Skip to main content

Two Recommending Strategies to Enhance Online Presence in Personal Learning Environments

Abstract

Aiming to facilitate and support online learning practices, TEL researchers and practitioners have been increasingly focused on the design and use of Web-based Personal Learning Environments (PLE). A PLE is a set of services selected and customized by students. Among these services, resource (either digital or human) recommendation is a crucial one. Accordingly, this chapter describes a novel approach to supporting PLEs through recommendation services. The proposed approach makes extensive use of ontologies to formally represent learning context that, among other components, includes students’ presence in the online world, i.e., their online presence. This approach has been implemented in and evaluated with the OP4L (Online Presence for Learning) prototype. In this chapter, we expose recommendation strategies devised for OP4L. One is already implemented in OP4L, it is based on the well-known Analytical Hierarchical Process (AHP) method. The other one which has been tested on data coming from the prototype is based on the active user’s navigation stream and used a Kalman filter approach.

Keywords

  • Web-based learning
  • Social presence
  • Online presence
  • Ontology based resource recommendation
  • Kalman filter
  • Learning trajectories
  • AHP
  • CS-AHP

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-0530-0_11
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-0530-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Notes

  1. 1.

    http://op4l.fon.bg.ac.rs/

References

  1. Atwell G (2007) Personal learning environments – The future of eLearning? eLearning papers 2(1), ISSN: 1887-1542, www.elearningpapers.eu

  2. Vuokari R, Manouselis N, Duval E (eds) (2009) Special issue on social information retrieval for technology enhanced learning, J Dig Inform 10(2), ISSN: 1368-7506

    Google Scholar 

  3. Manouselis N, Drachsler H, Vuorikari R, Hummel H, Koper R (2010) Recommender systems in technology enhanced learning. In: Ricci F, Rokach L, Shapira B, Kantor PB (eds) Handbook of recommender systems. Springer, Secaucus, NJ, pp 387–415

    Google Scholar 

  4. Santos OC, Boticario JG (2012) Educational recommender systems and technologies. Practices and challenges. IGI Global, Hershey, PA

    Google Scholar 

  5. OP4L project’s website: http://op4l.fon.bg.ac.rs/

  6. Vassileva J (2008) Towards social learning environments. IEEE TLT 1(4):199–214

    Google Scholar 

  7. Aragon SR (2003) Creating social presence in online environments. New Dir Adult Contin Educ 100:57–68

    CrossRef  Google Scholar 

  8. Cob SC (2009) Social presence and online learning: a current view from a research perspective. J Interact Online Learn 8(3):241–254

    Google Scholar 

  9. Lowenthal PR (2010) Social presence. In: Dasgupta S (ed) Social computing: concepts, methodologies, tools, and applications. IGI Global, Hershey, PA, pp 129–136

    Google Scholar 

  10. Beham G, Kump B, Ley T, Lindstaed SN (2010) Recommending knowledgeable people in a work-integrated learning system, 1st RecSysTEL workshop. Proc Comput Sci 1(2):2783–2792, Elsevier

    CrossRef  Google Scholar 

  11. Jovanovic J, Knight C, Gasevic D, Richards G (2007) Ontologies for effective use of context in e-learning settings. Educ Tech Soc 10(3):47–59

    Google Scholar 

  12. Jeremic Z, Milikic N, Jovanovic J, Radulovic R, Brkovic M, Devedzic V (2011) OP4L: online presence enabled personal learning environments, IEEE – ERK’2011 conference, Portoroz, Slovenia

    Google Scholar 

  13. Milikic N, Radulovic R, Devedzic V (2011) Infrastructure for exchanging online presence data in learning applications, IEEE – ERK’2011 conference, Portoroz, Slovenia

    Google Scholar 

  14. OP4L D3.1, OP4L models, http://op4l.fon.bg.ac.rs/sites/default/files/OP4LD3.1.pdf

  15. Jovanović J, Gašević D, Stanković M, Jeremić Z, Siadaty M (2009) Online presence in adaptive learning on the social semantic web. In: Proceedings of the 1st IEEE international conference on social computing - workshops (Workshop on social computing in education), Vancouver, BC, Canada. IEEE, Washington, DC, pp 891–896

    Google Scholar 

  16. Stankevic M (2008) Modeling online presence, In: Proceedings of the first social data on the web workshop, Karlsruhe, Germany, October 27, 2008, CEUR workshop proceedings, ISSN 1613-0073, online CEUR-WS.org/Vol-405/paper1.pdf

    Google Scholar 

  17. Dagger D, Wade V, Conlan O (2005) Personalisation for all: making adaptive course composition easy. Educ Tech Soc 8(3):9–25

    Google Scholar 

  18. Popescu E, Trigano P, Badica C (2007) Adaptive educational hypermedia systems: a focus on learning styles. In: Proc of the international conference on computer as a tool (EUROCON), Warsaw, Poland. IEEE Computer Society, Washington, DC

    Google Scholar 

  19. Stash N De Bra P (2004) Incorporating cognitive styles in AHA! The adaptive hypermedia architecture. In: Proceedings of the international conference web-based education (IASTED), Innsbruck, Austria, pp 378–383

    Google Scholar 

  20. Brusilovsky P (2001) Adaptive hypermedia User modeling and user adapted interaction. In: Alfred Kobsa (ed.), Tenth year anniversary issue 11(1/2): 87–110

    Google Scholar 

  21. Mustafa A, Sharif S (2011) An approach to adaptive e-learning hypermedia system based on learning styles (AEHS-LS): implementation and evaluation. Int J Lib Inform Sci 3(1):15–28

    Google Scholar 

  22. Ognjanović I, Šendelj R (2012) Teachers’ requirements in dynamically adaptive e-learning systems. In: Proceedings of 4th international conference on education and new learning technologies (EDULEARN12), Barcelona, Spain

    Google Scholar 

  23. Ognjanović I, Gašević D, Bagheri E, Asadi M (2011) Conditional preferences in software stakeholders’ judgments. In: Proceedings of the 26th annual ACM symposium on applied computing, Taichang, Taiwan. ACM, New York, NY, pp 683–690

    Google Scholar 

  24. Yu Z, Yu Z, Zhou X, Nakamu Y (2009) Toward an understanding of user-defined conditional preferences. In: Proceedings of the 8th IEEE international conference on dependable, autonomic and secure computing. IEEE, Washington, DC, pp 203–208

    Google Scholar 

  25. Ognjanović I, Gašević D, Bagheri E (2013) A stratified framework for handling conditional preferences: an extension of the analytic hierarchy process. Expert Syst Appl 40(4):1094–1115

    CrossRef  Google Scholar 

  26. Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York, NY

    MATH  Google Scholar 

  27. Ognjanović I, Šendelj R (2011) Making judgments and decisions about relevant learning resources. In: Proceedings of the 20th international electrotechnical and computer science conference, Portoroz, Slovenia (ERK 2011), pp 409–412

    Google Scholar 

  28. Boutilier C, Brafman RI, Domshlak C, Hoos HH, Poole D (2004) CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements. J AI Res 21(1):135–191

    MATH  MathSciNet  Google Scholar 

  29. Brafman RI, Domshlak C (2002) Introducing variable importance tradeoffs into CP-nets. In: The proceedings of the eighteenth conference on uncertainty in AI, Canada. AAAI, Menlo Park, CA, pp 69–76

    Google Scholar 

  30. Wilson N (2011) Computational techniques for a simple theory of conditional preferences. Artif Intell 175(7–8):1053–1091

    CrossRef  MATH  Google Scholar 

  31. Zavadskas EK, Kaklauskas A, Peldschus F, Turskis Z (2007) Multi-attribute assessment of road design solutions by using the COPRAS Method. Baltic J Road Bridge Eng 2(4): 195–203

    Google Scholar 

  32. Chen S, Buffett S, Fleming MW (2007) Reasoning with conditional preferences across attributes. In: Proceedings of the 20th conference of the Canadian society for computational studies of intelligence on advances in AI, Montreal, Canada. Springer, Berlin, pp 369–380

    Google Scholar 

  33. Berander P, Andrews A (2006) Requirements prioritization. Engineering and managing software requirements. Springer, Secaucus, NJ, pp 69–94

    Google Scholar 

  34. Hanna M (2004) Data mining in the e-learning domain. Campus Wide Inf Syst 21(1):29–34

    CrossRef  MathSciNet  Google Scholar 

  35. Merceron A, Yacef K (2005) Educational data mining: a case study. In: Proc Int Conf Artif Intell Educ, Pittsburgh, PA, 2005

    Google Scholar 

  36. Baker R, Yacef K (2009) The state of educational data mining in 2009: a review and future visions. J Educ Data Mining 1(1):3–17

    Google Scholar 

  37. Romero C, Ventura S (2010) Educational data mining: a review of the state of the art. IEEE Trans Syst Man Cybern Part C Appl Rev 40(6):601–618

    CrossRef  Google Scholar 

  38. Schafer JB (2005) The application of data-mining to recommender systems. In: Wang J (ed) Encyclopedia of data warehousing and mining. Hershey, PA, Idea Group, pp 44–48

    CrossRef  Google Scholar 

  39. Lazcorreta E, Botella F, Fernández-Caballero A (2008) Towards personalized recommendation by two-step modified apriori data mining algorithm. Expert Syst Appl 35(3):1422–1429

    CrossRef  Google Scholar 

  40. Büyüközkan G, Çifçi G, Güleryüz S (2011) Strategic analysis of healthcare service quality using fuzzy AHP methodology. Expert Syst Appl 38(8):9407–9424

    CrossRef  Google Scholar 

  41. Chen MK, Wang S (2010) The critical factors of success for information service industry in developing international market: using analytic hierarchy process (AHP) approach. Expert Syst Appl 37(1):694–704

    CrossRef  Google Scholar 

  42. Ognjanović I, Gašević D, Bagheri E, Asadi M (2011) Conditional preferences in software stakeholders’ judgments. In: Proceedings of the 26th annual ACM symposium on applied computing (SAC 2011), Tunghai University, Taichang, Taiwan. ACM, New York, NY

    Google Scholar 

  43. Padmanabhan V, Mogul J (1996) Using predictive prefetching to improve World Wide Web Latency. Comput Commun Rev 28(4):22–36

    CrossRef  Google Scholar 

  44. Box GEP, Jenkins GM (1970) Time series analysis: forecasting and control. Holden Day, San Francisco, CA

    MATH  Google Scholar 

  45. Despande M, Karypis G (2004) Selective Markov models for predicting web pages accesses. ACM Trans Internet Technol 4:163–184

    CrossRef  Google Scholar 

  46. Pirolli P, Pitkow J (1999) Distribution of surfer’s paths through the World Wide Web: empirical characterizations. WWW J 2(1–2):29–45

    Google Scholar 

  47. Pitkow J, Pirolli P (1999) Mining longest repeating subsequences to predict World Wide Web surfing. In: Proceedings of the 2nd conference of USENIX symposium on internet technologies and systems. USENIX Association, Berkeley, CA, pp 139–150

    Google Scholar 

  48. Nakagawa N, Mobasher B (2003) Impact of site characteristics on recommendation models based on association rules and sequential patterns. In: Proceedings of the IJCAI’03 workshop on intelligent techniques for web personalization, August 9–10, 2003, Acapulco, Mexico

    Google Scholar 

  49. Anderson B, Moore JB (1977) Optimal filtering. Prentice Hall – Information and system sciences series. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  50. Gevers M, Vandendorpe L (2011) Processus stochastiques, estimation et prediction, http://www.tele.ucl.ac.be/EDU/INMA2731/

  51. Nowakowski S, Boyer A, Bernier C (2011) Automatic tracking and control for web recommendation. New approaches for web recommendation. Conference SOTICS 2011, October 2011, Barcelona, Spain

    Google Scholar 

  52. Grandbastien M, Loskovska S, Nowakowski S, Jovanovic J (2012) Using online presence data for recommending human resources in the OP4L project. Conference RecSysTel, September 2012, Sarrebrück, Germany

    Google Scholar 

  53. Gibson W (1988) Neuromancien. Collection J’ai Lu, Paris

    Google Scholar 

  54. Söderström T (1994) Discrete-time stochastic systems estimation and control. Springer, Secaucus, NJ

    MATH  Google Scholar 

Download references

Acknowledgements

 This work was supported by the SEE-ERA Net Plus program, contract no 115, from the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Nowakowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nowakowski, S., Ognjanović, I., Grandbastien, M., Jovanovic, J., Šendelj, R. (2014). Two Recommending Strategies to Enhance Online Presence in Personal Learning Environments. In: Manouselis, N., Drachsler, H., Verbert, K., Santos, O. (eds) Recommender Systems for Technology Enhanced Learning. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0530-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0530-0_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0529-4

  • Online ISBN: 978-1-4939-0530-0

  • eBook Packages: Computer ScienceComputer Science (R0)