Industrial Utilization of CO2: A Win–Win Solution

  • Nazim Muradov
Chapter
Part of the Lecture Notes in Energy book series (LNEN, volume 22)

Abstract

Carbon capture and utilization (CCU) is an attractive carbon abatement strategy because of its potential for not only preventing CO2 emissions to the atmosphere but also converting CO2 to value-added products: a win–win solution. This approach can potentially make the carbon capture process more profitable and substantially reduce the investment needs for a rather expensive CO2 storage infrastructure. Over the last few years, interest in CCU has grown significantly, and many innovative technological approaches to the industrial CO2 utilization are under development, such as CO2 conversion to construction materials, plastics, fertilizers, fuels, etc. At the same time, the analysis of the CO2 utilization market shows that all existing industrial CO2 applications consume relatively small quantities of CO2, thus for the CCU to present a practical interest as a sink for anthropogenic CO2 emissions, the markets for the CO2-derived products would need to be increased by orders of magnitude. In this chapter, existing and emerging CO2 utilization technologies are analyzed in terms of their technological maturity, market size, permanence of CO2 storage, environmental impact, potential revenue generation, and carbon mitigation potential. The current status and outlook for CO2-to-fuel conversion technologies and CO2 utilization in algal systems are highlighted in this chapter.

Keywords

Surfactant Silicate Sludge Steam Lipase 

References

  1. 1.
    Global CCS Institute (2011) Accelerating the uptake of CCS: industrial use of captured carbon dioxide. http://www.globalccsinstitute.com/resources/publications/accelerating-uptake-ccs-industrial-use-captured-carbon-dioxide. Accessed 25 May 2011
  2. 2.
    SRI Consulting (2010) Chemical economics handbook. Menlo Park, CaliforniaGoogle Scholar
  3. 3.
    Global CCS Institute (2011) The global status of CCS: 2011. Canberra, Australia. ISBN 978-0-9871863-0-0Google Scholar
  4. 4.
    Global CCS Institute (2009) Strategic analysis of the global status of carbon capture and storage. Final report. http://www/globalccsinstitute.com/downloads/reports/2009/worley/foundation-report-1-rev0.pdf. Accessed 3 Aug 2010Google Scholar
  5. 5.
    Intergovernmental Panel on Climate Change (2005) Carbon dioxide capture and storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. In: Metz B, Davidson O, de Coninck H et al (eds). Cambridge University Press, Cambridge and NY, USAGoogle Scholar
  6. 6.
    Stevens S, Kuuskraa J, Schraufnagel R (1996) Technology spurs growth of US coal bed methane. Oil Gas J 94:56–63Google Scholar
  7. 7.
    Reeves S, Davis D, Oudinot A (2004) A technical and economic sensitivity study of enhanced coalbed methane recovery and carbon sequestration in coal. DOE topical report, March 2004. Washington DCGoogle Scholar
  8. 8.
    Karmis M (2009) SECARB initiatives in central and southern Appalachia—progress and future opportunities. ECC annual meeting, 12 May 2009, Kingsport, TennesseeGoogle Scholar
  9. 9.
    Hernandez G, Bello R, McVay D et al (2006) Evaluation of the technical and economic feasibility of CO2 sequestration and enhanced coal-bed-methane recovery in Texas Low-Rank Coals. Soc Petrol Eng J. doi:  10.2118/100584-MS. ISBN 978-1-55563-233-5
  10. 10.
    Hongguan Y, Guangzhu Z, Weitang F et al (2007) Predicted CO2 enhanced coal-bed methane recovery and CO2 sequestration in China. Int J Coal Geology 71:345–357CrossRefGoogle Scholar
  11. 11.
    Hamelinck C, Faaij A, Turkenburg C et al (2002) CO2 enhanced coal-bed methane production in the Netherlands. Energy 27:647–674CrossRefGoogle Scholar
  12. 12.
    CO2 storage with geothermal energy production (2012) Carbon Capture J, July 8, 2012. http://www.carboncapturejournal.com/displaynews.php?NewsID=973&PHPSESSID=up5ge1lr524iq0ita9tgcok406. Accessed 8 Aug 2012
  13. 13.
    Randolph J, Saar M (2011) Combining geothermal energy capture with geologic carbon dioxide sequestration. Geophys Res Lett 38, L10401. doi: 10.1029/2011GL047265 Google Scholar
  14. 14.
    Inoue S, Koinuma H, Tsuruta T (1969) Copolymerization of carbon dioxide and epoxide. J Polymer Sci B Polymer Lett 7:287–292CrossRefGoogle Scholar
  15. 15.
    Novomer (2010) http://www.novomer.com. Accessed 12 Dec 2010
  16. 16.
    Bomgardner M (2012) CO2 pursued as feedstock. Chem Eng News 90:22Google Scholar
  17. 17.
    Priestnall M (2012) Making money from mineralization of CO2. Carbon Capture Journal. November–December 7–9Google Scholar
  18. 18.
    Hunwick R (2009) A new, integrated, approach to mineralisation-based CCS. Mod Power Syst 29:25–28Google Scholar
  19. 19.
    Hall C (2012) Carbon capture and mineralization: coal’s new savior. Carbon Capture Journal, Aug 8, 2012. http://www.energydigital.com/global_mining/carbon-capture-and-mineralization-coals-new-savior. Accessed 10 Oct 2012
  20. 20.
    Smart stones (2012) http://smartstones.nl/index.php/en/challenges/ideeen. Accessed 10 Dec 2012
  21. 21.
    Herzog H (2002) Carbon sequestration via mineral carbonation: overview and assessment. MIT Laboratory for Energy and the Environment, Cambridge, MAGoogle Scholar
  22. 22.
    Bockris JO’M (1980) Energy options. Australia and New Zealand Book Company, SydneyGoogle Scholar
  23. 23.
    Olah G, Goeppert A, Prakash S (2006) Beyond oil and gas: the methanol economy. Wiley, GermanyGoogle Scholar
  24. 24.
    Dakota Gasifiication Company (2012) http://www.dakotagas.com/Gasification/index.html. Accessed 10 Dec 2912
  25. 25.
    Ralston R (2010) The Sabatier reaction, possible solution to CO2 emissions. PennEnergy. http://www.pennenergy.com/articles/pennenergy/2010/03/the-sabatier-reaction.html. Accessed 4 Mar 2010
  26. 26.
    Kim J, Lee S, Lee S et al (2006) Performance of catalytic reactors for the hydrogenation of CO2 to hydrocarbons. Catal Today 115:228–234CrossRefGoogle Scholar
  27. 27.
    Dorner R, Hardy D, Williams F et al (2009) Influence of gas feed composition and pressure on the catalytic conversion of CO2 to hydrocarbons using a traditional cobalt-based Fischer-Tropsch catalyst. Energy Fuel 23:4190–4195CrossRefGoogle Scholar
  28. 28.
    Stechel E, Miller J (2013) Re-energizing CO2 to fuels with the sun: issues of efficiency, scale, and economics. J CO2 Util 1:28–36CrossRefGoogle Scholar
  29. 29.
    Harris S (2012) Chemical potential: turning carbon dioxide into fuel. http://www.theengineer.co.uk/sectors/energy-and-environment/in-depth/chemical-potential-turning-carbon-dioxide-into-fuel/1013459.article. Accessed 9 Aug 2012
  30. 30.
    Traynor A, Jensen R (2002) Direct solar reduction of CO2 to fuel: first prototype results. Ind Eng Chem Res 41:1935–1939CrossRefGoogle Scholar
  31. 31.
    Jacoby M (2013) The hidden value of carbon dioxide. Chem Eng News 91:21–22Google Scholar
  32. 32.
    Kumar B, Smieja J, Kubiak C (2010) Photoreduction of CO2 on p-type silicon using Re(bipy-But)(CO)3Cl: photovoltages exceeding 600 mV for the selective reduction of CO2 to CO. J Phys Chem C 114:14220–14223CrossRefGoogle Scholar
  33. 33.
    Kaneco S, Katsumara H, Suzuki T et al (2006) Photoelectrocatalytic reduction of CO2 in LiOH/methanol at metal-modified p-InP electrodes. Appl Catal B Environ 64:139–145CrossRefGoogle Scholar
  34. 34.
    Anpo M (2013) Photocatalytic reduction of CO2 on highly dispersed Ti-oxide catalysts as a model of artificial photosynthesis. J CO2 Util 1:8–17CrossRefGoogle Scholar
  35. 35.
    Kuhl K, Cave E, Abram D (2012) New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 5:7050–7059CrossRefGoogle Scholar
  36. 36.
    DiMeglio J, Rosenthal J (2013) Selective conversion of CO2 to CO with high efficiency using an inexpensive bismuth-based electrocatalyst. J Am Chem Soc 135:8798–8801CrossRefGoogle Scholar
  37. 37.
    Ionic liquid catalyst could help turn emissions into fuel (2011) The Engineer, October 7, 2011. http://www.theengineer.co.uk/sectors/energy-and-environment/news/ionic-liquid-catalyst-could-help-turn-emissions-into-fuel/1010535.article. Accessed 5 Feb 2012
  38. 38.
    Lvov S (2012) Hydrogen via electrolysis: a key to utilization of renewable energy resources. In: Muradov N, Veziroglu N (eds) Carbon-neutral fuels and energy carriers. CRC Press, Boca RatonGoogle Scholar
  39. 39.
    Centi G, Perathoner S (2012) Solar production of fuels from water and CO2. In: Muradov N, Veziroglu N (eds) Carbon-neutral fuels and energy carriers. CRC Press, Boca RatonGoogle Scholar
  40. 40.
    Hu B, Guild C, Suib S (2013) Thermal, electrochemical and photochemical conversion of CO2 to fuels and value-added products. J CO2 Util 1:18–27CrossRefMATHGoogle Scholar
  41. 41.
    Centi G, Quadrelli E, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6:1711–1731CrossRefGoogle Scholar
  42. 42.
    Jiang Z, Xiao T, Kuznetsov V et al (2010) Turning carbon dioxide into fuel. Phil Trans R Soc A 368:3343–3364CrossRefGoogle Scholar
  43. 43.
    Yu D, Zhang Y (2010) Copper- and copper–N-heterocyclic carbene-catalyzed C─H activating carboxylation of terminal alkynes with CO2 at ambient conditions. Proc Natl Acad Sci U S A 107:20184–20189CrossRefGoogle Scholar
  44. 44.
    Yang H, Gu Y, Deng Y et al (2002) Electrochemical activation of carbon dioxide in ionic liquid: synthesis of cyclic carbonates at mild reaction conditions. Chem Commun 274–275Google Scholar
  45. 45.
    Olah J, Toeroek B, Joschek J et al (2012) Efficient chemoselective carboxylation of aromatics to arylcarboxylic acids with a superelectrophilically activated carbon dioxide−Al2Cl6/Al system. J Am Chem Soc 124:11379–11391CrossRefGoogle Scholar
  46. 46.
    Petronas and Lanzatech to recycle CO2 into chemicals (2012) Carbon Capture Journal, October 15, 2012. http://www.carboncapturejournal.com/displaynews.php?NewsID=1033&PHPSESSID=l8dkjsha7qaa6s815mlrslvtq4. Accessed 5 Dec 2012
  47. 47.
    Ogura K (2013) Electrochemical reduction of carbon dioxide to ethylene: mechanistic approach. J CO2 Util 1:43–49CrossRefGoogle Scholar
  48. 48.
    Hallman M, Steinberg M (1999) Greenhouse gas CO 2 mitigation. CRC Press, Boca RatonGoogle Scholar
  49. 49.
    U.S. Department of Energy (2010) National algal biofuels technology roadmap. Office of energy efficiency and renewable energy, biomass program. algal_biofuels_roadmap.pdf., http://biomass.energy.gov. Accessed 19 Dec 2010
  50. 50.
    Falkowski P, Katz M, Knoll A et al (2004) The evolution of modern eukaryotic phytopnkton. Science 305:354–360CrossRefGoogle Scholar
  51. 51.
    Hu Q, Sommerfeld M, Jarvis E et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639CrossRefGoogle Scholar
  52. 52.
    Chu W, Norazmi M, Phang S (2003) Fatty acid composition of some malaysian seaweeds. Malays J Sci 22:21–27Google Scholar
  53. 53.
    Christi Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefGoogle Scholar
  54. 54.
    Eberhard S, Finazzi G, Wollman F (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515CrossRefGoogle Scholar
  55. 55.
    Polle J, Kanakagiri S, Jin E et al (2002) Truncated chlorophyll antenna size of the photosystems—a practical method to improve microalgal productivity and hydrogen production in mass culture. Int J Hydrogen Energy 27:1257–1264CrossRefGoogle Scholar
  56. 56.
    Brennan L, Owende P (2009) Biofuels from microalgae—a review of techniques for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev. doi: 10.1016/j.rser.2009.10.009 Google Scholar
  57. 57.
    Nakamura T (2004) Recovery and sequestration of CO2 from stationary combustion systems by photosynthesis of microalgae, Technical report to DOE, NETL, No. PSI-1356, December 2004. Morgantown, WVGoogle Scholar
  58. 58.
    Velea S, Dragos N, Serban S et al (2008) Biological sequestration of carbon dioxide from thermal power plant emissions by absorption in microalgal culture media. Romanian Biotechnol Lett 14:4485–4500Google Scholar
  59. 59.
    Benson B, Gutierrez-Wing T, Rusch A (2007) The development of a mechanistic model to investigate the impacts of the light dynamics on algal productivity in a hydraulically integrated serial turbidostat algal reactor. Aquaculture Eng 36:198–211CrossRefGoogle Scholar
  60. 60.
    Wilson W, Van Etten J, Allen M (2009) The phycodnaviridae: the story of how tiny giants rule the world. Lesser known large dsDNA viruses, vol 328. Springer, Berlin, pp 1–42CrossRefGoogle Scholar
  61. 61.
    Molina Grima E, Belarbi E, Acién Fernández F et al (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515CrossRefGoogle Scholar
  62. 62.
    Illman A, Scragg A, Shales S (2000) Increase in chlorella strains calorific values when grown in low nitrogen media. Enzym Microb Tech 27:631–635CrossRefGoogle Scholar
  63. 63.
    Denery J, Dragull K, Tang C et al (2004) Pressurized fluid extraction of carotenoids from Haematococcus pluvialis and Dunaliella salina and kavalactones from Piper methysticum. Anal Chim Acta 501:175–181CrossRefGoogle Scholar
  64. 64.
    Herrero M, Cifuentes A, Ibanez E (2006) Sub-and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae: a review. Food Chem 98:136–148CrossRefGoogle Scholar
  65. 65.
    Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496CrossRefGoogle Scholar
  66. 66.
    U.S. Department of Energy (2012) Energy efficiency and renewable energy, golden field office. Bio-oil stabilization and commoditization: DE-FOA-0000686, https://eere-exchange.energy.gov/. Accessed 20 Nov 2012
  67. 67.
    Hon-Nami K (2006) A unique feature of hydrogen recovery in endogenous starch-to-alcohol fermentation of the marine microalga, Chlamydomonas perigranulata. Appl Biochem Biotechnol 131:808–828CrossRefGoogle Scholar
  68. 68.
    Hirano A, Ueda R, Hirayama S et al (1997) CO22 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy-Oxford 22:137–142CrossRefGoogle Scholar
  69. 69.
    ALGENOL Biofuels (2012) Harnessing the Sun to Fuel the World. http://www.algenolbiofuels.com/direct-to-ethanol/direct-to-ethanol. Accessed 5 Jul 2012
  70. 70.
    Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507CrossRefGoogle Scholar
  71. 71.
    Bridgewater A (2004) Biomass fast pyrolysis. Therm Sci 8:21–50CrossRefGoogle Scholar
  72. 72.
    Muradov N, Fidalgo B, Gujar A et al (2010) Pyrolysis of fast-growing aquatic biomass—Lemna minor (duckweed): characterization of pyrolysis products. Bioresour Technol 101:8424–8428CrossRefGoogle Scholar
  73. 73.
    Okabe K, Murata K, Nakanishi M et al (2009) Fischer-Tropsch synthesis over Ru catalysts by using syngas derived from woody biomass. Catal Lett 128:171–176CrossRefGoogle Scholar
  74. 74.
    Patil V, Tran K, Giselroed H (2008) Towards sustainable production of biofuels from microalgae. Int J Molecular Sciences 9:1188–1195CrossRefGoogle Scholar
  75. 75.
    Goudriaan F, Van de Beld B, Boerefijn F et al (2000) Thermal efficiency of the HTU® process for biomass liquefaction. In: Bridgwater A (ed) Proceedings of progress in thermochemical biomass conversion, Tyrol, Austria, Sep 17–22, 2000. Blackwell Science, Oxford, p 1312–1325Google Scholar
  76. 76.
    Sawayama S, Inoue S, Dote Y et al (1995) CO2 fixation and oil production through microalga. Energy Convers Manag 36:729–731CrossRefGoogle Scholar
  77. 77.
    Mendes R (2007) Supercritical fluid extraction of active compounds from algae. In: Martinez J (ed) Supercritical fluid extraction of nutraceuticals and bioactive compounds. Taylor and Francis, Boca Raton, pp 189–213CrossRefGoogle Scholar
  78. 78.
    Hawash S, Kamal N, Zaher F et al (2009) Biodiesel fuel from Jatropha oil via non-catalytic supercritical methanol transesterification. Fuel 88:579–582CrossRefGoogle Scholar
  79. 79.
    Vergara-Fernandez A, Vargas G, Alarcon N et al (2008) Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass Bioenergy 32:338–344CrossRefGoogle Scholar
  80. 80.
    Hossain A, Salleh A, Boyce A et al (2008) Biodiesel fuel production from algae as renewable energy. Am J Biochem Biotechnol 4:250–254CrossRefGoogle Scholar
  81. 81.
    Kalva A, Sivasankar T, Moholkar V (2008) Physical mechanism of ultrasound-assisted synthesis of biodiesel. Ind Eng Chem Res 48:534–544CrossRefGoogle Scholar
  82. 82.
    Svensson J, Adlercreutz P (2008) Identification of triacylglycerols in the enzymatic transesterification of rapeseed and butter oil. Eur J Lipid Sci Technol 110:1007–1013CrossRefGoogle Scholar
  83. 83.
    Soriano N, Venditti R, Argyropoulos D (2009) Biodiesel synthesis via homogeneous Lewis acid-catalyzed transesterification. Fuel 88:560–565CrossRefGoogle Scholar
  84. 84.
    Mooibroek H, Oosterhuis N, Giuseppin M et al (2007) Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production. Appl Microbiol Biotechnol 77:257–267CrossRefGoogle Scholar
  85. 85.
    Spolaore P, Joannis-Cassan C, Duran E et al (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96CrossRefGoogle Scholar
  86. 86.
    Brune D, Lundquist T, Benemann J (2009) Microalgal biomass for greenhouse gas reductions: potential for replacement of fossil-fuels and animal feeds. J Environ Eng 135:1136–1144CrossRefGoogle Scholar
  87. 87.
    Campbell W, Naucler T, Ruijs J (2008) Carbon capture & storage: assessing the economics. McKinsey Climate Change Initiative. http://www.mckinsey.com/clientservice/ccsi. Accessed 12 Oct 2012
  88. 88.
    Jacob-Lopes E, Teixera Franco T (2013) From oil refinery to microalgal biorefinery. Journal of CO2 Utilization 2:1–7. doi: 10.1016/j.jcou.2013.06.001 CrossRefGoogle Scholar
  89. 89.
    Rubin E, Meyer L, de Coninck H (2005) Technical summary. In: Metz B, Davidson O, de Connick H (eds) Carbon dioxide capture and storage. Cambridge University Press, Cambridge, pp 17–49Google Scholar
  90. 90.
    US Department of Energy (1998) A look back at the U.S. department of energy’s aquatic species program: biodiesel from algae. NREL/TP-580–24190. Technical report under, contract No. DE-AC36–83CH10093, 1998Google Scholar
  91. 91.
    Solazyme (2012) How the Solazyme biotechnology platform works. www.solazyme.com. Accessed 10 Dec 2012
  92. 92.
    European Biofuels Technology Platform (2012) Algae for production of biofuels. http://www.biofuelstp.eu/algae.html. Accessed 12 Nov 2012
  93. 93.
    Department of Energy (2012) Alternative fuels data center: drop-in biofuels, http://www.afdc.energy.gov/fuels/emerging_dropin_biofuels.html. Accessed 15 Oct 2012
  94. 94.
    Algae Biodiesel (2012) Flight path to a cleaner future. http://algaebiodiesel.com/flight-path-to-a-cleaner-future. Accessed 30 Jun 2012
  95. 95.
    Cellana (2012) Products overview: biofuels. http://cellana.com/products-overview/biofuels/. Accessed 20 Sep 2012
  96. 96.
    Styring P, de Coninck H, Reith H et al (2011) Carbon capture and utilisation in the green economy. Publisher: The Centre for Low Carbon Futures. Report no. 501Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Nazim Muradov
    • 1
  1. 1.Florida Solar Energy CenterUniversity of Central FloridaCocoaUSA

Personalised recommendations