Pharmaconutrition for the Treatment of Obesity

  • Ryan T. Hurt
  • Thomas H. Frazier
  • Stephen A. McClaveEmail author
Part of the Nutrition and Health book series (NH)


Obesity is rapidly becoming the leading cause of preventable death with the incidence of obesity doubling over the past 30 years. There are at least 60 known obesity-associated comorbid medical conditions in addition to 12 different types of cancer. Despite the rising trend of obesity, there are very few FDA-approved pharmacological treatments for weight reduction. Patients often turn to alternative therapies including dietary supplements, nutraceuticals, and pharmaconutrition. The purpose of this chapter is to describe the clinical evidence for a number of pharmaconutritional supplements for the treatment of obesity. These supplements include green tea, green coffee extract, protein, and L-leucine.


Obesity Pharmaconutrition Green tea Green coffee extract Protein L-leucine 


  1. 1.
    Flegal KM, Carroll MD, Kit BK, Ogden CL. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010. JAMA. 2012;307(5):491–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Finkelstein EA, Khavjou OA, Thompson H, Trogdon JG, Pan L, Sherry B, et al. Obesity and severe obesity forecasts through 2030. Am J Prev Med. 2012;42(6):563–70 [Research Support, U.S. Gov’t, P.H.S.].CrossRefPubMedGoogle Scholar
  3. 3.
    Finkelstein EA, Ruhm CJ, Kosa KM. Economic causes and consequences of obesity. Annu Rev Public Health. 2005;26:239–57.CrossRefPubMedGoogle Scholar
  4. 4.
    Ogden CL, Yanovski SZ, Carroll MD, Flegal KM. The epidemiology of obesity. Gastroenterology. 2007;132(6):2087–102.CrossRefPubMedGoogle Scholar
  5. 5.
    Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625–38.CrossRefPubMedGoogle Scholar
  6. 6.
    Adams KF, Schatzkin A, Harris TB, Kipnis V, Mouw T, Ballard-Barbash R, et al. Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. N Engl J Med. 2006;355(8):763–78.CrossRefPubMedGoogle Scholar
  7. 7.
    Pischon T, Nothlings U, Boeing H. Obesity and cancer. Proc Nutr Soc. 2008;67(2):128–45.CrossRefPubMedGoogle Scholar
  8. 8.
    Hurt RT, Frazier TH, McClave SA, Cave MC. Pharmaconutrition for the obese, critically ill patient. JPEN J Parenter Enteral Nutr. 2011;35(5 Suppl):60S–72S [Review].CrossRefPubMedGoogle Scholar
  9. 9.
    Bailey RL, Gahche JJ, Lentino CV, Dwyer JT, Engel JS, Thomas PR, et al. Dietary supplement use in the United States, 2003-2006. J Nutr. 2011;141(2):261–6.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Lenz TL, Hamilton WR. Supplemental products used for weight loss. J Am Pharm Assoc. 2004;44(1):59–67; quiz 68.CrossRefGoogle Scholar
  11. 11.
    Pillitteri JL, Shiffman S, Rohay JM, Harkins AM, Burton SL, Wadden TA. Use of dietary supplements for weight loss in the United States: results of a national survey. Obesity (Silver Spring). 2008;16(4):790–6.CrossRefGoogle Scholar
  12. 12.
    Kuczmarski RJ, Flegal KM. Criteria for definition of overweight in transition: background and recommendations for the United States. Am J Clin Nutr. 2000;72(5):1074–81.PubMedGoogle Scholar
  13. 13.
    Hurt RT, Kulisek C, Buchanan LA, McClave SA. The obesity epidemic: challenges, health initiatives, and implications for gastroenterologists. Gastroenterology hepatology. 6(12):780-92.Google Scholar
  14. 14.
    Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, Halsey J, et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373(9669):1083–96.CrossRefPubMedGoogle Scholar
  15. 15.
    Cave MC, Hurt RT, Frazier TH, Matheson PJ, Garrison RN, McClain CJ, et al. Obesity, inflammation, and the potential application of pharmaconutrition. Nutr Clin Pract. 2008;23(1):16–34.CrossRefPubMedGoogle Scholar
  16. 16.
    Hermsdorff HH, Puchau B, Zulet MA, Martinez JA. Association of body fat distribution with proinflammatory gene expression in peripheral blood mononuclear cells from young adult subjects. Omics. 2010;14(3):297–307 [Research Support, Non-U.S. Gov’t].CrossRefPubMedGoogle Scholar
  17. 17.
    Hermsdorff HH, Zulet MA, Puchau B, Martinez JA. Central adiposity rather than total adiposity measurements are specifically involved in the inflammatory status from healthy young adults. Inflammation. 2011;34(3):161–70 [Research Support, Non-U.S. Gov’t].CrossRefPubMedGoogle Scholar
  18. 18.
    Choi J, Joseph L, Pilote L. Obesity and C-reactive protein in various populations: a systematic review and meta-analysis. Obes Rev. 2013;14(3):232–44 [Meta-Analysis Research Support, Non-U.S. Gov’t Review].CrossRefPubMedGoogle Scholar
  19. 19.
    Illan-Gomez F, Gonzalvez-Ortega M, Orea-Soler I, Alcaraz-Tafalla MS, Aragon-Alonso A, Pascual-Diaz M, et al. Obesity and inflammation: change in adiponectin, C-reactive protein, tumour necrosis factor-alpha and interleukin-6 after bariatric surgery. Obes Surg. 2012;22(6):950–5.CrossRefPubMedGoogle Scholar
  20. 20.
    Carlson JR, Bauer BA, Vincent A, Limburg PJ, Wilson T. Reading the tea leaves: anticarcinogenic properties of (-)-epigallocatechin-3-gallate. Mayo Clinic Proc. 2007;82(6):725–32 [Review].CrossRefGoogle Scholar
  21. 21.
    Egert S, Rimbach G. Which sources of flavonoids: complex diets or dietary supplements? Adv Nutr. 2011;2(1):8–14.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Thavanesan N. The putative effects of green tea on body fat: an evaluation of the evidence and a review of the potential mechanisms. Br J Nutr. 2011;106(9):1297–309.CrossRefPubMedGoogle Scholar
  23. 23.
    Grove KA, Lambert JD. Laboratory, epidemiological, and human intervention studies show that tea (Camellia sinensis) may be useful in the prevention of obesity. J Nutr. 2010;140(3):446–53.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Chacko SM, Thambi PT, Kuttan R, Nishigaki I. Beneficial effects of green tea: a literature review. Chin Med. 2010;5:13.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Park HJ, Lee JY, Chung MY, Park YK, Bower AM, Koo SI, et al. Green tea extract suppresses NFkappaB activation and inflammatory responses in diet-induced obese rats with nonalcoholic steatohepatitis. J Nutr. 2012;142(1):57–63 [Research Support, U.S. Gov’t, Non-P.H.S.].CrossRefPubMedGoogle Scholar
  26. 26.
    Shimizu M, Sakai H, Shirakami Y, Yasuda Y, Kubota M, Terakura D, et al. Preventive effects of (−)-epigallocatechin gallate on diethylnitrosamine-induced liver tumorigenesis in obese and diabetic C57BL/KsJ-db/db Mice. Cancer prevention research. 2011;4(3):396–403 [Research Support, Non-U.S. Gov’t].CrossRefPubMedGoogle Scholar
  27. 27.
    Wu D, Guo Z, Ren Z, Guo W, Meydani SN. Green tea EGCG suppresses T cell proliferation through impairment of IL-2/IL-2 receptor signaling. Free Radic Biol Med. 2009;47(5):636–43.CrossRefPubMedGoogle Scholar
  28. 28.
    Kumar B, Gupta SK, Nag TC, Srivastava S, Saxena R. Green tea prevents hyperglycemia-induced retinal oxidative stress and inflammation in streptozotocin-induced diabetic rats. Ophthalmic Res. 2012;47(2):103–8 [Research Support, Non-U.S. Govt].CrossRefPubMedGoogle Scholar
  29. 29.
    Shimada M, Mochizuki K, Sakurai N, Goda T. Dietary supplementation with epigallocatechin gallate elevates levels of circulating adiponectin in non-obese type-2 diabetic Goto-Kakizaki rats. Biosci Biotechnol Biochem. 2007;71(8):2079–82.CrossRefPubMedGoogle Scholar
  30. 30.
    Hsu CH, Tsai TH, Kao YH, Hwang KC, Tseng TY, Chou P. Effect of green tea extract on obese women: a randomized, double-blind, placebo-controlled clinical trial. Clin Nutr. 2008;27(3):363–70 [Randomized Controlled Trial Research Support, Non-U.S. Gov’t].CrossRefPubMedGoogle Scholar
  31. 31.
    Derdemezis CS, Kiortsis DN, Tsimihodimos V, Petraki MP, Vezyraki P, Elisaf MS, et al. Effect of Plant Polyphenols on Adipokine Secretion from Human SGBS Adipocytes. Biochem Res Int. 2011;2011:285618.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Hursel R, Viechtbauer W, Westerterp-Plantenga MS. The effects of green tea on weight loss and weight maintenance: a meta-analysis. Int J Obes (Lond). 2009;33(9):956–61.CrossRefGoogle Scholar
  33. 33.
    Phung OJ, Baker WL, Matthews LJ, Lanosa M, Thorne A, Coleman CI. Effect of green tea catechins with or without caffeine on anthropometric measures: a systematic review and meta-analysis. Am J Clin Nutr. 2010;91(1):73–81 [Review].CrossRefPubMedGoogle Scholar
  34. 34.
    Basu A, Sanchez K, Leyva MJ, Wu M, Betts NM, Aston CE, et al. Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome. J Am Coll Nutr. 29(1):31-40.Google Scholar
  35. 35.
    Marcason W. What is green coffee extract? J Acad Nutr Diet. 2013;113(2):364.CrossRefPubMedGoogle Scholar
  36. 36.
    Vinson JA, Burnham BR, Nagendran MV. Randomized, double-blind, placebo-controlled, linear dose, crossover study to evaluate the efficacy and safety of a green coffee bean extract in overweight subjects. Diabetes Metab Syndr Obes. 2012;5:21–7.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Shimoda H, Seki E, Aitani M. Inhibitory effect of green coffee bean extract on fat accumulation and body weight gain in mice. BMC Complement Altern Med. 2006;6:9 [Evaluation Studies].CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Cho AS, Jeon SM, Kim MJ, Yeo J, Seo KI, Choi MS, et al. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem Toxicol. 2010;48(3):937–43.CrossRefPubMedGoogle Scholar
  39. 39.
    Onakpoya I, Terry R, Ernst E. The use of green coffee extract as a weight loss supplement: a systematic review and meta-analysis of randomised clinical trials. Gastroenterol Res Pract. 2011;2011:pii: 382852.CrossRefGoogle Scholar
  40. 40.
    Clifton PM, Keogh J. Metabolic effects of high-protein diets. Curr Atheroscler Rep. 2007;9(6):472–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Gudbrandsen OA, Wergedahl H, Berge RK. A casein diet added isoflavone-enriched soy protein favorably affects biomarkers of steatohepatitis in obese Zucker rats. Nutrition. 2009;25(5):574–80.CrossRefPubMedGoogle Scholar
  42. 42.
    Torre-Villalvazo I, Tovar AR, Ramos-Barragan VE, Cerbon-Cervantes MA, Torres N. Soy protein ameliorates metabolic abnormalities in liver and adipose tissue of rats fed a high fat diet. J Nutr. 2008;138(3):462–8.PubMedGoogle Scholar
  43. 43.
    Allison DB, Gadbury G, Schwartz LG, Murugesan R, Kraker JL, Heshka S, et al. A novel soy-based meal replacement formula for weight loss among obese individuals: a randomized controlled clinical trial. Eur J Clin Nutr. 2003;57(4):514–22.CrossRefPubMedGoogle Scholar
  44. 44.
    Deibert P, Konig D, Schmidt-Trucksaess A, Zaenker KS, Frey I, Landmann U, et al. Weight loss without losing muscle mass in pre-obese and obese subjects induced by a high-soy-protein diet. Int J Obes Relat Metab Disord. 2004;28(10):1349–52.CrossRefPubMedGoogle Scholar
  45. 45.
    Llaneza P, Gonzalez C, Fernandez-Inarrea J, Alonso A, Diaz F, Arnott I, et al. Soy isoflavones, diet and physical exercise modify serum cytokines in healthy obese postmenopausal women. Phytomedicine. 2011;18(4):245–50 [Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].CrossRefPubMedGoogle Scholar
  46. 46.
    Veldhorst MA, Nieuwenhuizen AG, Hochstenbach-Waelen A, van Vught AJ, Westerterp KR, Engelen MP, et al. Dose-dependent satiating effect of whey relative to casein or soy. Physiol Behav. 2009;96(4–5):675–82.CrossRefPubMedGoogle Scholar
  47. 47.
    Kimball SR, Jefferson LS. Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J Nutr. 2006;136(1 Suppl):227S–31S.PubMedGoogle Scholar
  48. 48.
    Woods SC, Seeley RJ, Cota D. Regulation of food intake through hypothalamic signaling networks involving mTOR. Annu Rev Nutr. 2008;28:295–311.CrossRefPubMedGoogle Scholar
  49. 49.
    Norton LE, Layman DK, Bunpo P, Anthony TG, Brana DV, Garlick PJ. The leucine content of a complete meal directs peak activation but not duration of skeletal muscle protein synthesis and mammalian target of rapamycin signaling in rats. J Nutr. 2009;139(6):1103–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Paddon-Jones D, Sheffield-Moore M, Zhang XJ, Volpi E, Wolf SE, Aarsland A, et al. Amino acid ingestion improves muscle protein synthesis in the young and elderly. Am J Physiol Endocrinol Metab. 2004;286(3):E321–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Devkota S, Layman DK. Protein metabolic roles in treatment of obesity. Curr Opin Clin Nutr Metab Care. 2010;13(4):403–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Vianna D, Resende GF, Torres-Leal FL, Pantaleao LC, Donato Jr J, Tirapegui J. Long-term leucine supplementation reduces fat mass gain without changing body protein status of aging rats. Nutrition. 2012;28(2):182–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Eller LK, Saha DC, Shearer J, Reimer RA. Dietary leucine improves whole-body insulin sensitivity independent of body fat in diet-induced obese Sprague-Dawley rats. J Nutr Biochem. 2013;24(7):1285–94.CrossRefPubMedGoogle Scholar
  54. 54.
    Hurt RT, Wilson T. Geriatric obesity: evaluating the evidence for the use of flavonoids to promote weight loss. J Nutr Gerontol Geriatr. 2012;31(3):269–89.CrossRefPubMedGoogle Scholar
  55. 55.
    Zemel MB, Bruckbauer A. Effects of a leucine and pyridoxine-containing nutraceutical on fat oxidation, and oxidative and inflammatory stress in overweight and obese subjects. Nutrients. 2012;4(6):529–41.CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Qin LQ, Xun P, Bujnowski D, Daviglus ML, Van Horn L, Stamler J, et al. Higher branched-chain amino acid intake is associated with a lower prevalence of being overweight or obese in middle-aged East Asian and Western adults. J Nutr. 2011;141(2):249–54.CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Timmers S, Hesselink MK, Schrauwen P. Therapeutic potential of resveratrol in obesity and type 2 diabetes: new avenues for health benefits? Ann N Y Acad Sci. 2013;1290(1):83–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Rivera L, Moron R, Zarzuelo A, Galisteo M. Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats. Biochem Pharmacol. 2009;77(6):1053–63.CrossRefPubMedGoogle Scholar
  59. 59.
    Leontieva OV, Paszkiewicz G, Demidenko ZN, Blagosklonny MV. Resveratrol potentiates rapamycin to prevent hyperinsulinemia and obesity in male mice on high fat diet. Cell Death Dis. 2013;4:e472.CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Gulvady AA, Ciolino HP, Cabrera RM, Jolly CA. Resveratrol inhibits the deleterious effects of diet-induced obesity on thymic function. J Nutr Biochem. 2013;24(9):1625–33.CrossRefPubMedGoogle Scholar
  61. 61.
    Tauriainen E, Luostarinen M, Martonen E, Finckenberg P, Kovalainen M, Huotari A, et al. Distinct effects of calorie restriction and resveratrol on diet-induced obesity and Fatty liver formation. J Nutr Metab. 2011;2011:525094.CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    Vanlint S. Vitamin D, and obesity. Nutrients. 2013;5(3):949–56.CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Soares MJ, Chan She Ping-Delfos W, Ghanbari MH. Calcium and vitamin D for obesity: a review of randomized controlled trials. Eur J Clin Nutr. 2011;65(9):994–1004.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ryan T. Hurt
    • 1
    • 2
    • 3
    • 4
  • Thomas H. Frazier
    • 4
  • Stephen A. McClave
    • 4
    Email author
  1. 1.Division of General Internal MedicineMayo ClinicRochesterUSA
  2. 2.Division of Gastroenterology and HepatologyMayo ClinicRochesterUSA
  3. 3.Division of Endocrinology, Diabetes, Metabolism, and NutritionMayo ClinicRochesterUSA
  4. 4.Department of MedicineUniversity of Louisville School of MedicineLouisvilleUSA

Personalised recommendations