educational intervention. Nutr Hosp. 2011;26(3):636–41.PubMedGoogle Scholar
  2. 2.
    Aguilar Cordero MJ, Gonzalez Jimenez E, Garcia Garcia CJ, Garcia Lopez P, Alvarez Ferre J, Padilla Lopez CA, et al. Comparative study of the effectiveness of body mass index and the body-fat percentage as methods for the diagnosis of overweight and obesity in children. Nutr Hosp. 2012;27(1):185–91.PubMedGoogle Scholar
  3. 3.
    Plachta-Danielzik S, Landsberg B, Seiberl J, Gehrke MI, Gose M, Kehden B, et al. Longitudinal data of the Kiel Obesity Prevention Study (KOPS). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2012;55 (6–7):885–91.CrossRefPubMedGoogle Scholar
  4. 4.
    Juonala M, Magnussen CG, Berenson GS, Venn A, Burns TL, Sabin MA, et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N Engl J Med. 2011;365(20):1876–85.CrossRefPubMedGoogle Scholar
  5. 5.
    Harris RB. Is leptin the parabiotic “satiety” factor? Past and present interpretations. Appetite. 2013;61(1):111–8.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Martindale RG, DeLegge M, McClave S, Monroe C, Smith V, Kiraly L. Nutrition delivery for obese ICU patients: delivery issues, lack of guidelines, and missed opportunities. J Parenter Enteral Nutr. 2011;35(5 Suppl):80S–7.CrossRefGoogle Scholar
  7. 7.
    McClave SA, Kushner R, Van Way 3rd CW, Cave M, DeLegge M, Dibaise J, et al. Nutrition therapy of the severely obese, critically ill patient: summation of conclusions and recommendations. J Parenter Enteral Nutr. 2011;35 (5 Suppl):88S–96.CrossRefGoogle Scholar
  8. 8.
    Tounian P. Programming towards childhood obesity. Ann Nutr Metab. 2011;58 Suppl 2:30–41.CrossRefPubMedGoogle Scholar
  9. 9.
    Serene TE, Shamarina S, Mohd NM. Familial and socio-environmental predictors of overweight and obesity among primary school children in Selangor and Kuala Lumpur. Malays J Nutr. 2011;17(2):151–62.PubMedGoogle Scholar
  10. 10.
    Murrin CM, Kelly GE, Tremblay RE, Kelleher CC. Body mass index and height over three generations: evidence from the lifeways cross-generational cohort study. BMC Public Health. 2012;12:81.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Zhang L, Avila L, Leyraud L, Grassi S, Grassi S, Raquel T, Bonfanti T, Ferruzzi E. Accuracy of parental and child’s reports of changes in symptoms of childhood asthma. Indian Pediatr. 2006;43(1):48–54.PubMedGoogle Scholar
  12. 12.
    Doo M, Kim Y. Association between ESR1 rs1884051 polymorphism and dietary total energy and plant protein intake on obesity in Korean men. Nutr Res Pract. 2011;5(6):527–32.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Perusse L, Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, et al. The human obesity gene map: the 2004 update. Obes Res. 2005;13(3):381–490.CrossRefPubMedGoogle Scholar
  14. 14.
    Baturin AK, Pogozheva AV, Sorokina E, Makurina ON, Tutel’ian VA. The study of polymorphism rs9939609 FTO gene in patients with overweight and obesity. Vopr Pitan. 2011;80(3):13–7.PubMedGoogle Scholar
  15. 15.
    Peng S, Zhu Y, Xu F, Ren X, Li X, Lai M. FTO gene polymorphisms and obesity risk: a meta-analysis. BMC Med. 2011;9:71.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    McTaggart JS, Lee S, Iberl M, Church C, Cox RD, Ashcroft FM. FTO is expressed in neurones throughout the brain and its expression is unaltered by fasting. PLoS One. 2011;6(11):e27968.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Liu G, Zhu H, Dong Y, Podolsky RH, Treiber FA, Snieder H. Influence of common variants in FTO and near INSIG2 and MC4R on growth curves for adiposity in African- and European-American youth. Eur J Epidemiol. 2011;26(6):463–73.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Wardle J, Carnell S, Haworth CM, Farooqi IS, O’Rahilly S, Plomin R. Obesity associated genetic variation in FTO is associated with diminished satiety. J Clin Endocrinol Metab. 2008;93(9):3640–3.CrossRefPubMedGoogle Scholar
  19. 19.
    Gonzalez JE. Genes and obesity: a cause and effect relationship. Endocrinologia y nutricion : organo de la Sociedad Espanola de. Endocrinol Nutr. 2011;58(9):492–6.CrossRefGoogle Scholar
  20. 20.
    Nativio DG. The genetics, diagnosis, and management of Prader-Willi syndrome. J Pediatr Health Care. 2002; 16(6):298–303.CrossRefPubMedGoogle Scholar
  21. 21.
    Braghetto I, Rodriguez A, Debandi A, Brunet L, Papapietro K, Pineda P, et al. Prader-Willi Syndrome (PWS) associated to morbid obesity: surgical treatment. Rev Med Chil. 2003;131(4):427–31.CrossRefPubMedGoogle Scholar
  22. 22.
    Girard D, Petrovsky N. Alstrom syndrome: insights into the pathogenesis of metabolic disorders. Nat Rev Endocrinol. 2011;7(2):77–88.CrossRefPubMedGoogle Scholar
  23. 23.
    Deeble VJ, Roberts E, Jackson A, Lench N, Karbani G, Woods CG. The continuing failure to recognise Alstrom syndrome and further evidence of genetic homogeneity. J Med Genet. 2000;37(3):219.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Marshall JD, Ludman MD, Shea SE, Salisbury SR, Willi SM, LaRoche RG, et al. Genealogy, natural history, and phenotype of Alstrom syndrome in a large Acadian kindred and three additional families. Am J Med Genet. 1997;73(2):150–61.CrossRefPubMedGoogle Scholar
  25. 25.
    Tehrani AB, Nezami BG, Gewirtz A, Srinivasan S. Obesity and its associated disease: a role for microbiota? Neurogastroenterol Motil. 2012;24(4):305–11.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–81.CrossRefPubMedGoogle Scholar
  27. 27.
    Sato M, Uzu K, Yoshida T, Hamad EM, Kawakami H, Matsuyama H, et al. Effects of milk fermented by Lactobacillus gasseri SBT2055 on adipocyte size in rats. Br J Nutr. 2008;99(5):1013–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Ma X, Hua J, Li Z. Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells. J Hepatol. 2008;49(5):821–30.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Skinner JD, Carruth BR, Moran 3rd J, Houck K, Coletta F. Fruit juice intake is not related to children’s growth. Pediatrics. 1999;103(1):58–64.CrossRefPubMedGoogle Scholar
  30. 30.
    Cavadini C, Siega-Riz AM, Popkin BM. US adolescent food intake trends from 1965 to 1996. West J Med. 2000; 173(6):378–83.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    González JE. Evaluación de la eficacia de una intervención educativa sobre nutrición y actividad física en niños y adolescentes escolares con sobrepeso y obesidad de Granada y provincia. Tesis Doctoral. Granada: Universidad de Granada; 2010.Google Scholar
  32. 32.
    Viner RM, Segal TY, Lichtarowicz-Krynska E, Hindmarsh P. Prevalence of the insulin resistance syndrome in obesity. Arch Dis Child. 2005;90(1):10–4.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Welsh JA, Cogswell ME, Rogers S, Rockett H, Mei Z, Grummer-Strawn LM. Overweight among low-income preschool children associated with the consumption of sweet drinks: Missouri, 1999–2002. Pediatrics. 2005; 115(2):e223–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Martinez AB, Caballero-Plasencia A, Mariscal-Arcas M, Velasco J, Rivas A, Olea-Serrano F. Study of nutritional menus offered at noon school in Granada. Nutr Hosp. 2010;25(3):394–9.PubMedGoogle Scholar
  35. 35.
    Salmon J, Timperio A, Telford A, Carver A, Crawford D. Association of family environment with children’s television viewing and with low level of physical activity. Obes Res. 2005;13(11):1939–51.CrossRefPubMedGoogle Scholar
  36. 36.
    Serra-Majem L, Aranceta Bartrina J, Perez-Rodrigo C, Ribas-Barba L, Delgado-Rubio A. Prevalence and determinants of obesity in Spanish children and young people. Br J Nutr. 2006;96 Suppl 1:S67–72.CrossRefPubMedGoogle Scholar
  37. 37.
    Stefanick ML. Physical activity for preventing and treating obesity-related dyslipoproteinemias. Med Sci Sports Exerc. 1999;31(11 Suppl):S609–18.CrossRefPubMedGoogle Scholar
  38. 38.
    Badman MK, Flier JS. The gut and energy balance: visceral allies in the obesity wars. Science. 2005;307(5717): 1909–14.CrossRefPubMedGoogle Scholar
  39. 39.
    Lowell BB, Spiegelman BM. Towards a molecular understanding of adaptive thermogenesis. Nature. 2000;404(6778): 652–60.PubMedGoogle Scholar
  40. 40.
    Ravussin E. Physiology. A NEAT way to control weight? Science. 2005;307(5709):530–1.CrossRefPubMedGoogle Scholar
  41. 41.
    Hill JO, Wyatt HR, Reed GW, Peters JC. Obesity and the environment: where do we go from here? Science. 2003;299(5608):853–5.CrossRefPubMedGoogle Scholar
  42. 42.
    Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509–17.CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Lopez-Jaramillo P, Garcia RG, Lopez M. Preventing pregnancy-induced hypertension: are there regional differences for this global problem? J Hypertens. 2005;23(6):1121–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395(6704):763–70.CrossRefPubMedGoogle Scholar
  45. 45.
    Ahima RS, Flier JS. Leptin. Annu Rev Physiol. 2000;62:413–37.CrossRefPubMedGoogle Scholar
  46. 46.
    Coll AP, Farooqi IS, O’Rahilly S. The hormonal control of food intake. Cell. 2007;129(2):251–62.CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Robertson SA, Leinninger GM, Myers Jr MG. Molecular and neural mediators of leptin action. Physiol Behav. 2008;94(5):637–42.CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Hegyi K, Fulop K, Kovacs K, Toth S, Falus A. Leptin-induced signal transduction pathways. Cell Biol Int. 2004; 28(3):159–69.CrossRefPubMedGoogle Scholar
  49. 49.
    Breton C. The hypothalamus-adipose axis is a key target of developmental programming by maternal nutritional manipulation. J Endocrinol. 2013;216(2):R19–31.CrossRefPubMedGoogle Scholar
  50. 50.
    Haskell-Luevano C, Cone RD, Monck EK, Wan YP. Structure activity studies of the melanocortin-4 receptor by in vitro mutagenesis: identification of agouti-related protein (AGRP), melanocortin agonist and synthetic peptide antagonist interaction determinants. Biochemistry. 2001;40(20):6164–79.CrossRefPubMedGoogle Scholar
  51. 51.
    Cone RD. Anatomy and regulation of the central melanocortin system. Nat Neurosci. 2005;8(5):571–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Nijenhuis WA, Oosterom J, Adan RA. AgRP(83–132) acts as an inverse agonist on the human-melanocortin-4 receptor. Mol Endocrinol. 2001;15(1):164–71.PubMedGoogle Scholar
  53. 53.
    Saper CB, Chou TC, Elmquist JK. The need to feed: homeostatic and hedonic control of eating. Neuron. 2002;36(2): 199–211.CrossRefPubMedGoogle Scholar
  54. 54.
    Heisler LK, Jobst EE, Sutton GM, Zhou L, Borok E, Thornton-Jones Z, et al. Serotonin reciprocally regulates melanocortin neurons to modulate food intake. Neuron. 2006;51(2):239–49.CrossRefPubMedGoogle Scholar
  55. 55.
    Yadav VK, Oury F, Tanaka KF, Thomas T, Wang Y, Cremers S, et al. Leptin-dependent serotonin control of appetite: temporal specificity, transcriptional regulation, and therapeutic implications. J Exp Med. 2011;208(1):41–52.CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Bloom S. Hormonal regulation of appetite. Obes Rev. 2007;8 Suppl 1:63–5.CrossRefPubMedGoogle Scholar
  57. 57.
    Roth CL, Enriori PJ, Gebhardt U, Hinney A, Muller HL, Hebebrand J, et al. Changes of peripheral alpha-melanocyte-stimulating hormone in childhood obesity. Metabolism. 2010;59(2):186–94.CrossRefPubMedGoogle Scholar
  58. 58.
    Cummings DE, Overduin J. Gastrointestinal regulation of food intake. J Clin Invest. 2007;117(1):13–23.CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Magni P, Vettor R, Pagano C, Calcagno A, Martini L, Motta M. Control of the expression of human neuropeptide Y by leptin: in vitro studies. Peptides. 2001;22(3):415–20.CrossRefPubMedGoogle Scholar
  60. 60.
    Woods SC, D’Alessio DA. Central control of body weight and appetite. J Clin Endocrinol Metab. 2008;93(11 Suppl 1): S37–50.CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Hameed S, Dhillo WS, Bloom SR. Gut hormones and appetite control. Oral Dis. 2009;15(1):18–26.CrossRefPubMedGoogle Scholar
  62. 62.
    Tschop M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML. Circulating ghrelin levels are decreased in human obesity. Diabetes. 2001;50(4):707–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Batterham RL, Le Roux CW, Cohen MA, Park AJ, Ellis SM, Patterson M, et al. Pancreatic polypeptide reduces appetite and food intake in humans. J Clin Endocrinol Metab. 2003;88(8):3989–92.CrossRefPubMedGoogle Scholar
  64. 64.
    Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656–60.CrossRefPubMedGoogle Scholar
  65. 65.
    Pusztai P, Sarman B, Ruzicska E, Toke J, Racz K, Somogyi A, et al. Ghrelin: a new peptide regulating the neurohormonal system, energy homeostasis and glucose metabolism. Diabetes Metab Res Rev. 2008;24(5):343–52.CrossRefPubMedGoogle Scholar
  66. 66.
    Huda MS, Wilding JP, Pinkney JH. Gut peptides and the regulation of appetite. Obes Rev. 2006;7(2):163–82.CrossRefPubMedGoogle Scholar
  67. 67.
    Muscelli E, Mari A, Casolaro A, Camastra S, Seghieri G, Gastaldelli A, et al. Separate impact of obesity and glucose tolerance on the incretin effect in normal subjects and type 2 diabetic patients. Diabetes. 2008;57(5): 1340–8.CrossRefPubMedGoogle Scholar
  68. 68.
    Opinto G, Natalicchio A, Marchetti P. Physiology of incretins and loss of incretin effect in type 2 diabetes and obesity. Arch Physiol Biochem. 2013;119(4):170–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131–57.CrossRefPubMedGoogle Scholar
  70. 70.
    Madsbad S, Krarup T, Deacon CF, Holst JJ. Glucagon-like peptide receptor agonists and dipeptidyl peptidase-4 inhibitors in the treatment of diabetes: a review of clinical trials. Curr Opin Clin Nutr Metab Care. 2008; 11(4):491–9.CrossRefPubMedGoogle Scholar
  71. 71.
    Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360(15):1518–25.CrossRefPubMedGoogle Scholar
  72. 72.
    Astrup A, Carraro R, Finer N, Harper A, Kunesova M, Lean ME, et al. Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide. Int J Obes (Lond). 2012;36(6):843–54.CrossRefGoogle Scholar
  73. 73.
    Essah PA, Levy JR, Sistrun SN, Kelly SM, Nestler JE. Effect of macronutrient composition on postprandial peptide YY levels. J Clin Endocrinol Metab. 2007;92(10):4052–5.CrossRefPubMedGoogle Scholar
  74. 74.
    Arsenijevic D, Gallmann E, Moses W, Lutz T, Erlanson-Albertsson C, Langhans W. Enterostatin decreases postprandial pancreatic UCP2 mRNA levels and increases plasma insulin and amylin. Am J Physiol Endocrinol Metab. 2005;289(1):E40–5.CrossRefPubMedGoogle Scholar
  75. 75.
    Karra E, Chandarana K, Batterham RL. The role of peptide YY in appetite regulation and obesity. J Physiol. 2009;587(Pt 1):19–25.CrossRefPubMedCentralPubMedGoogle Scholar
  76. 76.
    Teubner BJ, Bartness TJ. PYY into the arcuate nucleus inhibits food deprivation-induced increases in food hoarding and intake. Peptides. 2013;47C:20–8.CrossRefGoogle Scholar
  77. 77.
    Vermeulen A, Goemaere S, Kaufman JM. Testosterone, body composition and aging. J Endocrinol Invest. 1999; 22(5 Suppl):110–6.PubMedGoogle Scholar
  78. 78.
    Couillard C, Gagnon J, Bergeron J, Leon AS, Rao DC, Skinner JS, et al. Contribution of body fatness and adipose tissue distribution to the age variation in plasma steroid hormone concentrations in men: the HERITAGE Family Study. J Clin Endocrinol Metab. 2000;85(3):1026–31.PubMedGoogle Scholar
  79. 79.
    Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595–607.CrossRefPubMedGoogle Scholar
  80. 80.
    Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA. 2002;287(3):356–9.CrossRefPubMedGoogle Scholar
  81. 81.
    Meigs JB, Muller DC, Nathan DM, Blake DR, Andres R. Baltimore Longitudinal Study of A. The natural history of progression from normal glucose tolerance to type 2 diabetes in the Baltimore Longitudinal Study of Aging. Diabetes. 2003;52(6):1475–84.CrossRefPubMedGoogle Scholar
  82. 82.
    Ridker PM, Buring JE, Cook NR, Rifai N. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women. Circulation. 2003;107(3): 391–7.CrossRefPubMedGoogle Scholar
  83. 83.
    Sattar N, Gaw A, Scherbakova O, Ford I, O’Reilly DS, Haffner SM, et al. Metabolic syndrome with and without C-reactive protein as a predictor of coronary heart disease and diabetes in the West of Scotland Coronary Prevention Study. Circulation. 2003;108(4):414–9.CrossRefPubMedGoogle Scholar
  84. 84.
    Siani A, Cappuccio FP, Barba G, Trevisan M, Farinaro E, Lacone R, et al. The relationship of waist circumference to blood pressure: the Olivetti Heart Study. Am J Hypertens. 2002;15(9):780–6.CrossRefPubMedGoogle Scholar
  85. 85.
    Alvarez Leon EE, Ribas Barba L, Serra ML. Prevalence of the metabolic syndrome in the population of Canary Islands, Spain. Med Clin. 2003;120(5):172–4.CrossRefGoogle Scholar
  86. 86.
    Mills GW, Avery PJ, McCarthy MI, Hattersley AT, Levy JC, Hitman GA, et al. Heritability estimates for beta cell function and features of the insulin resistance syndrome in UK families with an increased susceptibility to type 2 diabetes. Diabetologia. 2004;47(4):732–8.CrossRefPubMedGoogle Scholar
  87. 87.
    Miettinen TA, Gylling H, Raitakari OT, Hallikainen M, Viikari J. Adolescent cholesterol metabolism predicts coronary risk factors at middle age: the Cardiovascular Risk in Young Finns Study. Transl Res. 2008;151(5):260–6.CrossRefPubMedGoogle Scholar
  88. 88.
    Srinivasan SR, Myers L, Berenson GS. Predictability of childhood adiposity and insulin for developing insulin resistance syndrome (syndrome X) in young adulthood: the Bogalusa Heart Study. Diabetes. 2002;51(1):204–9.CrossRefPubMedGoogle Scholar
  89. 89.
    Cruz ML, Weigensberg MJ, Huang TT, Ball G, Shaibi GQ, Goran MI. The metabolic syndrome in overweight Hispanic youth and the role of insulin sensitivity. J Clin Endocrinol Metab. 2004;89(1):108–13.CrossRefPubMedGoogle Scholar
  90. 90.
    Zimmet P, Magliano D, Matsuzawa Y, Alberti G, Shaw J. The metabolic syndrome: a global public health problem and a new definition. J Atheroscler Thromb. 2005;12(6):295–300.CrossRefPubMedGoogle Scholar
  91. 91.
    IDF. International Diabetes Federation. The IDF consensus worldwide definition of the metabolic syndrome. Diabetes atlas 2003; Disponible en: http://www.idf.org/webdata/docs/IDF_Metasyndrome_definition.pdf 2003.
  92. 92.
    Burrows R. Prevention and treatment of obesity since childhood: strategy to decrease the non transmissible chronic diseases in adult. Rev Med Chil. 2000;128(1):105–10.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Nursing, Faculty of Nursing (Campus of Melilla)University of GranadaMelillaSpain
  2. 2.Department of GastroenterologyJohns Hopkins HospitalBaltimoreUSA

Personalised recommendations