Skip to main content

Dietary Supplements for Obesity and the Metabolic Syndrome

  • Chapter
  • First Online:

Part of the book series: Nutrition and Health ((NH))

Abstract

Obesity is recognized as a public health threat that is engulfing the nation and the world. Since it is associated with a number of adverse health consequences, losing weight is often needed. This can be accomplished through a variety of interventions, ranging from surgery, to prescribed diet and exercise plans, to consuming over-the-counter supplements available for weight loss. Most individuals would be delighted to find a relatively effortless way to lose weight in “weight-loss pills.” People are attracted by the prospect of over-the-counter diet pills in part due to ease of access. The present review examines the scientific evidence concerning various weight-loss agents that are available over the counter or in food stores. The review provides a starting point to make informed choices, as well as advice for incorporating healthy alternatives in the diet.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity in the United States, 2009-2010. NCHS Data Brief. 2012;82:1–8.

    PubMed  Google Scholar 

  2. Forrester T. Epidemiologic transitions: migration and development of obesity and cardiometabolic disease in the developing world. Nestle Nutr Inst Workshop Ser. 2013;71:147–56.

    PubMed  Google Scholar 

  3. Centers for Disease Control and Prevention (CDC). Vital signs: state-specific obesity prevalence among adults—United States, 2009. MMWR Morb Mortal Wkly Rep. 2010;59:951–5.

    Google Scholar 

  4. Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999-2008. JAMA. 2010;303:235–41.

    CAS  PubMed  Google Scholar 

  5. Ogden CL, Carroll MD, Curtin LR, Lamb MM, Flegal KM. Prevalence of high body mass index in US children and adolescents, 2007-2008. JAMA. 2010;303:242–9.

    CAS  PubMed  Google Scholar 

  6. Puhl RM, Andreyeva T, Brownell KD. Perceptions of weight discrimination: prevalence and comparison to race and gender discrimination in America. Int J Obes. 2008;32:992–1000.

    CAS  Google Scholar 

  7. Amianto F, Lavagnino L, Abbate-Daga G, Fassino S. The forgotten psychosocial dimension of the obesity epidemic. Lancet. 2011;378(9805):e8. doi:10.1016/S0140-6736(11)61778-9.

    CAS  PubMed  Google Scholar 

  8. Wang YC, McPherson K, Marsh T, et al. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet. 2011;378:815–25.

    PubMed  Google Scholar 

  9. Field AE, Coakley EH, Must A, Spadano JL, Laird N, Dietz WH, Rimm E, Colditz GA. Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Arch Intern Med. 2001;161:1581–6.

    CAS  PubMed  Google Scholar 

  10. Janssen I, Katzmarzyk PT, Ross R. Body mass index, waist circumference, and health risk: evidence in support of current National Institutes of Health guidelines. Arch Intern Med. 2002;162:2074–9.

    PubMed  Google Scholar 

  11. Sullivan PW, Morrato EH, Ghushchyan V, Wyatt HR, Hill JO. Obesity, inactivity, and the prevalence of diabetes and diabetes-related cardiovascular comorbidities in the U.S., 2000-2002. Diabetes Care. 2005;28(7):1599–603.

    PubMed  Google Scholar 

  12. Nguyen DM, El-Serag HB. The epidemiology of obesity. Gastroenterol Clin North Am. 2010;39:1–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Grimm ER, Steinle NI. Genetics of eating behavior: established and emerging concepts. Nutr Rev. 2011;69:52–60.

    PubMed Central  PubMed  Google Scholar 

  14. Lake A, Townshend T. Obesogenic environments: exploring the built and food environments. J R Soc Promot Health. 2006;126:262–7.

    PubMed  Google Scholar 

  15. Carroll-Scott A, Gilstad-Hayden K, Rosenthal L, Peters SM, McCaslin C, Joyce R, Ickovics JR. Disentangling neighborhood contextual associations with child body mass index, diet, and physical activity: the role of built, socioeconomic, and social environments. Soc Sci Med. 2013;95:106–14. pii: S0277-9536(13)00214-1. doi: 10.1016/j.socscimed.2013.04.003.

    PubMed Central  PubMed  Google Scholar 

  16. Hill JO. Understanding and addressing the epidemic of obesity: an energy balance perspective. Endocr Rev. 2006;27:750–61.

    PubMed  Google Scholar 

  17. Popkin BM. The nutrition transition: an overview of world patterns of change. Nutr Rev. 2004;62:S140–3.

    PubMed  Google Scholar 

  18. McKee H, Ntoumanis N, Smith B. Weight maintenance: self-regulatory factors underpinning success and failure. Psychol Health. 2013;28(10):1207–23.

    PubMed  Google Scholar 

  19. Reyes NR, Oliver TL, Klotz AA, Lagrotte CA, Vander Veur SS, Virus A, Bailer BA, Foster GD. Similarities and differences between weight loss maintainers and regainers: a qualitative analysis. J Acad Nutr Diet. 2012;112(4):499–505.

    PubMed  Google Scholar 

  20. Chambers JA, Swanson V. Stories of weight management: factors associated with successful and unsuccessful weight maintenance. Br J Health Psychol. 2012;17(2):223–43.

    PubMed  Google Scholar 

  21. Davis MA, West AN, Weeks WB, Sirovich BE. Health behaviors and utilization among users of complementary and alternative medicine for treatment versus health promotion. Health Serv Res. 2011;46(5):1402–16.

    PubMed Central  PubMed  Google Scholar 

  22. Sharpe PA, Blanck HM, Williams JE, Ainsworth BE, Conway JM. Use of complementary and alternative medicine for weight control in the United States. J Altern Complement Med. 2007;13(2):217–22.

    PubMed  Google Scholar 

  23. Nahin RL, Barnes PM, Stussman BJ, Bloom B. Costs of complementary and alternative medicine (CAM) and frequency of visits to CAM practitioners: United States, 2007. Natl Health Stat Report. 2009;18:1–14.

    PubMed  Google Scholar 

  24. Barnes PM, Powell-Griner E, McFann K, Nahin RL. Complementary and alternative medicine use among adults: United States, 2002. Adv Data. 2004;343:1–19.

    PubMed  Google Scholar 

  25. Bailey RL, Gahche JJ, Miller PE, Thomas PR, Dwyer JT. Why US adults use dietary supplements. JAMA Intern Med. 2013;173(5):355–61.

    CAS  PubMed  Google Scholar 

  26. Pillitteri JL, Shiffman S, Rohay JM, Harkins AM, Burton SL, Wadden TA. Use of dietary supplements for weight loss in the United States: results of a national survey. Obesity (Silver Spring). 2008;16(4):790–6.

    CAS  Google Scholar 

  27. Mitchell D, Dodson D. The diet pill guide: the consumer’s book of over-the-counter and prescription weight-loss pills and supplements. New York: St. Martin’s Press; 2002.

    Google Scholar 

  28. Abdel Rahman A. The safety and regulation of natural products used as foods and food ingredients. Toxicol Sci. 2011;123(2):333–48.

    CAS  PubMed  Google Scholar 

  29. Harel Z, Harel S, Wald R, Mamdani M, Bell CM. The frequency and characteristics of dietary supplement recalls in the United States. JAMA Intern Med. 2013;173(10):929–30.

    Google Scholar 

  30. United States Department of Agriculture. National Agricultural Library. In: Dietary, functional, and total fiber. http://www.nal.usda.gov/fnic/DRI/DRI_Energy/339-421.pdf

  31. Jones JR, Lineback DM, Levine MJ. Dietary reference intakes: implications for fiber labeling and consumption: a summary of the International Life Sciences Institute North America Fiber Workshop, June 1-2, 2004, Washington, DC. Nutr Rev. 2006;64:31–8.

    PubMed  Google Scholar 

  32. Ello-Martin JA, Roe LS, Ledikwe JH, Beach AM, Rolls BJ. Dietary energy density in the treatment of obesity: a year-long trial comparing 2 weight-loss diets. Am J Clin Nutr. 2007;85:1465–77.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Ledikwe JH, Blanck HM, Kettel Khan L, Serdula MK, Seymour JD, Tohill BC, Rolls BJ. Dietary energy density is associated with energy intake and weight status in US adults. Am J Clin Nutr. 2006;83:1362–8.

    CAS  PubMed  Google Scholar 

  34. Kant AK, Graubard BI. Energy density of diets reported by American adults: association with food group intake, nutrient intake, and body weight. Int J Obes (Lond). 2005;29(8):950–6.

    CAS  Google Scholar 

  35. Ledikwe JH, Blanck HM, Khan LK, Serdula MK, Seymour JD, Tohill BC, Rolls BJ. Low-energy-density diets are associated with high diet quality in adults in the United States. J Am Diet Assoc. 2006;106:1172–80.

    PubMed  Google Scholar 

  36. Liu S, Willett WC, Manson JE, Hu FB, Rosner B, Colditz G. Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am J Clin Nutr. 2003;78:920–7.

    CAS  PubMed  Google Scholar 

  37. Samra RA, Anderson GH. Insoluble cereal fiber reduces appetite and short-term food intake and glycemic response to food consumed 75 min later by healthy men. Am J Clin Nutr. 2007;86:972–9.

    CAS  PubMed  Google Scholar 

  38. Lee YP, Mori TA, Sipsas S, Barden A, Puddey IB, Burke V, Hall RS, Hodgson JM. Lupin-enriched bread increases satiety and reduces energy intake acutely. Am J Clin Nutr. 2006;84:975–80.

    CAS  PubMed  Google Scholar 

  39. Slavin JL. Position of the American Dietetic Association: health implications of dietary fiber. J Am Diet Assoc. 2008;108(10):1716–31.

    PubMed  Google Scholar 

  40. Leung AY, Foster S. Encyclopedia of common natural ingredients used in food, drugs, and cosmetics. 2nd ed. New York: Wiley; 1996. p. 427–9.

    Google Scholar 

  41. Pal S, Radavelli-Bagatini S. Effects of psyllium on metabolic syndrome risk factors. Obes Rev. 2012;13(11):1034–47.

    CAS  PubMed  Google Scholar 

  42. Khossousi A, Binns CW, Dhaliwal SS, Pal S. The acute effects of psyllium on postprandial lipaemia and thermogenesis in overweight and obese men. Br J Nutr. 2008;99(5):1068–75. Epub 2007 Nov 16.

    CAS  PubMed  Google Scholar 

  43. Pal S, Khossousi A, Binns C, Dhaliwal S, Radavelli-Bagatini S. The effects of 12-week psyllium fibre supplementation or healthy diet on blood pressure and arterial stiffness in overweight and obese individuals. Br J Nutr. 2012;107(5):725–34.

    CAS  PubMed  Google Scholar 

  44. Sartore G, Reitano R, Barison A, Magnanini P, Cosma C, Burlina S, Manzato E, Fedele D, Lapolla A. The effects of psyllium on lipoproteins in type II diabetic patients. Eur J Clin Nutr. 2009;63:1269–71.

    CAS  PubMed  Google Scholar 

  45. Cicero AF, Derosa G, Manca M, Bove M, Borghi C, Gaddi AV. Different effect of psyllium and guar dietary supplementation on blood pressure control in hypertensive overweight patients: a six-month, randomized clinical trial. Clin Exp Hypertens. 2007;29:383–94.

    CAS  PubMed  Google Scholar 

  46. Pal S, Khossousi A, Binns C, Dhaliwal S, Ellis V. The effect of a fibre supplement compared to a healthy diet on body composition, lipids, glucose, insulin and other metabolic syndrome risk factors in overweight and obese individuals. Br J Nutr. 2011;105:90–100.

    CAS  PubMed  Google Scholar 

  47. Papathanasopoulos A, Camilleri M. Dietary fiber supplements: effects in obesity and metabolic syndrome and relationship to gastrointestinal functions. Gastroenterology. 2010;138(1):65–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  48. de Bock M, Derraik JG, Brennan CM, Biggs JB, Smith GC, Cameron-Smith D, Wall CR, Cutfield WS. Psyllium supplementation in adolescents improves fat distribution & lipid profile: a randomized, participant-blinded, placebo-controlled, crossover trial. PLoS One. 2012;7(7):e41735. doi:10.1371/journal.pone.0041735.

    PubMed Central  PubMed  Google Scholar 

  49. Salas-Salvadó J, Farrés X, Luque X, Narejos S, Borrell M, Basora J, Anguera A, Torres F, Bulló M, Balanza R; Fiber in Obesity-Study Group. Effect of two doses of a mixture of soluble fibres on body weight and metabolic variables in overweight or obese patients: a randomised trial. Br J Nutr. 2008;99:1380–7.

    Google Scholar 

  50. Rodríguez-Morán M, Guerrero-Romero F, Lazcano-Burciaga G. Lipid- and glucose-lowering efficacy of Plantago Psyllium in type II diabetes. J Diabetes Complications. 1998;12:273–8.

    PubMed  Google Scholar 

  51. Tai ES, Fok AC, Chu R, Tan CE. A study to assess the effect of dietary supplementation with soluble fibre (Minolest) on lipid levels in normal subjects with hypercholesterolaemia. Ann Acad Med Singapore. 1999;28:209–13.

    CAS  PubMed  Google Scholar 

  52. Vuksan V, Jenkins AL, Rogovik AL, Fairgrieve CD, Jovanovski E, Leiter LA. Viscosity rather than quantity of dietary fibre predicts cholesterol-lowering effect in healthy individuals. Br J Nutr. 2011;106:1349–52.

    CAS  PubMed  Google Scholar 

  53. Ziai SA, Larijani B, Akhoondzadeh S, et al. Psyllium decreased serum glucose and glycosylated hemoglobin significantly in diabetic outpatients. J Ethnopharmacol. 2005;102:202–7.

    CAS  PubMed  Google Scholar 

  54. Keithley J, Swanson B. Glucomannan and obesity: a critical review. Altern Ther Health Med. 2005;11:30–4.

    PubMed  Google Scholar 

  55. Institute of Medicine. Food chemicals codex. 5th ed. Washington, DC: National Academies; 2003.

    Google Scholar 

  56. Wood RJ, Fernandez ML, Sharman MJ, Silvestre R, Greene CM, Zern TL, Shrestha S, Judelson DA, Gomez AL, Kraemer WJ, Volek JS. Effects of a carbohydrate-restricted diet with and without supplemental soluble fiber on plasma low-density lipoprotein cholesterol and other clinical markers of cardiovascular risk. Metabolism. 2007;56:58–67.

    CAS  PubMed  Google Scholar 

  57. Vuksan V, Sievenpiper JL, Owen R, Swilley JA, Spadafora P, Jenkins DJ, Vidgen E, Brighenti F, Josse RG, Leiter LA, Xu Z, Novokmet R. Beneficial effects of viscous dietary fiber from Konjac-mannan in subjects with the insulin resistance syndrome: results of a controlled metabolic trial. Diabetes Care. 2000;23:9–14.

    CAS  PubMed  Google Scholar 

  58. Vuksan V, Jenkins DJ, Spadafora P, Sievenpiper JL, Owen R, Vidgen E, Brighenti F, Josse R, Leiter LA, Bruce-Thompson C. Konjac-mannan (glucomannan) improves glycemia and other associated risk factors for coronary heart disease in type 2 diabetes. A randomized controlled metabolic trial. Diabetes Care. 1999;22:913–9.

    CAS  PubMed  Google Scholar 

  59. Walsh DE, Yaghoubian V, Behforooz A. Effect of glucomannan on obese patients: a clinical study. Int J Obes. 1984;8:289–93.

    CAS  PubMed  Google Scholar 

  60. Reffo GC, Ghirardi PE, Forattini C. Glucomannan in hypertensive outpatients: pilot clinical trial. Curr Ther Res. 1988;44:22–7.

    Google Scholar 

  61. Reffo GC, Ghirardi PE, Forattini C. Double-blind evaluation of glucomannan versus placebo in post infracted patients after cardiac rehabilitation. Curr Ther Res. 1990;47:753–8.

    Google Scholar 

  62. Natural medicines comprehensive database online version. Stockton, CA: Therapeutic Research Center; 2004.

    Google Scholar 

  63. Gaudry P. Glucomanna diet tablets. Med J Aust. 1995;142:204.

    Google Scholar 

  64. Henry DA, Mitchell AS, Aylward J, et al. Glucomannan and risk of oesophageal obstruction. Br Med J (Clin Res Ed). 1986;292:591–2.

    CAS  Google Scholar 

  65. Evans E, Miller DS. Bulking agents in the treatment of obesity. Nutr Metab. 1975;18:199–203.

    CAS  PubMed  Google Scholar 

  66. Butt MS, Shahzadi N, Sharif MK, Nasir M. Guar gum: a miracle therapy for hypercholesterolemia, hyperglycemia and obesity. Crit Rev Food Sci Nutr. 2007;47(4):389–96.

    CAS  PubMed  Google Scholar 

  67. Kovacs EM, Westerterp-Plantenga MS, Saris WH, Goossens I, Geurten P, Brouns F. The effect of addition of modified guar gum to a low-energy semisolid meal on appetite and body weight loss. Int J Obes Relat Metab Disord. 2001;25:307–15.

    CAS  PubMed  Google Scholar 

  68. Kovacs EM, Westerterp-Plantenga MS, Saris WH, Melanson KJ, Goossens I, Geurten P, Brouns F. The effect of guar gum addition to a semisolid meal on appetite related to blood glucose, in dieting men. Eur J Clin Nutr. 2002;56:771–8.

    CAS  PubMed  Google Scholar 

  69. Tuomilehto J, Silvasti M, Manninen V, Uusitupa M, Aro A. Guar gum and gemfibrozil—an effective combination in the treatment of hypercholesterolaemia. Atherosclerosis. 1989;76(1):71–7.

    CAS  PubMed  Google Scholar 

  70. Krotkiewski M. Effect of guar gum on body-weight, hunger ratings and metabolism in obese subjects. Br J Nutr. 1984;52(1):97–105.

    CAS  PubMed  Google Scholar 

  71. Jenkins DJ, Reynolds D, Slavin B, Leeds AR, Jenkins AL, Jepson EM. Dietary fiber and blood lipids: treatment of hypercholesterolemia with guar crispbread. Am J Clin Nutr. 1980;33(3):575–81.

    CAS  PubMed  Google Scholar 

  72. Pittler MH, Ernst E. Guar gum for body weight reduction: meta-analysis of randomized trials. Am J Med. 2001;110:724–30.

    CAS  PubMed  Google Scholar 

  73. O’Neil CE, Nicklas TA, Zanovec M, Cho S. Whole-grain consumption is associated with diet quality and nutrient intake in adults: the National Health and Nutrition Examination Survey, 1999-2004. J Am Diet Assoc. 2010;110:1461–8.

    PubMed  Google Scholar 

  74. Blanck HM, Gillespie C, Kimmons JE, Seymour JD, Serdula MK. Trends in fruit and vegetable consumption among U.S. men and women, 1994-2005. Prev Chronic Dis. 2008;5:A35.

    PubMed  Google Scholar 

  75. Nicklas TA, Farris RP, Myers L, Berenson GS. Dietary fiber intake of children and young adults: the Bogalusa Heart Study. J Am Diet Assoc. 1995;95:209–14.

    CAS  PubMed  Google Scholar 

  76. Gallaher CM, Munion J, Hesslink Jr R, Wise J, Gallaher DD. Cholesterol reduction by glucomannan and chitosan is mediated by changes in cholesterol absorption and bile acid and fat excretion in rats. J Nutr. 2000;130:2753–9.

    CAS  PubMed  Google Scholar 

  77. Gallaher DD, Gallaher CM, Mahrt GJ, Carr TP, Hollingshead CH, Hesslink Jr R, Wise J. A glucomannan and chitosan fiber supplement decreases plasma cholesterol and increases cholesterol excretion in overweight normocholesterolemic humans. J Am Coll Nutr. 2002;21:428–33.

    CAS  PubMed  Google Scholar 

  78. Schiller RN, Barrager E, Schauss AG, Nichols EJ. A randomized, double-blind, placebo-controlled study examining the effects of a rapidly soluble chitosan dietary supplement on weight loss and body composition in overweight and mildly obese individuals. J Am Nutraceut Assoc. 2001;4:42–9.

    Google Scholar 

  79. Mhurchu CN, Poppitt SD, McGill AT, Leahy FE, Bennett DA, Lin RB, Ormrod D, Ward L, Strik C, Rodgers A. The effect of the dietary supplement, Chitosan, on body weight: a randomised controlled trial in 250 overweight and obese adults. Int J Obes Relat Metab Disord. 2004;28:1149–56.

    CAS  PubMed  Google Scholar 

  80. Mhurchu CN, Dunshea-Mooij C, Bennett D, Rodgers A. Effect of chitosan on weight loss in overweight and obese individuals: a systematic review of randomized controlled trials. Obes Rev. 2005;6:35–42.

    CAS  PubMed  Google Scholar 

  81. Pittler MH, Abbot NC, Harkness EF, Ernst E. Randomized, double-blind trial of chitosan for body weight reduction. Eur J Clin Nutr. 1999;53(5):379–81.

    CAS  PubMed  Google Scholar 

  82. Hernández-González SO, González-Ortiz M, Martínez-Abundis E, Robles-Cervantes JA. Chitosan improves insulin sensitivity as determined by the euglycemic-hyperinsulinemic clamp technique in obese subjects. Nutr Res. 2010;30:392–5.

    PubMed  Google Scholar 

  83. Kaats GR, Michalek JE, Preuss HG. Evaluating efficacy of a chitosan product using a double-blinded, placebo-controlled protocol. J Am Coll Nutr. 2006;25:389–94.

    PubMed  Google Scholar 

  84. Barrett ML, Udani JK. A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): a review of clinical studies on weight loss and glycemic control. Nutr J. 2011;10:24.

    PubMed Central  PubMed  Google Scholar 

  85. Islam FM, Rengifo J, Redden RJ, Basford KE, Beebe SE. Association between seed coat polyphenolics (tannins) and disease resistance in common bean. Plant Foods Hum Nutr. 2003;58(4):285–97.

    CAS  PubMed  Google Scholar 

  86. Aparicio-Fernandez X, Reynoso-Camacho R, Castano-Tostado E, Garcia-Gasca T, Gonzalez de Mejia E, Guzman-Maldonado SH, Elizondo G, Yousef GG, Lila MA, Loarca-Pina G. Antiradical capacity and induction of apoptosis on HeLa cells by a Phaseolus vulgaris extract. Plant Foods Hum Nutr. 2008;63(1):35–40.

    PubMed  Google Scholar 

  87. Fantini N, Cabras C, Lobina C, Colombo G, Gessa GL, Riva A, Donzelli F, Morazzoni P, Bombardelli E, Carai MA. Reducing effect of a Phaseolus vulgaris dry extract on food intake, body weight, and glycemia in rats. J Agric Food Chem. 2009;57(19):9316–23.

    CAS  PubMed  Google Scholar 

  88. Loi B, Fantini N, Colombo G, Gessa GL, Riva A, Bombardelli E, Morazzoni P, Carai MA. Reducing effect of an extract of Phaseolus vulgaris on food intake in mice—focus on highly palatable foods. Fitoterapia. 2013;85:14–9. doi:10.1016/j.fitote.2012.12.015.

    PubMed  Google Scholar 

  89. Jain NK, Boivin M, Zinsmeister AR, DiMagno EP. The ileum and carbohydrate-mediated feedback regulation of post-prandial pancreaticobiliary secretion in normal humans. Pancreas. 1991;6(5):495–505.

    CAS  PubMed  Google Scholar 

  90. Spadafranca A, Rinelli S, Riva A, Morazzoni P, Magni P, Bertoli S, Battezzati A. Phaseolus vulgaris extract affects glycometabolic and appetite control in healthy human subjects. Br J Nutr. 2013;109(10):1789–95.

    CAS  PubMed  Google Scholar 

  91. Udani J, Hardy M, Madsen DC. Blocking carbohydrate absorption and weight loss: a clinical trial using Phase 2 brand proprietary fractionated white bean extract. Altern Med Rev. 2004;9:63–9.

    PubMed  Google Scholar 

  92. Udani J, Singh BB. Blocking carbohydrate absorption and weight loss: a clinical trial using a proprietary fractionated white bean extract. Altern Ther Health Med. 2007;13:32–7.

    PubMed  Google Scholar 

  93. Celleno L, Tolaini MV, D’Amore A, Perricone NV, Preuss HG. A dietary supplement containing standardized Phaseolus vulgaris extract influences body composition of overweight men and women. Int J Med Sci. 2007;4:45–52.

    PubMed Central  PubMed  Google Scholar 

  94. Onakpoya I, Aldaas S, Terry R, Ernst E. The efficacy of Phaseolus vulgaris as a weight-loss supplement: a systematic review and meta-analysis of randomised clinical trials. Br J Nutr. 2011;106(2):196–202.

    CAS  PubMed  Google Scholar 

  95. Heckman MA, Weil J, Gonzalez de Mejia E. Caffeine (1, 3, 7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. J Food Sci. 2010;75:R77–87.

    CAS  PubMed  Google Scholar 

  96. Palacios N, Gao X, McCullough ML, Schwarzschild MA, Shah R, Gapstur S, Ascherio A. Caffeine and risk of Parkinson’s disease in a large cohort of men and women. Mov Disord. 2012;27(10):1276–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Kerzendorfer C, O’Driscoll M. UVB and caffeine: inhibiting the DNA damage response to protect against the adverse effects of UVB. J Invest Dermatol. 2009;129(7):1611–3.

    CAS  PubMed  Google Scholar 

  98. Doo T, Morimoto Y, Steinbrecher A, Kolonel LN, Maskarinec G. Coffee intake and risk of type 2 diabetes: the multiethnic cohort. Public Health Nutr. 2013;27:1–9.

    Google Scholar 

  99. Phung OJ, Baker WL, Matthews LJ, Lanosa M, Thorne A, Coleman CI. Effect of green tea catechins with or without caffeine on anthropometric measures: a systematic review and meta-analysis. Am J Clin Nutr. 2010;91:73–81.

    CAS  PubMed  Google Scholar 

  100. Westerterp-Plantenga MS, Lejeune MP, Kovacs EM. Body weight loss and weight maintenance in relation to habitual caffeine intake and green tea supplementation. Obes Res. 2005;13:1195–204.

    CAS  PubMed  Google Scholar 

  101. Hursel R, Viechtbauer W, Westerterp-Plantenga MS. The effects of green tea on weight loss and weight maintenance: a meta-analysis. Int J Obes. 2009;33:956–61.

    CAS  Google Scholar 

  102. Dulloo A, Geissler C, Horton T, Miller D. Normal caffeine consumption: influence on thermogenesis and daily energy expenditure in lean and postobese human volunteers. Am J Clin Nutr. 1989;49:44–50.

    CAS  PubMed  Google Scholar 

  103. Horst K, Willson RJ, Smith RG. The effect of coffee and decaffeinated coffee on oxygen consumption, pulse rate and blood pressure. J Pharmacol Exp Therap. 1936;58:294–304.

    Google Scholar 

  104. Acheson KJ, Zahorska-Markiewicz B, Anantharaman K, Jequier E. Caffeine and coffee: their influence on metabolic rate and substrate utilization in normal weight and obese individuals. Am J Clin Nutr. 1980;33:989–97.

    CAS  PubMed  Google Scholar 

  105. Benowitz NL, Jacob III P, Mayan H, Denaro C. Sympathomimetic effects of paraxanthine and caffeine in humans. Clin Pharmacol Ther. 1995;58:684–91.

    CAS  PubMed  Google Scholar 

  106. Toubro S, Astrup AV, Breum L, Quaade F. Safety and efficacy of long-term treatment with ephedrine, caffeine and an ephedrine/caffeine mixture. Int J Obes Relat Metab Disord. 1993;17 Suppl 1:S69–72.

    PubMed  Google Scholar 

  107. Molnár D, Török K, Erhardt E, Jeges S. Safety and efficacy of treatment with an ephedrine/caffeine mixture. The first double-blind placebo-controlled pilot study in adolescents. Int J Obes Relat Metab Disord. 2000;24(12):1573–8.

    PubMed  Google Scholar 

  108. Breum L, Pedersen JK, Ahlstrøm F, Frimodt-Møller J. Comparison of an ephedrine/caffeine combination and dexfenfluramine in the treatment of obesity. A double-blind multi-centre trial in general practice. Int J Obes Relat Metab Disord. 1994;18(2):99–103.

    CAS  PubMed  Google Scholar 

  109. Khan N, Mukhtar H. Tea polyphenols for health promotion. Life Sci. 2007;81:519–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Perva-Uzunalić A, Škerget M, Knez Ž, Weinreich B, Otto F, Grüner S. Extraction of active ingredients from green tea (Camellia sinensis): extraction efficiency of major catechins and caffeine. Food Chem. 2006;96:597–605.

    Google Scholar 

  111. Hartley L, Flowers N, Holmes J, Clarke A, Stranges S, Hooper L, Rees K. Green and black tea for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013;18:6.

    Google Scholar 

  112. Mak JC. Potential role of green tea catechins in various disease therapies: progress and promise. Clin Exp Pharmacol Physiol. 2012;39(3):265–73.

    CAS  PubMed  Google Scholar 

  113. Cross SE, Jin YS, Lu QY, Rao J, Gimzewski JK. Green tea extract selectively targets nanomechanics of live metastatic cancer cells. Nanotechnology. 2011;22:215101.

    PubMed Central  PubMed  Google Scholar 

  114. Tran PL, Kim SA, Choi HS, Yoon JH, Ahn SG. Epigallocatechin-3-gallate suppresses the expression of HSP70 and HSP90 and exhibits anti-tumor activity in vitro and in vivo. BMC Cancer. 2010;10:276.

    PubMed Central  PubMed  Google Scholar 

  115. Ikeda I. Multifunctional effects of green tea catechins on prevention of the metabolic syndrome. Asia Pac J Clin Nutr. 2008;17:273–4.

    CAS  PubMed  Google Scholar 

  116. Kim HM, Kim J. The effects of green tea on obesity and type 2 diabetes. Diabetes Metab J. 2013;37(3):173–5.

    PubMed Central  PubMed  Google Scholar 

  117. Wang H, Wen Y, Du Y, Yan X, Guo H, Rycroft JA, Boon N, Kovacs EM, Mela DJ. Effects of catechin enriched green tea on body composition. Obesity. 2010;18:773–9.

    PubMed  Google Scholar 

  118. Nagao T, Meguro S, Hase T, Otsuka K, Komikado M, Tokimitsu I, Yamamoto T, Yamamoto K. A catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes. Obesity. 2009;17:310–7.

    CAS  PubMed  Google Scholar 

  119. Nagao T, Hase T, Tokimitsu I. A green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity. 2007;15:1473–83.

    CAS  PubMed  Google Scholar 

  120. Maki KC, Reeves MS, Farmer M, Yasunaga K, Matsuo N, Katsuragi Y, Komikado M, Tokimitsu I, Wilder D, Jones F, Blumberg JB, Cartwright Y. Green tea catechin consumption enhances exercise-induced abdominal fat loss in overweight and obese adults. J Nutr. 2009;139:264–70.

    CAS  PubMed  Google Scholar 

  121. Cardoso GA, Salgado JM, Cesar Mde C, Donado-Pestana CM. The effects of green tea consumption and resistance training on body composition and resting metabolic rate in overweight or obese women. J Med Food. 2013;16(2):120–7.

    CAS  PubMed  Google Scholar 

  122. Yang HY, Yang SC, Chao JC, Chen JR. Beneficial effects of catechin-rich green tea and inulin on the body composition of overweight adults. Br J Nutr. 2012;107(5):749–54.

    CAS  PubMed  Google Scholar 

  123. Vieira Senger AE, Schwanke CH, Gomes I, Valle Gottlieb MG. Effect of green tea (Camellia sinensis) consumption on the components of metabolic syndrome in elderly. J Nutr Health Aging. 2012;16(9):738–42.

    CAS  PubMed  Google Scholar 

  124. Rains TM, Agarwal S, Maki KC. Antiobesity effects of green tea catechins: a mechanistic review. J Nutr Biochem. 2011;22:1–7.

    CAS  PubMed  Google Scholar 

  125. Jurgens TM, Whelan AM, Killian L, Doucette S, Kirk S, Foy E. Green tea for weight loss and weight maintenance in overweight or obese adults. Cochrane Database Syst Rev. 2012;12, CD008650.

    PubMed  Google Scholar 

  126. Hill AM, Coates AM, Buckley JD, Ross R, Thielecke F, Howe PR. Can EGCG reduce abdominal fat in obese subjects? J Am Coll Nutr. 2007;26(4):396S–402.

    CAS  PubMed  Google Scholar 

  127. Diepvens K, Kovacs EM, Vogels N, Westerterp-Plantenga MS. Metabolic effects of green tea and of phases of weight loss. Physiol Behav. 2006;87:185–91.

    CAS  PubMed  Google Scholar 

  128. Diepvens K, Kovacs EM, Nijs IM, Vogels N, Westerterp-Plantenga MS. Effect of green tea on resting energy expenditure and substrate oxidation during weight loss in overweight females. Br J Nutr. 2005;94:1026–34.

    CAS  PubMed  Google Scholar 

  129. Sarma DN, Barrett ML, Chavez ML, Gardiner P, Ko R, Mahady GB, Marles RJ, Pellicore LS, Giancaspro GI, Low Dog T. Safety of green tea extracts: a systematic review by the US Pharmacopeia. Drug Saf. 2008;31(6):469–84.

    PubMed  Google Scholar 

  130. Frank J, George TW, Lodge JK, Rodriguez-Mateos AM, Spencer JP, Minihane AM, Rimbach G. Daily consumption of an aqueous green tea extract supplement does not impair liver function or alter cardiovascular disease risk biomarkers in healthy men. J Nutr. 2009;139(1):58–62.

    CAS  PubMed  Google Scholar 

  131. Wee JJ, Mee Park K, Chung AS. Biological activities of ginseng and its application to human health. In: Benzie IFF, Wachtel-Galor S, editors. Herbal medicine: biomolecular and clinical aspects. 2nd ed. Boca Raton (FL): CRC Press; 2011.

    Google Scholar 

  132. Uzayisenga R, Ayeka PA, Wang Y. Anti-diabetic potential of panax notoginseng saponins (PNS): a review. Phytother Res. 2013 Jul 11. doi: 10.1002/ptr.5026.

    Google Scholar 

  133. Cho IH. Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res. 2012;36(4):342–53. doi:10.5142/jgr.2012.36.4.342.

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Lee CS, Lee JH, Oh M, Choi KM, Jeong MR, Park JD, Kwon DY, Ha KC, Park EO, Lee N, Kim SY, Choi EK, Kim MG, Chae SW. Preventive effect of Korean red ginseng for acute respiratory illness: a randomized and double-blind clinical trial. J Korean Med Sci. 2012;27(12):1472–8. doi:10.3346/jkms.2012.27.12.1472.

    PubMed Central  PubMed  Google Scholar 

  135. Han SY, Li HX, Ma X, Zhang K, Ma ZZ, Jiang Y, Tu PF. Evaluation of the anti-myocardial ischemia effect of individual and combined extracts of Panax notoginseng and Carthamus tinctorius in rats. J Ethnopharmacol. 2013;145(3):722–7.

    CAS  PubMed  Google Scholar 

  136. Lim S, Yoon JW, Choi SH, Cho BJ, Kim JT, Chang HS, Park HS, Park KS, Lee HK, Kim YB, Jang HC. Effect of ginsam, a vinegar extract from Panax ginseng, on body weight and glucose homeostasis in an obese insulin-resistant rat model. Metabolism. 2009;58:8–15.

    CAS  PubMed  Google Scholar 

  137. Kim JH, Kang SA, Han SM, Shim I. Comparison of the antiobesity effects of the protopanaxadiol- and protopanaxatriol-type saponins of red ginseng. Phytother Res. 2009;23:78–85.

    CAS  PubMed  Google Scholar 

  138. Han LK, Zheng YN, Yoshikawa M, Okuda H, Kimura Y. Anti-obesity effects of chikusetsusaponins isolated from Panax japonicus rhizomes. BMC Complement Altern Med. 2005;5:9.

    PubMed Central  PubMed  Google Scholar 

  139. Shergis JL, Zhang AL, Zhou W, Xue CC. Panax ginseng in randomised controlled trials: a systematic review. Phytother Res. 2013;27(7):949–65. doi:10.1002/ptr.4832. Epub 2012 Sep 12.

    PubMed  Google Scholar 

  140. Mollah ML, Kim GS, Moon HK, Chung SK, Cheon YP, Kim JK, Kim KS. Antiobesity effects of wild ginseng (Panax ginseng C.A. Meyer) mediated by PPAR-gamma, GLUT4 and LPL in ob/ob mice. Phytother Res. 2009;23:220–5.

    PubMed  Google Scholar 

  141. Sotaniemi EA, Haapakoski E, Rautio A. Ginseng therapy in non-insulin-dependent diabetic patients. Diabetes Care. 1995;18:1373–5.

    CAS  PubMed  Google Scholar 

  142. Anderson RA, Kozlovsky AS. Chromium intake, absorption and excretion of subjects consuming self-selected diets. Am J Clin Nutr. 1985;41:1177–83.

    CAS  PubMed  Google Scholar 

  143. Cefalu WT, Hu FB. Role of chromium in human health and in diabetes. Diabetes Care. 2004;11:2741–51.

    Google Scholar 

  144. Anderson RA. Chromium, glucose intolerance and diabetes. J Am Coll Nutr. 1998;17:548–55.

    CAS  PubMed  Google Scholar 

  145. Onakpoya IJ, Wider B, Pittler MH, Ernst E. Food supplements for body weight reduction: a systematic review of systematic reviews. Obesity. 2011;19:239–44.

    PubMed  Google Scholar 

  146. Anton SD, Morrison CD, Cefalu WT, Martin CK, Coulon S, Geiselman P, Han H, White CL, Williamson DA. Effects of chromium picolinate on food intake and satiety. Diabetes Technol Ther. 2008;10(5):405–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  147. Attenburrow MJ, Odontiadis J, Murray BJ, Cowen PJ, Franklin M. Chromium treatment decreases the sensitivity of 5-HT2A receptors. Psychopharmacology (Berl). 2002;159:432–6.

    CAS  Google Scholar 

  148. Lukaski HC, Siders WA, Penland JG. Chromium picolinate supplementation in women: effects on body weight, composition, and iron status. Nutrition. 2007;23(3):187–95.

    CAS  PubMed  Google Scholar 

  149. Onakpoya I, Posadzki P, Ernst E. Chromium supplementation in overweight and obesity: a systematic review and meta-analysis of randomized clinical trials. Obes Rev. 2013;14(6):496–507.

    CAS  PubMed  Google Scholar 

  150. Pasman WJ, Westerterp-Plantenga MS, Saris WH. The effectiveness of long-term supplementation of carbohydrate, chromium, fibre and caffeine on weight maintenance. Int J Obes Relat Metab Disord. 1997;21:1143–51.

    CAS  PubMed  Google Scholar 

  151. Crawford V, Scheckenbach R, Preuss HG. Effects of niacin-bound chromium supplementation on body composition in overweight African-American women. Diabetes Obes Metab. 1999;1:331–7.

    CAS  PubMed  Google Scholar 

  152. Yazaki Y, Faridi Z, Ma Y, Ali A, Northrup V, Njike VY, Liberti L, Katz DL. A pilot study of chromium picolinate for weight loss. J Altern Complement Med. 2010;16(3):291–9.

    PubMed  Google Scholar 

  153. Anderson RA, Cheng N, Bryden NA, Polansky MM, Cheng N, Chi J, Feng J. Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes. 1997;46(11):1786–91.

    CAS  PubMed  Google Scholar 

  154. Vincent JB. The potential value and toxicity of chromium picolinate as a nutritional supplement, weight loss agent and muscle development agent. Sports Med. 2003;33(3):213–30.

    PubMed  Google Scholar 

  155. Martin WR, Fuller RE. Suspected chromium picolinate-induced rhabdomyolysis. Pharmacotherapy. 1998;18(4):860–2.

    CAS  PubMed  Google Scholar 

  156. Cerulli J, Grabe DW, Gauthier I, Malone M, McGoldrick MD. Chromium picolinate toxicity. Ann Pharmacother. 1998;32(4):428–31.

    CAS  PubMed  Google Scholar 

  157. Rama Rao AV, Venkataswamy G, Yemul SS. Xanthochymol & isoxanthochymol; two polyisoprenylated benzophenones from Garcinia xanthochymus. Indian J Chem. 1980;19:627–33.

    Google Scholar 

  158. Jena BS, Jayaprakasha GK, Singh RP, Sakariah KK. Chemistry and biochemistry of (-)-hydroxycitric acid from Garcinia. J Agric Food Chem. 2002;50(1):10–22.

    CAS  PubMed  Google Scholar 

  159. Preuss HG, Rao CV, Garis R, Bramble JD, Ohia SE, Bagchi M, Bagchi D. An overview of the safety and efficacy of a novel, natural(-)-hydroxycitric acid extract (HCA-SX) for weight management. J Med. 2004;35(1–6):33–48.

    CAS  PubMed  Google Scholar 

  160. Heymsfield SB, Allison DB, Vasselli JR, Pietrobelli A, Greenfield D, Nunez C. Garcinia cambogia (hydroxycitric acid) as a potential antiobesity agent: a randomized controlled trial. JAMA. 1998;280:1596–600.

    CAS  PubMed  Google Scholar 

  161. Vasques CA, Rossetto S, Halmenschlager G, Linden R, Heckler E, Fernandez MS, Alonso JL. Evaluation of the pharmacotherapeutic efficacy of Garcinia cambogia plus Amorphophallus konjac for the treatment of obesity. Phytother Res. 2008;22:1135–40.

    CAS  PubMed  Google Scholar 

  162. Kovacs EM, Westerterp-Plantenga MS, de Vries M, Brouns F, Saris WH. Effects of 2-week ingestion of (-)-hydroxycitrate and (-)-hydroxycitrate combined with medium-chain triglycerides on satiety and food intake. Physiol Behav. 2001;74:543–9.

    CAS  PubMed  Google Scholar 

  163. Preuss HG, Garis RI, Bramble JD, Bagchi D, Bagchi M, Rao CV, Satyanarayana S. Efficacy of a novel calcium/potassium salt of (-)-hydroxycitric acid in weight control. Int J Clin Pharmacol Res. 2005;25:133–44.

    CAS  PubMed  Google Scholar 

  164. Lim K, Ryu S, Nho HS, Choi SK, Kwon T, Suh H, So J, Tomita K, Okuhara Y, Shigematsu N. (-)-Hydroxycitric acid ingestion increases fat utilization during exercise in untrained women. J Nutr Sci Vitaminol (Tokyo). 2003;49:163–7.

    CAS  Google Scholar 

  165. Kriketos AD, Thompson HR, Greene H, Hill JO. (-)-Hydroxycitric acid does not affect energy expenditure and substrate oxidation in adult males in a post-absorptive state. Int J Obes Relat Metab Disord. 1999;23:867–73.

    CAS  PubMed  Google Scholar 

  166. Oleszczuk J, Oleszczuk L, Siwicki AK, Skopińska-Skopińska E. Biological effects of conjugated linoleic acids supplementation. Pol J Vet Sci. 2012;15(2):403–8.

    CAS  PubMed  Google Scholar 

  167. McCrorie TA, Keaveney EM, Wallace JM, Binns N, Livingstone MB. Human health effects of conjugated linoleic acid from milk and supplements. Nutr Res Rev. 2011;24(2):206–27.

    CAS  PubMed  Google Scholar 

  168. Plourde M, Jew S, Cunnane SC, Jones PJ. Conjugated linoleic acids: why the discrepancy between animal and human studies? Nutr Rev. 2008;66:415–21.

    PubMed  Google Scholar 

  169. Kennedy A, Martinez K, Schmidt S, Mandrup S, LaPoint K, McIntosh M. Antiobesity mechanisms of action of conjugated linoleic acid. J Nutr Biochem. 2010;21(3):171–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  170. Larsen TM, Toubro S, Astrup A. Efficacy and safety of dietary supplements containing CLA for the treatment of obesity: evidence from animal and human studies. J Lipid Res. 2003;44(12):2234–41.

    CAS  PubMed  Google Scholar 

  171. Larsen TM, Toubro S, Gudmundsen O, Astrup A. Conjugated linoleic acid supplementation for 1 y does not prevent weight or body fat regain. Am J Clin Nutr. 2006;83:606–12.

    CAS  PubMed  Google Scholar 

  172. Malpuech-Brugère C, de Verboeket-van de Venne WP, Mensink RP, Arnal MA, Morio B, Brandolini M, Saebo A, Lassel TS, Chardigny JM, Sébédio JL, Beaufrère B. Effects of two conjugated linoleic acid isomers on body fat mass in overweight humans. Obes Res. 2004;12:591–8.

    PubMed  Google Scholar 

  173. Whigham LD, Watras AC, Schoeller DA. Efficacy of conjugated linoleic acid for reducing fat mass: a meta-analysis in humans. Am J Clin Nutr. 2007;85:1203–11.

    CAS  PubMed  Google Scholar 

  174. Venkatramanan S, Joseph SV, Chouinard PY, Jacques H, Farnworth ER, Jones PJ. Milk enriched with conjugated linoleic acid fails to alter blood lipids or body composition in moderately overweight, borderline hyperlipidemic individuals. J Am Coll Nutr. 2010;29:152–9.

    CAS  PubMed  Google Scholar 

  175. Watras AC, Buchholz AC, Close RN, Zhang Z, Schoeller DA. The role of conjugated linoleic acid in reducing body fat and preventing holiday weight gain. Int J Obes (Lond). 2007;31:481–7.

    CAS  Google Scholar 

  176. Gaullier JM, Halse J, Høye K, Kristiansen K, Fagertun H, Vik H, Gudmundsen O. Conjugated linoleic acid supplementation for 1 y reduces body fat mass in healthy overweight humans. Am J Clin Nutr. 2004;79:1118–25.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavita Poddar PhD, RD, CD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Poddar, K., Mullin, G.E., Cheskin, L.J. (2014). Dietary Supplements for Obesity and the Metabolic Syndrome. In: Mullin, G., Cheskin, L., Matarese, L. (eds) Integrative Weight Management. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0548-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0548-5_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0547-8

  • Online ISBN: 978-1-4939-0548-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics