Skip to main content

Hyperlipidemia as a Risk Factor for Progression of CKD in Nondiabetics

  • Chapter
  • First Online:
Book cover Dyslipidemias in Kidney Disease

Abstract

Cardiovascular disease (CVD) is the main cause of death in patients with end-stage renal disease (ESRD). Simultaneously, dyslipidemia has been recognized as an important cardiovascular risk factor in the general population, as well as in patients with chronic kidney disease (CKD). Several lines of evidence suggest that mechanisms and factors contributing to the pathogenesis of both cardiovascular and kidney injury may be similar. Moreover, abnormalities in lipid metabolism may be associated with the progression of CKD. Therefore, numerous experimental and clinical studies were conducted to assess the potential nephroprotective effects of statins. Although experimental data suggested that statins may slow down progression of CKD, which may underline the role of lipids in the pathogenesis of progression of CKD, at the present time, there is no clinical evidence indicating that statins postpone a decline in renal function. Further prospective, randomized, controlled studies designed specifically for the CKD population are needed to investigate the association between the lipids and the use of statins and CKD in particular. Despite clear evidence that lipid-lowering therapy reduces the risk of atherosclerotic events and death of cardiac causes in individuals without CKD, the use of HMG-Co-A reductase inhibitors (statins) in patients with kidney disease is significantly less frequent. For a long time one of the explanations was the lack of a prospective, randomized, controlled study designed specifically for nondialyzed CKD patients. After recent publication of the data from the SHARP trial, given the safety and potential efficacy of statins, this lipid-lowering treatment should be administered more frequently to individuals with CKD stage 1–4, as well as those undergoing dialysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kujawa-Szewieczek A, Więcek A, Piecha G. The lipid story in chronic kidney disease: a long story with a happy end? Int Urol Nephrol. 2013;45(5):1273–87.

    PubMed Central  PubMed  CAS  Google Scholar 

  2. Magil AB. Interstitial foam cells and oxidized lipoprotein in human glomerular disease. Mod Pathol. 1999;12:33–40.

    PubMed  CAS  Google Scholar 

  3. Cormack-Aboud FC, Brinkkoetter PT, Pippin JW, Shankland SJ, Durvasula RV. Rosuvastatin protects against podocyte apoptosis in vitro. Nephrol Dial Transplant. 2009;24:404–12.

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Sakurai N, Kuroiwa T, Ikeuchi H, Hiramatsu N, Takeuchi S, Tomioka M, et al. Fluvastatin prevents podocyte injury in a murine model of HIV-associated nephropathy. Nephrol Dial Transplant. 2009;24:2378–83.

    PubMed  CAS  Google Scholar 

  5. Bussolati B, Deregibus MC, Fonsato V, Doublier S, Spatola T, Procida S, et al. Statins prevent oxidized LDL-induced injury of glomerular podocytes by activating the phosphatidylinositol 3-kinase/AKT-signaling pathway. J Am Soc Nephrol. 2005;16:1936–47.

    PubMed  CAS  Google Scholar 

  6. Gianella A, Nobili E, Abbate M, Zoja C, Gelosa P, Mussoni L, et al. Rosuvastatin treatment prevents progressive kidney inflammation and fibrosis in stroke-prone rats. Am J Pathol. 2007;170:1165–77.

    PubMed Central  PubMed  CAS  Google Scholar 

  7. Athyros VG, Mikhailidis DP, Papageorgiou AA, Symeonidis AN, Pehlivanidis AN, Bouloukos VI, et al. The effect of statins versus untreated dyslipidaemia on renal function in patients with coronary heart disease. A subgroup analysis of the Greek atorvastatin and coronary heart disease evaluation (GREACE) study. J Clin Pathol. 2004;57:728–34.

    PubMed Central  PubMed  CAS  Google Scholar 

  8. Shepherd J, Kastelein JJ, Bittner V, Deedwania P, Breazna A, Dobson S, et al. Effect of intensive lipid lowering with atorvastatin on renal function in patients with coronary heart disease: the Treating to New Targets (TNT) study. Clin J Am Soc Nephrol. 2007;2:1131–9.

    PubMed  CAS  Google Scholar 

  9. Tonelli M, Isles C, Craven T, Tonkin A, Pfeffer MA, Shepherd J, et al. Effect of pravastatin on rate of kidney function loss in people with or at risk for coronary disease. Circulation. 2005;112:171–8.

    PubMed  CAS  Google Scholar 

  10. Sandhu S, Wiebe N, Fried LF, Tonelli M. Statins for improving renal outcomes: a meta-analysis. J Am Soc Nephrol. 2006;17:2006–16.

    PubMed  CAS  Google Scholar 

  11. Muntner P, Hamm LL, Kusek JW, Chen J, Whelton PK, He J. The prevalence of nontraditional risk factors for coronary heart disease in patients with chronic kidney disease. Ann Intern Med. 2004;140:9–17.

    PubMed  Google Scholar 

  12. Chmielewski M, Carrero JJ, Nordfors L, Lindholm B, Stenvinkel P. Lipid disorders in chronic kidney disease: reverse epidemiology and therapeutic approach. J Nephrol. 2008;21:635–44.

    PubMed  CAS  Google Scholar 

  13. Attman PO, Knight-Gibson C, Tavella M, Samuelsson O, Alaupovic P. The compositional abnormalities of lipoproteins in diabetic renal failure. Nephrol Dial Transplant. 1998;13:2833–41.

    PubMed  CAS  Google Scholar 

  14. Hirano T, Sakaue T, Misaki A, Murayama S, Takahashi T, Okada K, et al. Very low-density lipoprotein-apoprotein CI is increased in diabetic nephropathy: comparison with apoprotein CIII. Kidney Int. 2003;63:2171–7.

    PubMed  CAS  Google Scholar 

  15. Nishizawa Y, Shoji T, Kawagishi T, Morii H. Atherosclerosis in uremia: possible roles of hyperparathyroidism and intermediate density lipoprotein accumulation. Kidney Int Suppl. 1997;62:90–2.

    Google Scholar 

  16. Arnadottir M, Nilsson-Ehle P. Has parathyroid hormone any influence on lipid metabolism in chronic renal failure? Nephrol Dial Transplant. 1995;10:2381–2.

    PubMed  CAS  Google Scholar 

  17. Vaziri ND, Liang K. Down-regulation of VLDL receptor expression in chronic experimental renal failure. Kidney Int. 1997;51:913–9.

    PubMed  CAS  Google Scholar 

  18. Kim C, Vaziri ND. Down-regulation of hepatic LDL receptor-related protein (LRP) in chronic renal failure. Kidney Int. 2005;67:1028–32.

    PubMed  CAS  Google Scholar 

  19. Heeringa P, Tervaert JW. Role of oxidized low-density lipoprotein in renal disease. Curr Opin Nephrol Hypertens. 2002;11:287–93.

    PubMed  Google Scholar 

  20. Kasahara J, Kobayashi K, Maeshima Y, Yamasaki Y, Yasuda T, Matsuura E, et al. Clinical significance of serum oxidized low-density lipoprotein/beta2-glycoprotein I complexes in patients with chronic renal diseases. Nephron Clin Pract. 2004;98:15–24.

    Google Scholar 

  21. Deighan CJ, Caslake MJ, McConnell M, Boulton-Jones JM, Packard CJ. Atherogenic lipoprotein phenotype in end-stage renal failure: origin and extent of small dense low-density lipoprotein formation. Am J Kidney Dis. 2000;35:852–62.

    PubMed  CAS  Google Scholar 

  22. O’Neal D, Lee P, Murphy B, Best J. Low-density lipoprotein particle size distribution in end-stage renal disease treated with hemodialysis or peritoneal dialysis. Am J Kidney Dis. 1996;27:84–91.

    PubMed  Google Scholar 

  23. Guarnieri GF, Moracchiello M, Campanacci L, Ursini F, Ferri L, Valente M, et al. Lecithin-cholesterol acyltransferase (LCAT) activity in chronic uremia. Kidney Int Suppl. 1978;13:26–30.

    Google Scholar 

  24. McLeod R, Reeve CE, Frohlich J. Plasma lipoproteins and lecithin: cholesterol acyltransferase distribution in patients on dialysis. Kidney Int. 1984;25:683–8.

    PubMed  CAS  Google Scholar 

  25. Vaziri ND. Dyslipidemia of chronic renal failure: the nature, mechanisms, and potential consequences. Am J Physiol Renal Physiol. 2006;290:262–72.

    Google Scholar 

  26. Vaziri ND, Deng G, Liang K. Hepatic HDL receptor, SR-B1 and Apo A-I expression in chronic renal failure. Nephrol Dial Transplant. 1999;14:1462–6.

    PubMed  CAS  Google Scholar 

  27. Joven J, Villabona C, Vilella E, Masana L, Albertí R, Vallés M. Abnormalities of lipoprotein metabolism in patients with the nephrotic syndrome. N Engl J Med. 1990;323:579–84.

    PubMed  CAS  Google Scholar 

  28. Vaziri ND, Sato T, Liang K. Molecular mechanisms of altered cholesterol metabolism in rats with spontaneous focal glomerulosclerosis. Kidney Int. 2003;63:1756–63.

    PubMed  CAS  Google Scholar 

  29. Vaziri ND. Molecular mechanisms of lipid disorders in nephrotic syndrome. Kidney Int. 2003;63:1964–76.

    PubMed  Google Scholar 

  30. Kashyap ML, Srivastava LS, Hynd BA, Brady D, Perisutti G, Glueck CJ, et al. Apolipoprotein CII and lipoprotein lipase in human nephrotic syndrome. Atherosclerosis. 1980;35:29–40.

    PubMed  CAS  Google Scholar 

  31. Vaziri ND, Kim CH, Phan D, Kim S, Liang K. Up-regulation of hepatic acyl CoA: diacylglycerol acyltransferase-1 (DGAT-1) expression in nephrotic syndrome. Kidney Int. 2004;66:262–7.

    PubMed  CAS  Google Scholar 

  32. Ohta T, Matsuda I. Lipid and apolipoprotein levels in patients with nephrotic syndrome. Clin Chim Acta. 1981;117:133–43.

    PubMed  CAS  Google Scholar 

  33. Alexander JH, Schapel GJ, Edwards KD. Increased incidence of coronary heart disease associated with combined elevation of serum triglyceride and cholesterol concentrations in the nephrotic syndrome in man. Med J Aust. 1974;2:119–22.

    PubMed  CAS  Google Scholar 

  34. Joven J, Rubiés-Prat J, Espinel E, Ras MR, Piera L. High-density lipoproteins in untreated idiopathic nephrotic syndrome without renal failure. Nephrol Dial Transplant. 1987;2:149–53.

    PubMed  CAS  Google Scholar 

  35. Cheung AK, Wu LL, Kablitz C, Leypoldt JK. Atherogenic lipids and lipoproteins in hemodialysis patients. Am J Kidney Dis. 1993;22:271–6.

    PubMed  CAS  Google Scholar 

  36. Rapoport J, Aviram M, Chaimovitz C, Brook JG. Defective high-density lipoprotein composition in patients on chronic hemodialysis. A possible mechanism for accelerated atherosclerosis. N Engl J Med. 1978;299:1326–9.

    PubMed  CAS  Google Scholar 

  37. Attman PO, Alaupovic P. Lipid and apolipoprotein profiles of uremic dyslipoproteinemia-relation to renal function and dialysis. Nephron. 1991;57:401–10.

    PubMed  CAS  Google Scholar 

  38. Näsström B, Stegmayr B, Olivecrona G, Olivecrona T. Lipoprotein lipase in hemodialysis patients: indications that low molecular weight heparin depletes functional stores, despite low plasma levels of the enzyme. BMC Nephrol. 2004;5:17.

    PubMed Central  PubMed  Google Scholar 

  39. Blankestijn PJ, Vos PF, Rabelink TJ, van Rijn HJ, Jansen H, Koomans HA. High-flux dialysis membranes improve lipid profile in chronic hemodialysis patients. J Am Soc Nephrol. 1995;5:1703–8.

    PubMed  CAS  Google Scholar 

  40. Attman PO, Samuelsson OG, Moberly J, Johansson AC, Ljungman S, Weiss LG, et al. Apolipoprotein B-containing lipoproteins in renal failure: the relation to mode of dialysis. Kidney Int. 1999;55:1536–42.

    PubMed  CAS  Google Scholar 

  41. Kronenberg F, Lingenhel A, Neyer U, Lhotta K, König P, Auinger M, et al. Prevalence of dyslipidemic risk factors in hemodialysis and CAPD patients. Kidney Int Suppl. 2003;84:113–6.

    Google Scholar 

  42. Kronenberg F, König P, Neyer U, Auinger M, Pribasnig A, Lang U, et al. Multicenter study of lipoprotein(a) and apolipoprotein(a) phenotypes in patients with end-stage renal disease treated by hemodialysis or continuous ambulatory peritoneal dialysis. J Am Soc Nephrol. 1995;6:110–20.

    PubMed  CAS  Google Scholar 

  43. Johansson AC, Samuelsson O, Attman PO, Haraldsson B, Moberly J, Knight-Gibson C, et al. Dyslipidemia in peritoneal dialysis—relation to dialytic variables. Perit Dial Int. 2000;20:306–14.

    PubMed  CAS  Google Scholar 

  44. Prinsen BH, Rabelink TJ, Romijn JA, Bisschop PH, de Barse MM, de Boer J, et al. A broad-based metabolic approach to study VLDL apoB100 metabolism in patients with ESRD and patients treated with peritoneal dialysis. Kidney Int. 2004;65:1064–75.

    PubMed  CAS  Google Scholar 

  45. Steele J, Billington T, Janus E, Moran J. Lipids, lipoproteins and apolipoproteins A-I and B and apolipoprotein losses in continuous ambulatory peritoneal dialysis. Atherosclerosis. 1989;79:47–50.

    PubMed  CAS  Google Scholar 

  46. Moorhead JF, Chan MK, El-Nahas M, Varghese Z. Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet. 1982;2:1309–11.

    PubMed  CAS  Google Scholar 

  47. Galle J, Heermeier K, Wanner C. Atherogenic lipoproteins, oxidative stress, and cell death. Kidney Int Suppl. 1999;71:62–5.

    Google Scholar 

  48. Gyebi L, Soltani Z, Reisin E. Lipid nephrotoxicity: new concept for an old disease. Curr Hypertens Rep. 2012;14:177–81.

    PubMed  CAS  Google Scholar 

  49. Vaziri ND. Roles of oxidative stress and antioxidant therapy in chronic kidney disease and hypertension. Curr Opin Nephrol Hypertens. 2004;13:93–9.

    PubMed  CAS  Google Scholar 

  50. Jones SA, Hancock JT, Jones OT, Neubauer A, Topley N. The expression of NADPH oxidase components in human glomerular mesangial cells: detection of protein and mRNA for p47phox, and p22phox. J Am Soc Nephrol. 1995;5:1483–91.

    PubMed  CAS  Google Scholar 

  51. Galle J, Heermeier K. Angiotensin II and oxidized LDL: an unholy alliance creating oxidative stress. Nephrol Dial Transplant. 1999;14:2585–9.

    PubMed  CAS  Google Scholar 

  52. Lee HS, Song CY. Oxidized low-density lipoprotein and oxidative stress in the development of glomerulosclerosis. Am J Nephrol. 2009;29:62–70.

    PubMed  CAS  Google Scholar 

  53. Park SY, Song CY, Kim BC, Hong HK, Lee HS. Angiotensin II mediates LDL-induced superoxide generation in mesangial cells. Am J Physiol Renal Physiol. 2003;285:909–15.

    Google Scholar 

  54. Lee HS, Kim YS. Identification of oxidized low density lipoprotein in human renal biopsies. Kidney Int. 1998;54:848–56.

    PubMed  CAS  Google Scholar 

  55. Lee HS, Kim BC, Kim YS, Choi KH, Chung HK. Involvement of oxidation in LDL-induced collagen gene regulation in mesangial cells. Kidney Int. 1996;50:1582–90.

    PubMed  CAS  Google Scholar 

  56. Nishida Y, Yorioka N, Oda H, Yamakido M. Effect of lipoproteins on cultured human mesangial cells. Am J Kidney Dis. 1997;29:919–30.

    PubMed  CAS  Google Scholar 

  57. Kamanna VS, Pai R, Roh DD, Kirschenbaum MA. Oxidative modification of low-density lipoprotein enhances the murine mesangial cell cytokines associated with monocyte migration, differentiation, and proliferation. Lab Invest. 1996;74:1067–79.

    PubMed  CAS  Google Scholar 

  58. Rovin BH, Tan LC. LDL stimulates mesangial fibronectin production and chemoattractant expression. Kidney Int. 1993;43:218–25.

    PubMed  CAS  Google Scholar 

  59. Massy ZA, Kim Y, Guijarro C, Kasiske BL, Keane WF, O’Donnell MP. Low-density lipoprotein-induced expression of interleukin-6, a marker of human mesangial cell inflammation: effects of oxidation and modulation by lovastatin. Biochem Biophys Res Commun. 2000;267:536–40.

    PubMed  CAS  Google Scholar 

  60. Ding G, Pesek-Diamond I, Diamond JR. Cholesterol, macrophages, and gene expression of TGF- 1 and fibronectin during nephrosis. Am J Physiol. 1993;33:577–84.

    Google Scholar 

  61. Eddy AA. Interstitial inflammation and fibrosis in rats with diet-induced hypercholesterolemia. Kidney Int. 1996;50:1139–49.

    PubMed  CAS  Google Scholar 

  62. Lee HS, Kim BC, Hong HK, Kim YS. LDL stimulates collagen mRNA synthesis in mesangial cells through induction of PKC and TGF expression. Am J Physiol. 1999;277:369–76.

    Google Scholar 

  63. Song CY, Kim BC, Hong HK, Lee HS. Oxidized LDL activates PAI-1 transcription through autocrine activation of TGF signalling in mesangial cells. Kidney Int. 2005;67:1743–52.

    PubMed  CAS  Google Scholar 

  64. Ding G, van Goor H, Ricardo SD, Orlowski JM, Diamond JR. Oxidized LDL stimulates the expression of TGF and fibronectin inhuman glomerular epithelial cells. Kidney Int. 1997;51:147–54.

    PubMed  CAS  Google Scholar 

  65. Hong HK, Song CY, Kim BC, Lee HS. ERK contributes to the effects of Smad signalling on oxidized LDL-induced PAI-1 expression in human mesangial cells. Transl Res. 2006;148:171–9.

    PubMed  CAS  Google Scholar 

  66. Sohn M, Tan Y, Klein RL, Jaffa AA. Evidence for low-density lipoprotein-induced expression of connective tissue growth factor in mesangial cells. Kidney Int. 2005;67:1286–96.

    PubMed  CAS  Google Scholar 

  67. Harada-Shiba M, Kinoshita M, Kamido H, Shimokado KJ. Oxidized low density lipoprotein induces apoptosis in cultured human umbilical vein endothelial cells by common and unique mechanisms. Biol Chem. 1998;273:9681–7.

    CAS  Google Scholar 

  68. Galle J, Schneider R, Heinloth A, Wanner C, Galle PR, Conzelmann E, et al. Lp(a) and LDL induce apoptosis in human endothelial cells and in rabbit aorta: role of oxidative stress. Kidney Int. 1999;55:1450–61.

    PubMed  CAS  Google Scholar 

  69. Sharma P, Reddy K, Franki N, Sanwal V, Sankaran R, Ahuja TS, et al. Native and oxidized low density lipoproteins modulate mesangial cell apoptosis. Kidney Int. 1996;50:1604–11.

    PubMed  CAS  Google Scholar 

  70. Agarwal A, Balla J, Balla G, Croatt AJ, Vercellotti GM, Nath KA. Renal tubular epithelial cells mimic endothelial cells upon exposure to oxidized LDL. Am J Physiol. 1996;271:814–23.

    Google Scholar 

  71. Keil A, Blom IE, Goldschmeding R, Rupprecht HD. Nitric oxide down-regulates connective tissue growth factor in rat mesangial cells. Kidney Int. 2002;62:401–11.

    PubMed  CAS  Google Scholar 

  72. Wu ZL, Liang MY, Qiu LQ. Oxidized low-density lipoprotein decreases the induced nitric oxide synthesis in rat mesangial cells. Cell Biochem Funct. 1998;16:153–8.

    PubMed  CAS  Google Scholar 

  73. Hein TW, Kuo L. LDLs impair vasomotor function of the coronary microcirculation: role of superoxide anions. Circ Res. 1998;83:404–14.

    PubMed  CAS  Google Scholar 

  74. Tan MS, Lee YJ, Shin SJ, Tsai JH. Oxidized low-density lipoprotein stimulates endothelin-1 release and mRNA expression from rat mesangial cells. J Lab Clin Med. 1997;129:224–30.

    PubMed  CAS  Google Scholar 

  75. Oda H, Keane WF. Recent advances in statins and the kidney. Kidney Int Suppl. 1999;71:2–5.

    Google Scholar 

  76. Galle J, Heinloth A, Schwedler S, Wanner C. Effect of HDL and atherogenic lipoproteins on formation of O2– and renin release in juxtaglomerular cells. Kidney Int. 1997;51:253–60.

    PubMed  CAS  Google Scholar 

  77. Samuelsson O, Mulec H, Knight-Gibson C, Attman PO, Kron B, Larsson R, et al. Lipoprotein abnormalities are associated with increased rate of progression of human chronic renal insufficiency. Nephrol Dial Transplant. 1997;12:1908–15.

    PubMed  CAS  Google Scholar 

  78. Lynn EG, Siow YL, O K. Very low-density lipoprotein stimulates the expression of monocyte chemoattractant protein-1 in mesangial cells. Kidney Int. 2000;57:1472–83.

    PubMed  CAS  Google Scholar 

  79. Joles JA, Kunter U, Janssen U, Kriz W, Rabelink TJ, Koomans HA, et al. Early mechanisms of renal injury in hypercholesterolemic or hypertriglyceridemic rats. J Am Soc Nephrol. 2000;11:669–83.

    PubMed  CAS  Google Scholar 

  80. Hattori M, Nikolic-Paterson DJ, Miyazaki K, Isbel NM, Lan HY, Atkins RC, et al. Mechanisms of glomerular macrophage infiltration in lipid-induced renal injury. Kidney Int Suppl. 1999;71:47–50.

    Google Scholar 

  81. Jayapalan S, Saboorian MH, Edmunds JW, Aukema HM. High dietary fat intake increases renal cyst disease progression in Han:SPRD-cy rats. J Nutr. 2000;130:2356–60.

    PubMed  CAS  Google Scholar 

  82. Takemura T, Yoshioka K, Aya N, Murakami K, Matumoto A, Itakura H, et al. Apolipoproteins and lipoprotein receptors in glomeruli in human kidney diseases. Kidney Int. 1993;43:918–27.

    PubMed  CAS  Google Scholar 

  83. Ozsoy RC, van der Steeg WA, Kastelein JJ, Arisz L, Koopman MG. Dyslipidaemia as predictor of progressive renal failure and the impact of treatment with atorvastatin. Nephrol Dial Transplant. 2007;22:1578–86.

    PubMed  CAS  Google Scholar 

  84. Schaeffner ES, Kurth T, Curhan GC, Glynn RJ, Rexrode KM, Baigent C, et al. Cholesterol and the risk of renal dysfunction in apparently healthy men. J Am Soc Nephrol. 2003;14:2084–91.

    PubMed  CAS  Google Scholar 

  85. Mänttäri M, Tiula E, Alikoski T, Manninen V. Effects of hypertension and dyslipidemia on the decline in renal function. Hypertension. 1995;26:670–5.

    PubMed  Google Scholar 

  86. Kimura K, Shimano H, Yokote K, Urashima M, Teramoto T. Effects of pitavastatin (LIVALO tablet) on the estimated glomerular filtration rate (eGFR) in hypercholesterolemic patients with chronic kidney disease. Sub-analysis of the LIVALO Effectiveness and Safety (LIVES) study. J Atheroscler Thromb. 2010;17:601–9.

    PubMed  CAS  Google Scholar 

  87. Baigent C, Landray MJ, Reith C, Emberson J, Wheeler DC, Tomson C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet. 2011;377:2181–92.

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Ridker PM, MacFadyen J, Cressman M, Glynn RJ. Efficacy of rosuvastatin among men and women with moderate chronic kidney disease and elevated high-sensitivity C-reactive protein: a secondary analysis from the JUPITER (Justification for the Use of Statins in Prevention-an Intervention Trial Evaluating Rosuvastatin) trial. J Am Coll Cardiol. 2010;55:1266–73.

    PubMed  CAS  Google Scholar 

  89. Rahman M, Baimbridge C, Davis BR, Barzilay J, Basile JN, Henriquez MA, et al. Progression of kidney disease in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin versus usual care: a report from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Am J Kidney Dis. 2008;52:412–24.

    PubMed Central  PubMed  Google Scholar 

  90. Atthobari J, Brantsma AH, Gansevoort RT, Visser ST, Asselbergs FW, van Gilst WH, et al. The effect of statins on urinary albumin excretion and glomerular filtration rate: results from both a randomized clinical trial and an observational cohort study. Nephrol Dial Transplant. 2006;21:3106–14.

    PubMed  CAS  Google Scholar 

  91. Holdaas H, Fellström B, Jardine AG, Holme I, Nyberg G, Fauchald P, et al. Effect of fluvastatin on cardiac outcomes in renal transplant recipients: a multicentre, randomised, placebo-controlled trial. Lancet. 2003;361:2024–31.

    PubMed  CAS  Google Scholar 

  92. Holdaas H, Fellström B, Cole E, Nyberg G, Olsson AG, Pedersen TR, et al. Long-term cardiac outcomes in renal transplant recipients receiving fluvastatin: the ALERT extension study. Am J Transplant. 2005;5:2929–36.

    PubMed  CAS  Google Scholar 

  93. Wiesbauer F, Heinze G, Mitterbauer C, Harnoncourt F, Hörl WH, Oberbauer R. Statin use is associated with prolonged survival of renal transplant recipients. J Am Soc Nephrol. 2008;19:2211–8.

    PubMed Central  PubMed  Google Scholar 

  94. de Zeeuw. Prospective evaluation of proteinuria and renal function in nondiabetic patients with progressive renal disease: XLVII European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) congress 2010, June 25–28, Munich, Germany

    Google Scholar 

  95. Abe M, Maruyama N, Yoshida Y, Ito M, Okada K, Soma M. Efficacy analysis of the lipid-lowering and renoprotective effects of rosuvastatin in patients with chronic kidney disease. Endocr J. 2011;58:663–74.

    PubMed  CAS  Google Scholar 

  96. Bianchi S, Bigazzi R, Caiazza A, Campese VM. A controlled, prospective study of the effects of atorvastatin on proteinuria and progression of kidney disease. Am J Kidney Dis. 2004;41:565–70.

    Google Scholar 

  97. Ozsoy RC, Koopman MG, Kastelein JJ, Arisz L. The acute effect of atorvastatin on proteinuria in patients with chronic glomerulonephritis. Clin Nephrol. 2005;63:245–9.

    PubMed  CAS  Google Scholar 

  98. Deslypere JP, Delanghe J, Vermeulen A. Proteinuria as complication of simvastatin treatment. Lancet. 1990;336:1453.

    PubMed  CAS  Google Scholar 

  99. Faergeman O, Hill L, Windler E, Wiklund O, Asmar R, Duffield E, et al. Efficacy and tolerability of rosuvastatin and atorvastatin when force-titrated in patients with primary hypercholesterolemia: results from the ECLIPSE study. Cardiology. 2008;111:219–28.

    PubMed  CAS  Google Scholar 

  100. Shepherd J, Vidt DG, Miller E, Harris S, Blasetto J. Safety of rosuvastatin: update on 16,876 rosuvastatin-treated patients in a multinational clinical trial program. Cardiology. 2007;107:433–43.

    PubMed  CAS  Google Scholar 

  101. Kostapanos MS, Milionis HJ, Gazi I, Kostara C, Bairaktari ET, Elisaf M. Rosuvastatin increases alpha-1 microglobulin urinary excretion in patients with primary dyslipidemia. J Clin Pharmacol. 2006;46:1337–43.

    PubMed  CAS  Google Scholar 

  102. Fried LF, Orchard TJ, Kasiske BL. Effect of lipid reduction on the progression of renal disease: a meta-analysis. Kidney Int. 2001;59:260–9.

    PubMed  CAS  Google Scholar 

  103. Douglas K, O’Malley PG, Jackson JL. Meta-analysis: the effect of statins on albuminuria. Ann Intern Med. 2006;145:117–24.

    PubMed  CAS  Google Scholar 

  104. Navaneethan SD, Pansini F, Perkovic V, Manno C, Pellegrini F, Johnson DW, et al. HMG CoA reductase inhibitors (statins) for people with chronic kidney disease not requiring dialysis. Cochrane Database Syst Rev. 2009;2:CD007784.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Więcek M.D., F.R.C.P. (Edin) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kujawa-Szewieczek, A., Piecha, G., Więcek, A. (2014). Hyperlipidemia as a Risk Factor for Progression of CKD in Nondiabetics. In: Covic, A., Kanbay, M., Lerma, E. (eds) Dyslipidemias in Kidney Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0515-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0515-7_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0514-0

  • Online ISBN: 978-1-4939-0515-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics