Dietary Supplements for Obesity and the Metabolic Syndrome

  • Kavita PoddarEmail author
  • Gerard E. Mullin
  • Lawrence J. Cheskin
Part of the Nutrition and Health book series (NH)


Obesity is recognized as a public health threat that is engulfing the nation and the world. Since it is associated with a number of adverse health consequences, losing weight is often needed. This can be accomplished through a variety of interventions, ranging from surgery, to prescribed diet and exercise plans, to consuming over-the-counter supplements available for weight loss. Most individuals would be delighted to find a relatively effortless way to lose weight in “weight-loss pills.” People are attracted by the prospect of over-the-counter diet pills in part due to ease of access. The present review examines the scientific evidence concerning various weight-loss agents that are available over the counter or in food stores. The review provides a starting point to make informed choices, as well as advice for incorporating healthy alternatives in the diet.


Weight loss Over-the-counter supplements Obesity Diet pills 


  1. 1.
    Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity in the United States, 2009-2010. NCHS Data Brief. 2012;82:1–8.PubMedGoogle Scholar
  2. 2.
    Forrester T. Epidemiologic transitions: migration and development of obesity and cardiometabolic disease in the developing world. Nestle Nutr Inst Workshop Ser. 2013;71:147–56.PubMedGoogle Scholar
  3. 3.
    Centers for Disease Control and Prevention (CDC). Vital signs: state-specific obesity prevalence among adults—United States, 2009. MMWR Morb Mortal Wkly Rep. 2010;59:951–5.Google Scholar
  4. 4.
    Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999-2008. JAMA. 2010;303:235–41.PubMedGoogle Scholar
  5. 5.
    Ogden CL, Carroll MD, Curtin LR, Lamb MM, Flegal KM. Prevalence of high body mass index in US children and adolescents, 2007-2008. JAMA. 2010;303:242–9.PubMedGoogle Scholar
  6. 6.
    Puhl RM, Andreyeva T, Brownell KD. Perceptions of weight discrimination: prevalence and comparison to race and gender discrimination in America. Int J Obes. 2008;32:992–1000.Google Scholar
  7. 7.
    Amianto F, Lavagnino L, Abbate-Daga G, Fassino S. The forgotten psychosocial dimension of the obesity epidemic. Lancet. 2011;378(9805):e8. doi: 10.1016/S0140-6736(11)61778-9.PubMedGoogle Scholar
  8. 8.
    Wang YC, McPherson K, Marsh T, et al. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet. 2011;378:815–25.PubMedGoogle Scholar
  9. 9.
    Field AE, Coakley EH, Must A, Spadano JL, Laird N, Dietz WH, Rimm E, Colditz GA. Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Arch Intern Med. 2001;161:1581–6.PubMedGoogle Scholar
  10. 10.
    Janssen I, Katzmarzyk PT, Ross R. Body mass index, waist circumference, and health risk: evidence in support of current National Institutes of Health guidelines. Arch Intern Med. 2002;162:2074–9.PubMedGoogle Scholar
  11. 11.
    Sullivan PW, Morrato EH, Ghushchyan V, Wyatt HR, Hill JO. Obesity, inactivity, and the prevalence of diabetes and diabetes-related cardiovascular comorbidities in the U.S., 2000-2002. Diabetes Care. 2005;28(7):1599–603.PubMedGoogle Scholar
  12. 12.
    Nguyen DM, El-Serag HB. The epidemiology of obesity. Gastroenterol Clin North Am. 2010;39:1–7.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Grimm ER, Steinle NI. Genetics of eating behavior: established and emerging concepts. Nutr Rev. 2011;69:52–60.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Lake A, Townshend T. Obesogenic environments: exploring the built and food environments. J R Soc Promot Health. 2006;126:262–7.PubMedGoogle Scholar
  15. 15.
    Carroll-Scott A, Gilstad-Hayden K, Rosenthal L, Peters SM, McCaslin C, Joyce R, Ickovics JR. Disentangling neighborhood contextual associations with child body mass index, diet, and physical activity: the role of built, socioeconomic, and social environments. Soc Sci Med. 2013;95:106–14. pii: S0277-9536(13)00214-1. doi:  10.1016/j.socscimed.2013.04.003.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Hill JO. Understanding and addressing the epidemic of obesity: an energy balance perspective. Endocr Rev. 2006;27:750–61.PubMedGoogle Scholar
  17. 17.
    Popkin BM. The nutrition transition: an overview of world patterns of change. Nutr Rev. 2004;62:S140–3.PubMedGoogle Scholar
  18. 18.
    McKee H, Ntoumanis N, Smith B. Weight maintenance: self-regulatory factors underpinning success and failure. Psychol Health. 2013;28(10):1207–23.PubMedGoogle Scholar
  19. 19.
    Reyes NR, Oliver TL, Klotz AA, Lagrotte CA, Vander Veur SS, Virus A, Bailer BA, Foster GD. Similarities and differences between weight loss maintainers and regainers: a qualitative analysis. J Acad Nutr Diet. 2012;112(4):499–505.PubMedGoogle Scholar
  20. 20.
    Chambers JA, Swanson V. Stories of weight management: factors associated with successful and unsuccessful weight maintenance. Br J Health Psychol. 2012;17(2):223–43.PubMedGoogle Scholar
  21. 21.
    Davis MA, West AN, Weeks WB, Sirovich BE. Health behaviors and utilization among users of complementary and alternative medicine for treatment versus health promotion. Health Serv Res. 2011;46(5):1402–16.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Sharpe PA, Blanck HM, Williams JE, Ainsworth BE, Conway JM. Use of complementary and alternative medicine for weight control in the United States. J Altern Complement Med. 2007;13(2):217–22.PubMedGoogle Scholar
  23. 23.
    Nahin RL, Barnes PM, Stussman BJ, Bloom B. Costs of complementary and alternative medicine (CAM) and frequency of visits to CAM practitioners: United States, 2007. Natl Health Stat Report. 2009;18:1–14.PubMedGoogle Scholar
  24. 24.
    Barnes PM, Powell-Griner E, McFann K, Nahin RL. Complementary and alternative medicine use among adults: United States, 2002. Adv Data. 2004;343:1–19.PubMedGoogle Scholar
  25. 25.
    Bailey RL, Gahche JJ, Miller PE, Thomas PR, Dwyer JT. Why US adults use dietary supplements. JAMA Intern Med. 2013;173(5):355–61.PubMedGoogle Scholar
  26. 26.
    Pillitteri JL, Shiffman S, Rohay JM, Harkins AM, Burton SL, Wadden TA. Use of dietary supplements for weight loss in the United States: results of a national survey. Obesity (Silver Spring). 2008;16(4):790–6.Google Scholar
  27. 27.
    Mitchell D, Dodson D. The diet pill guide: the consumer’s book of over-the-counter and prescription weight-loss pills and supplements. New York: St. Martin’s Press; 2002.Google Scholar
  28. 28.
    Abdel Rahman A. The safety and regulation of natural products used as foods and food ingredients. Toxicol Sci. 2011;123(2):333–48.PubMedGoogle Scholar
  29. 29.
    Harel Z, Harel S, Wald R, Mamdani M, Bell CM. The frequency and characteristics of dietary supplement recalls in the United States. JAMA Intern Med. 2013;173(10):929–30.Google Scholar
  30. 30.
    United States Department of Agriculture. National Agricultural Library. In: Dietary, functional, and total fiber.
  31. 31.
    Jones JR, Lineback DM, Levine MJ. Dietary reference intakes: implications for fiber labeling and consumption: a summary of the International Life Sciences Institute North America Fiber Workshop, June 1-2, 2004, Washington, DC. Nutr Rev. 2006;64:31–8.PubMedGoogle Scholar
  32. 32.
    Ello-Martin JA, Roe LS, Ledikwe JH, Beach AM, Rolls BJ. Dietary energy density in the treatment of obesity: a year-long trial comparing 2 weight-loss diets. Am J Clin Nutr. 2007;85:1465–77.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Ledikwe JH, Blanck HM, Kettel Khan L, Serdula MK, Seymour JD, Tohill BC, Rolls BJ. Dietary energy density is associated with energy intake and weight status in US adults. Am J Clin Nutr. 2006;83:1362–8.PubMedGoogle Scholar
  34. 34.
    Kant AK, Graubard BI. Energy density of diets reported by American adults: association with food group intake, nutrient intake, and body weight. Int J Obes (Lond). 2005;29(8):950–6.Google Scholar
  35. 35.
    Ledikwe JH, Blanck HM, Khan LK, Serdula MK, Seymour JD, Tohill BC, Rolls BJ. Low-energy-density diets are associated with high diet quality in adults in the United States. J Am Diet Assoc. 2006;106:1172–80.PubMedGoogle Scholar
  36. 36.
    Liu S, Willett WC, Manson JE, Hu FB, Rosner B, Colditz G. Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am J Clin Nutr. 2003;78:920–7.PubMedGoogle Scholar
  37. 37.
    Samra RA, Anderson GH. Insoluble cereal fiber reduces appetite and short-term food intake and glycemic response to food consumed 75 min later by healthy men. Am J Clin Nutr. 2007;86:972–9.PubMedGoogle Scholar
  38. 38.
    Lee YP, Mori TA, Sipsas S, Barden A, Puddey IB, Burke V, Hall RS, Hodgson JM. Lupin-enriched bread increases satiety and reduces energy intake acutely. Am J Clin Nutr. 2006;84:975–80.PubMedGoogle Scholar
  39. 39.
    Slavin JL. Position of the American Dietetic Association: health implications of dietary fiber. J Am Diet Assoc. 2008;108(10):1716–31.PubMedGoogle Scholar
  40. 40.
    Leung AY, Foster S. Encyclopedia of common natural ingredients used in food, drugs, and cosmetics. 2nd ed. New York: Wiley; 1996. p. 427–9.Google Scholar
  41. 41.
    Pal S, Radavelli-Bagatini S. Effects of psyllium on metabolic syndrome risk factors. Obes Rev. 2012;13(11):1034–47.PubMedGoogle Scholar
  42. 42.
    Khossousi A, Binns CW, Dhaliwal SS, Pal S. The acute effects of psyllium on postprandial lipaemia and thermogenesis in overweight and obese men. Br J Nutr. 2008;99(5):1068–75. Epub 2007 Nov 16.PubMedGoogle Scholar
  43. 43.
    Pal S, Khossousi A, Binns C, Dhaliwal S, Radavelli-Bagatini S. The effects of 12-week psyllium fibre supplementation or healthy diet on blood pressure and arterial stiffness in overweight and obese individuals. Br J Nutr. 2012;107(5):725–34.PubMedGoogle Scholar
  44. 44.
    Sartore G, Reitano R, Barison A, Magnanini P, Cosma C, Burlina S, Manzato E, Fedele D, Lapolla A. The effects of psyllium on lipoproteins in type II diabetic patients. Eur J Clin Nutr. 2009;63:1269–71.PubMedGoogle Scholar
  45. 45.
    Cicero AF, Derosa G, Manca M, Bove M, Borghi C, Gaddi AV. Different effect of psyllium and guar dietary supplementation on blood pressure control in hypertensive overweight patients: a six-month, randomized clinical trial. Clin Exp Hypertens. 2007;29:383–94.PubMedGoogle Scholar
  46. 46.
    Pal S, Khossousi A, Binns C, Dhaliwal S, Ellis V. The effect of a fibre supplement compared to a healthy diet on body composition, lipids, glucose, insulin and other metabolic syndrome risk factors in overweight and obese individuals. Br J Nutr. 2011;105:90–100.PubMedGoogle Scholar
  47. 47.
    Papathanasopoulos A, Camilleri M. Dietary fiber supplements: effects in obesity and metabolic syndrome and relationship to gastrointestinal functions. Gastroenterology. 2010;138(1):65–72.PubMedCentralPubMedGoogle Scholar
  48. 48.
    de Bock M, Derraik JG, Brennan CM, Biggs JB, Smith GC, Cameron-Smith D, Wall CR, Cutfield WS. Psyllium supplementation in adolescents improves fat distribution & lipid profile: a randomized, participant-blinded, placebo-controlled, crossover trial. PLoS One. 2012;7(7):e41735. doi: 10.1371/journal.pone.0041735.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Salas-Salvadó J, Farrés X, Luque X, Narejos S, Borrell M, Basora J, Anguera A, Torres F, Bulló M, Balanza R; Fiber in Obesity-Study Group. Effect of two doses of a mixture of soluble fibres on body weight and metabolic variables in overweight or obese patients: a randomised trial. Br J Nutr. 2008;99:1380–7.Google Scholar
  50. 50.
    Rodríguez-Morán M, Guerrero-Romero F, Lazcano-Burciaga G. Lipid- and glucose-lowering efficacy of Plantago Psyllium in type II diabetes. J Diabetes Complications. 1998;12:273–8.PubMedGoogle Scholar
  51. 51.
    Tai ES, Fok AC, Chu R, Tan CE. A study to assess the effect of dietary supplementation with soluble fibre (Minolest) on lipid levels in normal subjects with hypercholesterolaemia. Ann Acad Med Singapore. 1999;28:209–13.PubMedGoogle Scholar
  52. 52.
    Vuksan V, Jenkins AL, Rogovik AL, Fairgrieve CD, Jovanovski E, Leiter LA. Viscosity rather than quantity of dietary fibre predicts cholesterol-lowering effect in healthy individuals. Br J Nutr. 2011;106:1349–52.PubMedGoogle Scholar
  53. 53.
    Ziai SA, Larijani B, Akhoondzadeh S, et al. Psyllium decreased serum glucose and glycosylated hemoglobin significantly in diabetic outpatients. J Ethnopharmacol. 2005;102:202–7.PubMedGoogle Scholar
  54. 54.
    Keithley J, Swanson B. Glucomannan and obesity: a critical review. Altern Ther Health Med. 2005;11:30–4.PubMedGoogle Scholar
  55. 55.
    Institute of Medicine. Food chemicals codex. 5th ed. Washington, DC: National Academies; 2003.Google Scholar
  56. 56.
    Wood RJ, Fernandez ML, Sharman MJ, Silvestre R, Greene CM, Zern TL, Shrestha S, Judelson DA, Gomez AL, Kraemer WJ, Volek JS. Effects of a carbohydrate-restricted diet with and without supplemental soluble fiber on plasma low-density lipoprotein cholesterol and other clinical markers of cardiovascular risk. Metabolism. 2007;56:58–67.PubMedGoogle Scholar
  57. 57.
    Vuksan V, Sievenpiper JL, Owen R, Swilley JA, Spadafora P, Jenkins DJ, Vidgen E, Brighenti F, Josse RG, Leiter LA, Xu Z, Novokmet R. Beneficial effects of viscous dietary fiber from Konjac-mannan in subjects with the insulin resistance syndrome: results of a controlled metabolic trial. Diabetes Care. 2000;23:9–14.PubMedGoogle Scholar
  58. 58.
    Vuksan V, Jenkins DJ, Spadafora P, Sievenpiper JL, Owen R, Vidgen E, Brighenti F, Josse R, Leiter LA, Bruce-Thompson C. Konjac-mannan (glucomannan) improves glycemia and other associated risk factors for coronary heart disease in type 2 diabetes. A randomized controlled metabolic trial. Diabetes Care. 1999;22:913–9.PubMedGoogle Scholar
  59. 59.
    Walsh DE, Yaghoubian V, Behforooz A. Effect of glucomannan on obese patients: a clinical study. Int J Obes. 1984;8:289–93.PubMedGoogle Scholar
  60. 60.
    Reffo GC, Ghirardi PE, Forattini C. Glucomannan in hypertensive outpatients: pilot clinical trial. Curr Ther Res. 1988;44:22–7.Google Scholar
  61. 61.
    Reffo GC, Ghirardi PE, Forattini C. Double-blind evaluation of glucomannan versus placebo in post infracted patients after cardiac rehabilitation. Curr Ther Res. 1990;47:753–8.Google Scholar
  62. 62.
    Natural medicines comprehensive database online version. Stockton, CA: Therapeutic Research Center; 2004.Google Scholar
  63. 63.
    Gaudry P. Glucomanna diet tablets. Med J Aust. 1995;142:204.Google Scholar
  64. 64.
    Henry DA, Mitchell AS, Aylward J, et al. Glucomannan and risk of oesophageal obstruction. Br Med J (Clin Res Ed). 1986;292:591–2.Google Scholar
  65. 65.
    Evans E, Miller DS. Bulking agents in the treatment of obesity. Nutr Metab. 1975;18:199–203.PubMedGoogle Scholar
  66. 66.
    Butt MS, Shahzadi N, Sharif MK, Nasir M. Guar gum: a miracle therapy for hypercholesterolemia, hyperglycemia and obesity. Crit Rev Food Sci Nutr. 2007;47(4):389–96.PubMedGoogle Scholar
  67. 67.
    Kovacs EM, Westerterp-Plantenga MS, Saris WH, Goossens I, Geurten P, Brouns F. The effect of addition of modified guar gum to a low-energy semisolid meal on appetite and body weight loss. Int J Obes Relat Metab Disord. 2001;25:307–15.PubMedGoogle Scholar
  68. 68.
    Kovacs EM, Westerterp-Plantenga MS, Saris WH, Melanson KJ, Goossens I, Geurten P, Brouns F. The effect of guar gum addition to a semisolid meal on appetite related to blood glucose, in dieting men. Eur J Clin Nutr. 2002;56:771–8.PubMedGoogle Scholar
  69. 69.
    Tuomilehto J, Silvasti M, Manninen V, Uusitupa M, Aro A. Guar gum and gemfibrozil—an effective combination in the treatment of hypercholesterolaemia. Atherosclerosis. 1989;76(1):71–7.PubMedGoogle Scholar
  70. 70.
    Krotkiewski M. Effect of guar gum on body-weight, hunger ratings and metabolism in obese subjects. Br J Nutr. 1984;52(1):97–105.PubMedGoogle Scholar
  71. 71.
    Jenkins DJ, Reynolds D, Slavin B, Leeds AR, Jenkins AL, Jepson EM. Dietary fiber and blood lipids: treatment of hypercholesterolemia with guar crispbread. Am J Clin Nutr. 1980;33(3):575–81.PubMedGoogle Scholar
  72. 72.
    Pittler MH, Ernst E. Guar gum for body weight reduction: meta-analysis of randomized trials. Am J Med. 2001;110:724–30.PubMedGoogle Scholar
  73. 73.
    O’Neil CE, Nicklas TA, Zanovec M, Cho S. Whole-grain consumption is associated with diet quality and nutrient intake in adults: the National Health and Nutrition Examination Survey, 1999-2004. J Am Diet Assoc. 2010;110:1461–8.PubMedGoogle Scholar
  74. 74.
    Blanck HM, Gillespie C, Kimmons JE, Seymour JD, Serdula MK. Trends in fruit and vegetable consumption among U.S. men and women, 1994-2005. Prev Chronic Dis. 2008;5:A35.PubMedGoogle Scholar
  75. 75.
    Nicklas TA, Farris RP, Myers L, Berenson GS. Dietary fiber intake of children and young adults: the Bogalusa Heart Study. J Am Diet Assoc. 1995;95:209–14.PubMedGoogle Scholar
  76. 76.
    Gallaher CM, Munion J, Hesslink Jr R, Wise J, Gallaher DD. Cholesterol reduction by glucomannan and chitosan is mediated by changes in cholesterol absorption and bile acid and fat excretion in rats. J Nutr. 2000;130:2753–9.PubMedGoogle Scholar
  77. 77.
    Gallaher DD, Gallaher CM, Mahrt GJ, Carr TP, Hollingshead CH, Hesslink Jr R, Wise J. A glucomannan and chitosan fiber supplement decreases plasma cholesterol and increases cholesterol excretion in overweight normocholesterolemic humans. J Am Coll Nutr. 2002;21:428–33.PubMedGoogle Scholar
  78. 78.
    Schiller RN, Barrager E, Schauss AG, Nichols EJ. A randomized, double-blind, placebo-controlled study examining the effects of a rapidly soluble chitosan dietary supplement on weight loss and body composition in overweight and mildly obese individuals. J Am Nutraceut Assoc. 2001;4:42–9.Google Scholar
  79. 79.
    Mhurchu CN, Poppitt SD, McGill AT, Leahy FE, Bennett DA, Lin RB, Ormrod D, Ward L, Strik C, Rodgers A. The effect of the dietary supplement, Chitosan, on body weight: a randomised controlled trial in 250 overweight and obese adults. Int J Obes Relat Metab Disord. 2004;28:1149–56.PubMedGoogle Scholar
  80. 80.
    Mhurchu CN, Dunshea-Mooij C, Bennett D, Rodgers A. Effect of chitosan on weight loss in overweight and obese individuals: a systematic review of randomized controlled trials. Obes Rev. 2005;6:35–42.PubMedGoogle Scholar
  81. 81.
    Pittler MH, Abbot NC, Harkness EF, Ernst E. Randomized, double-blind trial of chitosan for body weight reduction. Eur J Clin Nutr. 1999;53(5):379–81.PubMedGoogle Scholar
  82. 82.
    Hernández-González SO, González-Ortiz M, Martínez-Abundis E, Robles-Cervantes JA. Chitosan improves insulin sensitivity as determined by the euglycemic-hyperinsulinemic clamp technique in obese subjects. Nutr Res. 2010;30:392–5.PubMedGoogle Scholar
  83. 83.
    Kaats GR, Michalek JE, Preuss HG. Evaluating efficacy of a chitosan product using a double-blinded, placebo-controlled protocol. J Am Coll Nutr. 2006;25:389–94.PubMedGoogle Scholar
  84. 84.
    Barrett ML, Udani JK. A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): a review of clinical studies on weight loss and glycemic control. Nutr J. 2011;10:24.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Islam FM, Rengifo J, Redden RJ, Basford KE, Beebe SE. Association between seed coat polyphenolics (tannins) and disease resistance in common bean. Plant Foods Hum Nutr. 2003;58(4):285–97.PubMedGoogle Scholar
  86. 86.
    Aparicio-Fernandez X, Reynoso-Camacho R, Castano-Tostado E, Garcia-Gasca T, Gonzalez de Mejia E, Guzman-Maldonado SH, Elizondo G, Yousef GG, Lila MA, Loarca-Pina G. Antiradical capacity and induction of apoptosis on HeLa cells by a Phaseolus vulgaris extract. Plant Foods Hum Nutr. 2008;63(1):35–40.PubMedGoogle Scholar
  87. 87.
    Fantini N, Cabras C, Lobina C, Colombo G, Gessa GL, Riva A, Donzelli F, Morazzoni P, Bombardelli E, Carai MA. Reducing effect of a Phaseolus vulgaris dry extract on food intake, body weight, and glycemia in rats. J Agric Food Chem. 2009;57(19):9316–23.PubMedGoogle Scholar
  88. 88.
    Loi B, Fantini N, Colombo G, Gessa GL, Riva A, Bombardelli E, Morazzoni P, Carai MA. Reducing effect of an extract of Phaseolus vulgaris on food intake in mice—focus on highly palatable foods. Fitoterapia. 2013;85:14–9. doi: 10.1016/j.fitote.2012.12.015.PubMedGoogle Scholar
  89. 89.
    Jain NK, Boivin M, Zinsmeister AR, DiMagno EP. The ileum and carbohydrate-mediated feedback regulation of post-prandial pancreaticobiliary secretion in normal humans. Pancreas. 1991;6(5):495–505.PubMedGoogle Scholar
  90. 90.
    Spadafranca A, Rinelli S, Riva A, Morazzoni P, Magni P, Bertoli S, Battezzati A. Phaseolus vulgaris extract affects glycometabolic and appetite control in healthy human subjects. Br J Nutr. 2013;109(10):1789–95.PubMedGoogle Scholar
  91. 91.
    Udani J, Hardy M, Madsen DC. Blocking carbohydrate absorption and weight loss: a clinical trial using Phase 2 brand proprietary fractionated white bean extract. Altern Med Rev. 2004;9:63–9.PubMedGoogle Scholar
  92. 92.
    Udani J, Singh BB. Blocking carbohydrate absorption and weight loss: a clinical trial using a proprietary fractionated white bean extract. Altern Ther Health Med. 2007;13:32–7.PubMedGoogle Scholar
  93. 93.
    Celleno L, Tolaini MV, D’Amore A, Perricone NV, Preuss HG. A dietary supplement containing standardized Phaseolus vulgaris extract influences body composition of overweight men and women. Int J Med Sci. 2007;4:45–52.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Onakpoya I, Aldaas S, Terry R, Ernst E. The efficacy of Phaseolus vulgaris as a weight-loss supplement: a systematic review and meta-analysis of randomised clinical trials. Br J Nutr. 2011;106(2):196–202.PubMedGoogle Scholar
  95. 95.
    Heckman MA, Weil J, Gonzalez de Mejia E. Caffeine (1, 3, 7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. J Food Sci. 2010;75:R77–87.PubMedGoogle Scholar
  96. 96.
    Palacios N, Gao X, McCullough ML, Schwarzschild MA, Shah R, Gapstur S, Ascherio A. Caffeine and risk of Parkinson’s disease in a large cohort of men and women. Mov Disord. 2012;27(10):1276–82.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Kerzendorfer C, O’Driscoll M. UVB and caffeine: inhibiting the DNA damage response to protect against the adverse effects of UVB. J Invest Dermatol. 2009;129(7):1611–3.PubMedGoogle Scholar
  98. 98.
    Doo T, Morimoto Y, Steinbrecher A, Kolonel LN, Maskarinec G. Coffee intake and risk of type 2 diabetes: the multiethnic cohort. Public Health Nutr. 2013;27:1–9.Google Scholar
  99. 99.
    Phung OJ, Baker WL, Matthews LJ, Lanosa M, Thorne A, Coleman CI. Effect of green tea catechins with or without caffeine on anthropometric measures: a systematic review and meta-analysis. Am J Clin Nutr. 2010;91:73–81.PubMedGoogle Scholar
  100. 100.
    Westerterp-Plantenga MS, Lejeune MP, Kovacs EM. Body weight loss and weight maintenance in relation to habitual caffeine intake and green tea supplementation. Obes Res. 2005;13:1195–204.PubMedGoogle Scholar
  101. 101.
    Hursel R, Viechtbauer W, Westerterp-Plantenga MS. The effects of green tea on weight loss and weight maintenance: a meta-analysis. Int J Obes. 2009;33:956–61.Google Scholar
  102. 102.
    Dulloo A, Geissler C, Horton T, Miller D. Normal caffeine consumption: influence on thermogenesis and daily energy expenditure in lean and postobese human volunteers. Am J Clin Nutr. 1989;49:44–50.PubMedGoogle Scholar
  103. 103.
    Horst K, Willson RJ, Smith RG. The effect of coffee and decaffeinated coffee on oxygen consumption, pulse rate and blood pressure. J Pharmacol Exp Therap. 1936;58:294–304.Google Scholar
  104. 104.
    Acheson KJ, Zahorska-Markiewicz B, Anantharaman K, Jequier E. Caffeine and coffee: their influence on metabolic rate and substrate utilization in normal weight and obese individuals. Am J Clin Nutr. 1980;33:989–97.PubMedGoogle Scholar
  105. 105.
    Benowitz NL, Jacob III P, Mayan H, Denaro C. Sympathomimetic effects of paraxanthine and caffeine in humans. Clin Pharmacol Ther. 1995;58:684–91.PubMedGoogle Scholar
  106. 106.
    Toubro S, Astrup AV, Breum L, Quaade F. Safety and efficacy of long-term treatment with ephedrine, caffeine and an ephedrine/caffeine mixture. Int J Obes Relat Metab Disord. 1993;17 Suppl 1:S69–72.PubMedGoogle Scholar
  107. 107.
    Molnár D, Török K, Erhardt E, Jeges S. Safety and efficacy of treatment with an ephedrine/caffeine mixture. The first double-blind placebo-controlled pilot study in adolescents. Int J Obes Relat Metab Disord. 2000;24(12):1573–8.PubMedGoogle Scholar
  108. 108.
    Breum L, Pedersen JK, Ahlstrøm F, Frimodt-Møller J. Comparison of an ephedrine/caffeine combination and dexfenfluramine in the treatment of obesity. A double-blind multi-centre trial in general practice. Int J Obes Relat Metab Disord. 1994;18(2):99–103.PubMedGoogle Scholar
  109. 109.
    Khan N, Mukhtar H. Tea polyphenols for health promotion. Life Sci. 2007;81:519–33.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Perva-Uzunalić A, Škerget M, Knez Ž, Weinreich B, Otto F, Grüner S. Extraction of active ingredients from green tea (Camellia sinensis): extraction efficiency of major catechins and caffeine. Food Chem. 2006;96:597–605.Google Scholar
  111. 111.
    Hartley L, Flowers N, Holmes J, Clarke A, Stranges S, Hooper L, Rees K. Green and black tea for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013;18:6.Google Scholar
  112. 112.
    Mak JC. Potential role of green tea catechins in various disease therapies: progress and promise. Clin Exp Pharmacol Physiol. 2012;39(3):265–73.PubMedGoogle Scholar
  113. 113.
    Cross SE, Jin YS, Lu QY, Rao J, Gimzewski JK. Green tea extract selectively targets nanomechanics of live metastatic cancer cells. Nanotechnology. 2011;22:215101.PubMedCentralPubMedGoogle Scholar
  114. 114.
    Tran PL, Kim SA, Choi HS, Yoon JH, Ahn SG. Epigallocatechin-3-gallate suppresses the expression of HSP70 and HSP90 and exhibits anti-tumor activity in vitro and in vivo. BMC Cancer. 2010;10:276.PubMedCentralPubMedGoogle Scholar
  115. 115.
    Ikeda I. Multifunctional effects of green tea catechins on prevention of the metabolic syndrome. Asia Pac J Clin Nutr. 2008;17:273–4.PubMedGoogle Scholar
  116. 116.
    Kim HM, Kim J. The effects of green tea on obesity and type 2 diabetes. Diabetes Metab J. 2013;37(3):173–5.PubMedCentralPubMedGoogle Scholar
  117. 117.
    Wang H, Wen Y, Du Y, Yan X, Guo H, Rycroft JA, Boon N, Kovacs EM, Mela DJ. Effects of catechin enriched green tea on body composition. Obesity. 2010;18:773–9.PubMedGoogle Scholar
  118. 118.
    Nagao T, Meguro S, Hase T, Otsuka K, Komikado M, Tokimitsu I, Yamamoto T, Yamamoto K. A catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes. Obesity. 2009;17:310–7.PubMedGoogle Scholar
  119. 119.
    Nagao T, Hase T, Tokimitsu I. A green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity. 2007;15:1473–83.PubMedGoogle Scholar
  120. 120.
    Maki KC, Reeves MS, Farmer M, Yasunaga K, Matsuo N, Katsuragi Y, Komikado M, Tokimitsu I, Wilder D, Jones F, Blumberg JB, Cartwright Y. Green tea catechin consumption enhances exercise-induced abdominal fat loss in overweight and obese adults. J Nutr. 2009;139:264–70.PubMedGoogle Scholar
  121. 121.
    Cardoso GA, Salgado JM, Cesar Mde C, Donado-Pestana CM. The effects of green tea consumption and resistance training on body composition and resting metabolic rate in overweight or obese women. J Med Food. 2013;16(2):120–7.PubMedGoogle Scholar
  122. 122.
    Yang HY, Yang SC, Chao JC, Chen JR. Beneficial effects of catechin-rich green tea and inulin on the body composition of overweight adults. Br J Nutr. 2012;107(5):749–54.PubMedGoogle Scholar
  123. 123.
    Vieira Senger AE, Schwanke CH, Gomes I, Valle Gottlieb MG. Effect of green tea (Camellia sinensis) consumption on the components of metabolic syndrome in elderly. J Nutr Health Aging. 2012;16(9):738–42.PubMedGoogle Scholar
  124. 124.
    Rains TM, Agarwal S, Maki KC. Antiobesity effects of green tea catechins: a mechanistic review. J Nutr Biochem. 2011;22:1–7.PubMedGoogle Scholar
  125. 125.
    Jurgens TM, Whelan AM, Killian L, Doucette S, Kirk S, Foy E. Green tea for weight loss and weight maintenance in overweight or obese adults. Cochrane Database Syst Rev. 2012;12, CD008650.PubMedGoogle Scholar
  126. 126.
    Hill AM, Coates AM, Buckley JD, Ross R, Thielecke F, Howe PR. Can EGCG reduce abdominal fat in obese subjects? J Am Coll Nutr. 2007;26(4):396S–402.PubMedGoogle Scholar
  127. 127.
    Diepvens K, Kovacs EM, Vogels N, Westerterp-Plantenga MS. Metabolic effects of green tea and of phases of weight loss. Physiol Behav. 2006;87:185–91.PubMedGoogle Scholar
  128. 128.
    Diepvens K, Kovacs EM, Nijs IM, Vogels N, Westerterp-Plantenga MS. Effect of green tea on resting energy expenditure and substrate oxidation during weight loss in overweight females. Br J Nutr. 2005;94:1026–34.PubMedGoogle Scholar
  129. 129.
    Sarma DN, Barrett ML, Chavez ML, Gardiner P, Ko R, Mahady GB, Marles RJ, Pellicore LS, Giancaspro GI, Low Dog T. Safety of green tea extracts: a systematic review by the US Pharmacopeia. Drug Saf. 2008;31(6):469–84.PubMedGoogle Scholar
  130. 130.
    Frank J, George TW, Lodge JK, Rodriguez-Mateos AM, Spencer JP, Minihane AM, Rimbach G. Daily consumption of an aqueous green tea extract supplement does not impair liver function or alter cardiovascular disease risk biomarkers in healthy men. J Nutr. 2009;139(1):58–62.PubMedGoogle Scholar
  131. 131.
    Wee JJ, Mee Park K, Chung AS. Biological activities of ginseng and its application to human health. In: Benzie IFF, Wachtel-Galor S, editors. Herbal medicine: biomolecular and clinical aspects. 2nd ed. Boca Raton (FL): CRC Press; 2011.Google Scholar
  132. 132.
    Uzayisenga R, Ayeka PA, Wang Y. Anti-diabetic potential of panax notoginseng saponins (PNS): a review. Phytother Res. 2013 Jul 11. doi: 10.1002/ptr.5026.Google Scholar
  133. 133.
    Cho IH. Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res. 2012;36(4):342–53. doi: 10.5142/jgr.2012.36.4.342.PubMedCentralPubMedGoogle Scholar
  134. 134.
    Lee CS, Lee JH, Oh M, Choi KM, Jeong MR, Park JD, Kwon DY, Ha KC, Park EO, Lee N, Kim SY, Choi EK, Kim MG, Chae SW. Preventive effect of Korean red ginseng for acute respiratory illness: a randomized and double-blind clinical trial. J Korean Med Sci. 2012;27(12):1472–8. doi: 10.3346/jkms.2012.27.12.1472.PubMedCentralPubMedGoogle Scholar
  135. 135.
    Han SY, Li HX, Ma X, Zhang K, Ma ZZ, Jiang Y, Tu PF. Evaluation of the anti-myocardial ischemia effect of individual and combined extracts of Panax notoginseng and Carthamus tinctorius in rats. J Ethnopharmacol. 2013;145(3):722–7.PubMedGoogle Scholar
  136. 136.
    Lim S, Yoon JW, Choi SH, Cho BJ, Kim JT, Chang HS, Park HS, Park KS, Lee HK, Kim YB, Jang HC. Effect of ginsam, a vinegar extract from Panax ginseng, on body weight and glucose homeostasis in an obese insulin-resistant rat model. Metabolism. 2009;58:8–15.PubMedGoogle Scholar
  137. 137.
    Kim JH, Kang SA, Han SM, Shim I. Comparison of the antiobesity effects of the protopanaxadiol- and protopanaxatriol-type saponins of red ginseng. Phytother Res. 2009;23:78–85.PubMedGoogle Scholar
  138. 138.
    Han LK, Zheng YN, Yoshikawa M, Okuda H, Kimura Y. Anti-obesity effects of chikusetsusaponins isolated from Panax japonicus rhizomes. BMC Complement Altern Med. 2005;5:9.PubMedCentralPubMedGoogle Scholar
  139. 139.
    Shergis JL, Zhang AL, Zhou W, Xue CC. Panax ginseng in randomised controlled trials: a systematic review. Phytother Res. 2013;27(7):949–65. doi: 10.1002/ptr.4832. Epub 2012 Sep 12.PubMedGoogle Scholar
  140. 140.
    Mollah ML, Kim GS, Moon HK, Chung SK, Cheon YP, Kim JK, Kim KS. Antiobesity effects of wild ginseng (Panax ginseng C.A. Meyer) mediated by PPAR-gamma, GLUT4 and LPL in ob/ob mice. Phytother Res. 2009;23:220–5.PubMedGoogle Scholar
  141. 141.
    Sotaniemi EA, Haapakoski E, Rautio A. Ginseng therapy in non-insulin-dependent diabetic patients. Diabetes Care. 1995;18:1373–5.PubMedGoogle Scholar
  142. 142.
    Anderson RA, Kozlovsky AS. Chromium intake, absorption and excretion of subjects consuming self-selected diets. Am J Clin Nutr. 1985;41:1177–83.PubMedGoogle Scholar
  143. 143.
    Cefalu WT, Hu FB. Role of chromium in human health and in diabetes. Diabetes Care. 2004;11:2741–51.Google Scholar
  144. 144.
    Anderson RA. Chromium, glucose intolerance and diabetes. J Am Coll Nutr. 1998;17:548–55.PubMedGoogle Scholar
  145. 145.
    Onakpoya IJ, Wider B, Pittler MH, Ernst E. Food supplements for body weight reduction: a systematic review of systematic reviews. Obesity. 2011;19:239–44.PubMedGoogle Scholar
  146. 146.
    Anton SD, Morrison CD, Cefalu WT, Martin CK, Coulon S, Geiselman P, Han H, White CL, Williamson DA. Effects of chromium picolinate on food intake and satiety. Diabetes Technol Ther. 2008;10(5):405–12.PubMedCentralPubMedGoogle Scholar
  147. 147.
    Attenburrow MJ, Odontiadis J, Murray BJ, Cowen PJ, Franklin M. Chromium treatment decreases the sensitivity of 5-HT2A receptors. Psychopharmacology (Berl). 2002;159:432–6.Google Scholar
  148. 148.
    Lukaski HC, Siders WA, Penland JG. Chromium picolinate supplementation in women: effects on body weight, composition, and iron status. Nutrition. 2007;23(3):187–95.PubMedGoogle Scholar
  149. 149.
    Onakpoya I, Posadzki P, Ernst E. Chromium supplementation in overweight and obesity: a systematic review and meta-analysis of randomized clinical trials. Obes Rev. 2013;14(6):496–507.PubMedGoogle Scholar
  150. 150.
    Pasman WJ, Westerterp-Plantenga MS, Saris WH. The effectiveness of long-term supplementation of carbohydrate, chromium, fibre and caffeine on weight maintenance. Int J Obes Relat Metab Disord. 1997;21:1143–51.PubMedGoogle Scholar
  151. 151.
    Crawford V, Scheckenbach R, Preuss HG. Effects of niacin-bound chromium supplementation on body composition in overweight African-American women. Diabetes Obes Metab. 1999;1:331–7.PubMedGoogle Scholar
  152. 152.
    Yazaki Y, Faridi Z, Ma Y, Ali A, Northrup V, Njike VY, Liberti L, Katz DL. A pilot study of chromium picolinate for weight loss. J Altern Complement Med. 2010;16(3):291–9.PubMedGoogle Scholar
  153. 153.
    Anderson RA, Cheng N, Bryden NA, Polansky MM, Cheng N, Chi J, Feng J. Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes. 1997;46(11):1786–91.PubMedGoogle Scholar
  154. 154.
    Vincent JB. The potential value and toxicity of chromium picolinate as a nutritional supplement, weight loss agent and muscle development agent. Sports Med. 2003;33(3):213–30.PubMedGoogle Scholar
  155. 155.
    Martin WR, Fuller RE. Suspected chromium picolinate-induced rhabdomyolysis. Pharmacotherapy. 1998;18(4):860–2.PubMedGoogle Scholar
  156. 156.
    Cerulli J, Grabe DW, Gauthier I, Malone M, McGoldrick MD. Chromium picolinate toxicity. Ann Pharmacother. 1998;32(4):428–31.PubMedGoogle Scholar
  157. 157.
    Rama Rao AV, Venkataswamy G, Yemul SS. Xanthochymol & isoxanthochymol; two polyisoprenylated benzophenones from Garcinia xanthochymus. Indian J Chem. 1980;19:627–33.Google Scholar
  158. 158.
    Jena BS, Jayaprakasha GK, Singh RP, Sakariah KK. Chemistry and biochemistry of (-)-hydroxycitric acid from Garcinia. J Agric Food Chem. 2002;50(1):10–22.PubMedGoogle Scholar
  159. 159.
    Preuss HG, Rao CV, Garis R, Bramble JD, Ohia SE, Bagchi M, Bagchi D. An overview of the safety and efficacy of a novel, natural(-)-hydroxycitric acid extract (HCA-SX) for weight management. J Med. 2004;35(1–6):33–48.PubMedGoogle Scholar
  160. 160.
    Heymsfield SB, Allison DB, Vasselli JR, Pietrobelli A, Greenfield D, Nunez C. Garcinia cambogia (hydroxycitric acid) as a potential antiobesity agent: a randomized controlled trial. JAMA. 1998;280:1596–600.PubMedGoogle Scholar
  161. 161.
    Vasques CA, Rossetto S, Halmenschlager G, Linden R, Heckler E, Fernandez MS, Alonso JL. Evaluation of the pharmacotherapeutic efficacy of Garcinia cambogia plus Amorphophallus konjac for the treatment of obesity. Phytother Res. 2008;22:1135–40.PubMedGoogle Scholar
  162. 162.
    Kovacs EM, Westerterp-Plantenga MS, de Vries M, Brouns F, Saris WH. Effects of 2-week ingestion of (-)-hydroxycitrate and (-)-hydroxycitrate combined with medium-chain triglycerides on satiety and food intake. Physiol Behav. 2001;74:543–9.PubMedGoogle Scholar
  163. 163.
    Preuss HG, Garis RI, Bramble JD, Bagchi D, Bagchi M, Rao CV, Satyanarayana S. Efficacy of a novel calcium/potassium salt of (-)-hydroxycitric acid in weight control. Int J Clin Pharmacol Res. 2005;25:133–44.PubMedGoogle Scholar
  164. 164.
    Lim K, Ryu S, Nho HS, Choi SK, Kwon T, Suh H, So J, Tomita K, Okuhara Y, Shigematsu N. (-)-Hydroxycitric acid ingestion increases fat utilization during exercise in untrained women. J Nutr Sci Vitaminol (Tokyo). 2003;49:163–7.Google Scholar
  165. 165.
    Kriketos AD, Thompson HR, Greene H, Hill JO. (-)-Hydroxycitric acid does not affect energy expenditure and substrate oxidation in adult males in a post-absorptive state. Int J Obes Relat Metab Disord. 1999;23:867–73.PubMedGoogle Scholar
  166. 166.
    Oleszczuk J, Oleszczuk L, Siwicki AK, Skopińska-Skopińska E. Biological effects of conjugated linoleic acids supplementation. Pol J Vet Sci. 2012;15(2):403–8.PubMedGoogle Scholar
  167. 167.
    McCrorie TA, Keaveney EM, Wallace JM, Binns N, Livingstone MB. Human health effects of conjugated linoleic acid from milk and supplements. Nutr Res Rev. 2011;24(2):206–27.PubMedGoogle Scholar
  168. 168.
    Plourde M, Jew S, Cunnane SC, Jones PJ. Conjugated linoleic acids: why the discrepancy between animal and human studies? Nutr Rev. 2008;66:415–21.PubMedGoogle Scholar
  169. 169.
    Kennedy A, Martinez K, Schmidt S, Mandrup S, LaPoint K, McIntosh M. Antiobesity mechanisms of action of conjugated linoleic acid. J Nutr Biochem. 2010;21(3):171–9.PubMedCentralPubMedGoogle Scholar
  170. 170.
    Larsen TM, Toubro S, Astrup A. Efficacy and safety of dietary supplements containing CLA for the treatment of obesity: evidence from animal and human studies. J Lipid Res. 2003;44(12):2234–41.PubMedGoogle Scholar
  171. 171.
    Larsen TM, Toubro S, Gudmundsen O, Astrup A. Conjugated linoleic acid supplementation for 1 y does not prevent weight or body fat regain. Am J Clin Nutr. 2006;83:606–12.PubMedGoogle Scholar
  172. 172.
    Malpuech-Brugère C, de Verboeket-van de Venne WP, Mensink RP, Arnal MA, Morio B, Brandolini M, Saebo A, Lassel TS, Chardigny JM, Sébédio JL, Beaufrère B. Effects of two conjugated linoleic acid isomers on body fat mass in overweight humans. Obes Res. 2004;12:591–8.PubMedGoogle Scholar
  173. 173.
    Whigham LD, Watras AC, Schoeller DA. Efficacy of conjugated linoleic acid for reducing fat mass: a meta-analysis in humans. Am J Clin Nutr. 2007;85:1203–11.PubMedGoogle Scholar
  174. 174.
    Venkatramanan S, Joseph SV, Chouinard PY, Jacques H, Farnworth ER, Jones PJ. Milk enriched with conjugated linoleic acid fails to alter blood lipids or body composition in moderately overweight, borderline hyperlipidemic individuals. J Am Coll Nutr. 2010;29:152–9.PubMedGoogle Scholar
  175. 175.
    Watras AC, Buchholz AC, Close RN, Zhang Z, Schoeller DA. The role of conjugated linoleic acid in reducing body fat and preventing holiday weight gain. Int J Obes (Lond). 2007;31:481–7.Google Scholar
  176. 176.
    Gaullier JM, Halse J, Høye K, Kristiansen K, Fagertun H, Vik H, Gudmundsen O. Conjugated linoleic acid supplementation for 1 y reduces body fat mass in healthy overweight humans. Am J Clin Nutr. 2004;79:1118–25.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Kavita Poddar
    • 1
    Email author
  • Gerard E. Mullin
    • 2
  • Lawrence J. Cheskin
    • 3
  1. 1.Johns Hopkins Weight Management Center, Department of Health, Behavior & SocietyJohns Hopkins Bloomberg School of Public HealthBaltimoreUSA
  2. 2.Department of GastroenterologyJohns Hopkins HospitalBaltimoreUSA
  3. 3.Weight Management CenterJohns Hopkins HospitalBaltimoreUSA

Personalised recommendations