Skip to main content

From Genetic Abnormalities to Pathophysiological Mechanisms

  • Chapter
  • First Online:
Book cover Primary Aldosteronism

Abstract

Maintenance of an appropriate zona glomerulosa cell membrane potential is crucial for the regulation of aldosterone biosynthesis. Cell membrane depolarization is one of the main triggers for the chain of intracellular events that ultimately leads to increased aldosterone biosynthesis. Potassium channels play a key role in the maintenance of the membrane resting potential of zona glomerulosa cells. Among the different K+ channels, the TASK (TWIK-related acid-sensitive potassium) channels are highly expressed in the adrenal cortex. Their role in the regulation of aldosterone biosynthesis has been highlighted by the analysis of different mouse models of TASK channel invalidation. Recently, mutations in different genes coding for proteins involved in the regulation of the zona glomerulosa cell membrane potential and ionic homeostasis have been identified in tumoral (somatic) DNA from sporadic aldosterone-producing adenoma and in germline DNA from patients with familial hyperaldosteronism. Although little is known about their specific function in the adrenal gland, in this chapter we describe their structure and function and discuss, based on the knowledge in other tissues and published work, the role of these proteins in normal aldosterone production and in the pathogenesis of primary aldosteronism (PA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akerstrom T, Crona J, Delgado Verdugo A, Starker LF, Cupisti K, Willenberg HS, Knoefel WT, Saeger W, Feller A, Ip J, Soon P, Anlauf M, Alesina PF, Schmid KW, Decaussin M, Levillain P, Wangberg B, Peix JL, Robinson B, Zedenius J, Backdahl M, Caramuta S, Iwen KA, Botling J, Stalberg P, Kraimps JL, Dralle H, Hellman P, Sidhu S, Westin G, Lehnert H, Walz MK, Akerstrom G, Carling T, Choi M, Lifton RP, Bjorklund P (2012) Comprehensive Re-Sequencing of Adrenal Aldosterone Producing Lesions Reveal Three Somatic Mutations near the KCNJ5 Potassium Channel Selectivity Filter. PLoS One 7(7):e41926

    Article  PubMed Central  PubMed  Google Scholar 

  2. Armando I, Wang X, Villar VA, Jones JE, Asico LD, Escano C, Jose PA (2007) Reactive oxygen species-dependent hypertension in dopamine D2 receptor-deficient mice. Hypertension 49(3):672–678

    Article  PubMed  CAS  Google Scholar 

  3. Arnold J (1866) Ein Beitrag zur feineren Struktur und dem Chemismus des Nebennieren. Virchows Arch Patholog Anatomie Physiol Klin Med 35:64–107

    Article  Google Scholar 

  4. Azizan EA, Murthy M, Stowasser M, Gordon R, Kowalski B, Xu S, Brown MJ, O'Shaughnessy KM (2012) Somatic Mutations Affecting the Selectivity Filter of KCNJ5 Are Frequent in 2 Large Unselected Collections of Adrenal Aldosteronomas. Hypertension 59(3):587–591

    Article  PubMed  CAS  Google Scholar 

  5. Bandulik S, Penton D, Barhanin J, Warth R (2010) TASK1 and TASK3 potassium channels: determinants of aldosterone secretion and adrenocortical zonation. Horm Metab Res 42(6):450–457

    Article  PubMed  CAS  Google Scholar 

  6. Bassett MH, White PC, Rainey WE (2004) The regulation of aldosterone synthase expression. Mol Cell Endocrinol 217(1–2):67–74

    Article  PubMed  CAS  Google Scholar 

  7. Beuschlein F, Boulkroun S, Osswald A, Wieland T, Nielsen HN, Lichtenauer UD, Penton D, Schack VR, Amar L, Fischer E, Walther A, Tauber P, Schwarzmayr T, Diener S, Graf E, Allolio B, Samson-Couterie B, Benecke A, Quinkler M, Fallo F, Plouin PF, Mantero F, Meitinger T, Mulatero P, Jeunemaitre X, Warth R, Vilsen B, Zennaro MC, Strom TM, Reincke M (2013) Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet 45(4):440–444

    Article  PubMed  CAS  Google Scholar 

  8. Blaustein MP, Juhaszova M, Golovina VA (1998) The cellular mechanism of action of cardiotonic steroids: a new hypothesis. Clin Exp Hypertens 20(5–6):691–703

    Article  PubMed  CAS  Google Scholar 

  9. Boulkroun S, Beuschlein F, Rossi GP, Golib-Dzib JF, Fischer E, Amar L, Mulatero P, Samson-Couterie B, Hahner S, Quinkler M, Fallo F, Letizia C, Allolio B, Ceolotto G, Cicala MV, Lang K, Lefebvre H, Lenzini L, Maniero C, Monticone S, Perrocheau M, Pilon C, Plouin PF, Rayes N, Seccia TM, Veglio F, Williams TA, Zinnamosca L, Mantero F, Benecke A, Jeunemaitre X, Reincke M, Zennaro MC (2012) Prevalence, Clinical, and Molecular Correlates of KCNJ5 Mutations in Primary Aldosteronism. Hypertension 59(3):592–598

    Article  PubMed  CAS  Google Scholar 

  10. Boulkroun S, Samson-Couterie B, Dzib JF, Lefebvre H, Louiset E, Amar L, Plouin PF, Lalli E, Jeunemaitre X, Benecke A, Meatchi T, Zennaro MC (2010) Adrenal cortex remodeling and functional zona glomerulosa hyperplasia in primary aldosteronism. Hypertension 56(5):885–892

    Article  PubMed  CAS  Google Scholar 

  11. Brini M, Cali T, Ottolini D, Carafoli E (2013) The plasma membrane calcium pump in health and disease. FEBS J 280(21):5385–5397

    Article  PubMed  CAS  Google Scholar 

  12. Carafoli E, Brini M (2000) Calcium pumps: structural basis for and mechanism of calcium transmembrane transport. Curr Opin Chem Biol 4(2):152–161

    Article  PubMed  CAS  Google Scholar 

  13. Carey RM, Thorner MO, Ortt EM (1980) Dopaminergic inhibition of metoclopramide-induced aldosterone secretion in man. Dissociation of responses to dopamine and bromocriptine. J Clin Invest 66(1):10–18

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Charmandari E, Sertedaki A, Kino T, Merakou C, Hoffman DA, Hatch MM, Hurt DE, Lin L, Xekouki P, Stratakis CA, Chrousos GP (2012) A Novel Point Mutation in the KCNJ5 Gene Causing Primary Hyperaldosteronism and Early-Onset Autosomal Dominant Hypertension. J Clin Endocrinol Metab 97(8):E1532–E1539

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Choi M, Scholl UI, Yue P, Bjorklund P, Zhao B, Nelson-Williams C, Ji W, Cho Y, Patel A, Men CJ, Lolis E, Wisgerhof MV, Geller DS, Mane S, Hellman P, Westin G, Akerstrom G, Wang W, Carling T, Lifton RP (2011) K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 331(6018):768–772

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Connell JM, Davies E (2005) The new biology of aldosterone. J Endocrinol 186(1):1–20

    Article  PubMed  CAS  Google Scholar 

  17. Corey S, Clapham DE (1998) Identification of native atrial G-protein-regulated inwardly rectifying K+ (GIRK4) channel homomultimers. J Biol Chem 273(42):27499–27504

    Article  PubMed  CAS  Google Scholar 

  18. Davies LA, Hu C, Guagliardo NA, Sen N, Chen X, Talley EM, Carey RM, Bayliss DA, Barrett PQ (2008) TASK channel deletion in mice causes primary hyperaldosteronism. Proc Natl Acad Sci U S A 105(6):2203–2208

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Einholm AP, Andersen JP, Vilsen B (2007) Importance of Leu99 in transmembrane segment M1 of the Na+, K+-ATPase in the binding and occlusion of K+. J Biol Chem 282(33):23854–23866

    Article  PubMed  CAS  Google Scholar 

  20. Escoubet B, Coureau C, Bonvalet JP, Farman N (1997) Noncoordinate regulation of epithelial Na channel and Na pump subunit mRNAs in kidney and colon by aldosterone. Am J Physiol 272(5 Pt 1):C1482–C1491

    PubMed  CAS  Google Scholar 

  21. Falchetto R, Vorherr T, Carafoli E (1992) The calmodulin-binding site of the plasma membrane Ca2+ pump interacts with the transduction domain of the enzyme. Protein Sci 1(12):1613–1621

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Geering K (2008) Functional roles of Na, K-ATPase subunits. Curr Opin Nephrol Hypertens 17(5):526–532

    Article  PubMed  CAS  Google Scholar 

  23. Geller DS, Zhang J, Wisgerhof MV, Shackleton C, Kashgarian M, Lifton RP (2008) A novel form of human Mendelian hypertension featuring nonglucocorticoid-remediable aldosteronism. J Clin Endocrinol Metab 93(8):3117–3123

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Guagliardo NA, Yao J, Hu C, Schertz EM, Tyson DA, Carey RM, Bayliss DA, Barrett PQ (2012) TASK-3 channel deletion in mice recapitulates low-renin essential hypertension. Hypertension 59(5):999–1005

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Guillon G, Trueba M, Joubert D, Grazzini E, Chouinard L, Cote M, Payet MD, Manzoni O, Barberis C, Robert M et al (1995) Vasopressin stimulates steroid secretion in human adrenal glands: comparison with angiotensin-II effect. Endocrinology 136(3):1285–1295

    PubMed  CAS  Google Scholar 

  26. Hajnoczky G, Csordas G, Hunyady L, Kalapos MP, Balla T, Enyedi P, Spat A (1992) Angiotensin-II inhibits Na+/K+ pump in rat adrenal glomerulosa cells: possible contribution to stimulation of aldosterone production. Endocrinology 130(3):1637–1644

    PubMed  CAS  Google Scholar 

  27. Hattangady NG, Olala LO, Bollag WB, Rainey WE (2012) Acute and chronic regulation of aldosterone production. Mol Cell Endocrinol 350(2):151–162

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Hedin KE, Lim NF, Clapham DE (1996) Cloning of a Xenopus laevis inwardly rectifying K+ channel subunit that permits GIRK1 expression of IKACh currents in oocytes. Neuron 16(2):423–429

    Article  PubMed  CAS  Google Scholar 

  29. Heitzmann D, Derand R, Jungbauer S, Bandulik S, Sterner C, Schweda F, El Wakil A, Lalli E, Guy N, Mengual R, Reichold M, Tegtmeier I, Bendahhou S, Gomez-Sanchez CE, Aller MI, Wisden W, Weber A, Lesage F, Warth R, Barhanin J (2008) Invalidation of TASK1 potassium channels disrupts adrenal gland zonation and mineralocorticoid homeostasis. Embo J 27(1):179–187

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiological reviews 90(1):291–366

    Article  PubMed  CAS  Google Scholar 

  31. Jorgensen PL, Hakansson KO, Karlish SJ (2003) Structure and mechanism of Na, K-ATPase: functional sites and their interactions. Annu Rev Physiol 65:817–849

    Article  PubMed  CAS  Google Scholar 

  32. Kaplan JH (2002) Biochemistry of Na, K-ATPase. Annu Rev Biochem 71:511–535

    Article  PubMed  CAS  Google Scholar 

  33. Kobrinsky E, Mirshahi T, Zhang H, Jin T, Logothetis D (2000) Receptor-mediated hydrolysis of plasma membrane messenger PIP2 leads to K+-current desensitization. Nat Cell Biol 2(8):507–514

    Article  PubMed  CAS  Google Scholar 

  34. Krapivinsky G, Gordon EA, Wickman K, Velimirovic B, Krapivinsky L, Clapham DE (1995) The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K(+)-channel proteins. Nature 374(6518):135–141

    Article  PubMed  CAS  Google Scholar 

  35. Kubo Y, Baldwin TJ, Jan YN, Jan LY (1993) Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362(6416):127–133

    Article  PubMed  CAS  Google Scholar 

  36. Lu Z (2004) Mechanism of rectification in inward-rectifier K+ channels. Annu Rev Physiol 66:103–129. doi:10.1146/annurev.physiol.66.032102.150822

    Article  PubMed  CAS  Google Scholar 

  37. Makary SM, Claydon TW, Dibb KM, Boyett MR (2006) Base of pore loop is important for rectification, activation, permeation, and block of Kir3.1/Kir3.4. Biophys J 90(11):4018–4034

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. McKenna TJ, Island DP, Nicholson WE, Liddle GW (1979) Dopamine inhibits angiotensin-stimulated aldosterone biosynthesis in bovine adrenal cells. J Clin Invest 64(1):287–291

    Article  PubMed  CAS  Google Scholar 

  39. Monticone S, Hattangady NG, Nishimoto K, Mantero F, Rubin B, Cicala MV, Pezzani R, Auchus RJ, Ghayee HK, Shibata H, Kurihara I, Williams TA, Giri JG, Bollag RJ, Edwards MA, Isales CM, Rainey WE (2012) Effect of KCNJ5 Mutations on Gene Expression in Aldosterone-Producing Adenomas and Adrenocortical Cells. J Clin Endocrinol Metab 97(8):E1567–E1572

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Mulatero P, Tauber P, Zennaro MC, Monticone S, Lang K, Beuschlein F, Fischer E, Tizzani D, Pallauf A, Viola A, Amar L, Williams TA, Strom TM, Graf E, Bandulik S, Penton D, Plouin PF, Warth R, Allolio B, Jeunemaitre X, Veglio F, Reincke M (2012) KCNJ5 mutations in European families with nonglucocorticoid remediable familial hyperaldosteronism. Hypertension 59(2):235–240

    Article  PubMed  CAS  Google Scholar 

  41. Navarro B, Kennedy ME, Velimirovic B, Bhat D, Peterson AS, Clapham DE (1996) Nonselective and G betagamma-insensitive weaver K+ channels. Science 272(5270):1950–1953

    Article  PubMed  CAS  Google Scholar 

  42. Neri G, De Toni R, Tortorella C, Rebuffat P, Bova S, Cargnelli G, Petrelli L, Spinazzi R, Nussdorfer GG (2006) Ouabain chronic infusion enhances the growth and steroidogenic capacity of rat adrenal zona glomerulosa: the possible involvement of the endothelin system. Int J Mol Med 18(2):315–319

    PubMed  CAS  Google Scholar 

  43. Nishida M, MacKinnon R (2002) Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 A resolution. Cell 111(7):957–965

    Article  PubMed  CAS  Google Scholar 

  44. Oki K, Plonczynski M, Lam M, Gomez-Sanchez E, Gomez-Sanchez C (2012) The potassium channel, Kir3.4 participates in angiotensin II-stimulated aldosterone production by a human adrenocortical cell line. Endocrinology 153(9):4328–4335

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Oki K, Plonczynski MW, Luis Lam M, Gomez-Sanchez EP, Gomez-Sanchez CE (2012) Potassium Channel Mutant KCNJ5 T158A Expression in HAC-15 Cells Increases Aldosterone Synthesis. Endocrinology 153(4):1774–1782

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Okubo S, Niimura F, Nishimura H, Takemoto F, Fogo A, Matsusaka T, Ichikawa I (1997) Angiotensin-independent mechanism for aldosterone synthesis during chronic extracellular fluid volume depletion. J Clin Invest 99(5):855–860

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Penton D, Bandulik S, Schweda F, Haubs S, Tauber P, Reichold M, Cong LD, El Wakil A, Budde T, Lesage F, Lalli E, Zennaro MC, Warth R, Barhanin J (2012) Task3 potassium channel gene invalidation causes low renin and salt-sensitive arterial hypertension. Endocrinology 153(10):4740–4748

    Article  PubMed  CAS  Google Scholar 

  48. Pierre SV, Xie Z (2006) The Na, K-ATPase receptor complex: its organization and membership. Cell Biochem Biophys 46(3):303–316

    Article  PubMed  CAS  Google Scholar 

  49. Robillard L, Ethier N, Lachance M, Hebert TE (2000) Gbetagamma subunit combinations differentially modulate receptor and effector coupling in vivo. Cell Signal 12(9–10):673–682

    Article  PubMed  CAS  Google Scholar 

  50. Rosenhouse-Dantsker A, Sui JL, Zhao Q, Rusinova R, Rodriguez-Menchaca AA, Zhang Z, Logothetis DE (2008) A sodium-mediated structural switch that controls the sensitivity of Kir channels to PtdIns(4,5)P(2). Nat Chem Biol 4(10):624–631

    Article  PubMed  CAS  Google Scholar 

  51. Saitoh O, Kubo Y, Miyatani Y, Asano T, Nakata H (1997) RGS8 accelerates G-protein-mediated modulation of K+ currents. Nature 390(6659):525–529

    Article  PubMed  CAS  Google Scholar 

  52. Scholl UI, Nelson-Williams C, Yue P, Grekin R, Wyatt RJ, Dillon MJ, Couch R, Hammer LK, Harley FL, Farhi A, Wang WH, Lifton RP (2012) Hypertension with or without adrenal hyperplasia due to different inherited mutations in the potassium channel KCNJ5. Proc Natl Acad Sci U S A 109(7):2533–2538

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Schwarzer S, Nobles M, Tinker A (2010) Do caveolae have a role in the fidelity and dynamics of receptor activation of G-protein-gated inwardly rectifying potassium channels? J Biol Chem 285(36):27817–27826

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Silva E, Soares-da-Silva P (2012) New insights into the regulation of Na+, K+-ATPase by ouabain. Int Rev Cell Mol Biol 294:99–132

    Article  PubMed  CAS  Google Scholar 

  55. Spat A, Hunyady L (2004) Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol Rev 84(2):489–539

    Article  PubMed  CAS  Google Scholar 

  56. Sui JL, Chan KW, Logothetis DE (1996) Na + activation of the muscarinic K+ channel by a G-protein-independent mechanism. J Gen Physiol 108(5):381–391

    Article  PubMed  CAS  Google Scholar 

  57. Taguchi R, Yamada M, Nakajima Y, Satoh T, Hashimoto K, Shibusawa N, Ozawa A, Okada S, Rokutanda N, Takata D, Koibuchi Y, Horiguchi J, Oyama T, Takeyoshi I, Mori M (2012) Expression and Mutations of KCNJ5 mRNA in Japanese Patients with Aldosterone-Producing Adenomas. J Clin Endocrinol Metab 97(4):1311–1319

    Article  PubMed  CAS  Google Scholar 

  58. Tait JF, Tait SA (1976) The effect of changes in potassium concentration on the maximal steroidogenic response of purified zona glomerulosa cells to angiotensin II. J Steroid Biochem 7(9):687–690

    Article  PubMed  CAS  Google Scholar 

  59. Wang HY, O'Doherty GA (2012) Modulators of Na/K-ATPase: a patent review. Expert Opin Ther Pat 22(6):587–605

    Article  PubMed  CAS  Google Scholar 

  60. Whorton MR, MacKinnon R (2011) Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell 147(1):199–208

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Willars GB (2006) Mammalian RGS proteins: multifunctional regulators of cellular signalling. Semin Cell Dev Biol 17(3):363–376

    Article  PubMed  CAS  Google Scholar 

  62. Wu KD, Chen YM, Chu TS, Chueh SC, Wu MH, Bor-Shen H (2001) Expression and localization of human dopamine D2 and D4 receptor mRNA in the adrenal gland, aldosterone-producing adenoma, and pheochromocytoma. J Clin Endocrinol Metab 86(9):4460–4467

    Article  PubMed  CAS  Google Scholar 

  63. Yingst D, Davis J, Schiebinger R (2000) Inhibitors of tyrosine phosphatases block angiotensin II inhibition of Na(+) pump. Eur J Pharmacol 406(1):49–52

    Article  PubMed  CAS  Google Scholar 

  64. Yingst D, Davis J, Schiebinger R (2001) Effects of extracellular calcium and potassium on the sodium pump of rat adrenal glomerulosa cells. Am J Physiol Cell Physiol 280(1):25

    Google Scholar 

  65. Yingst DR, Davis J, Krenz S, Schiebinger RJ (1999) Insights into the mechanism by which inhibition of Na, K-ATPase stimulates aldosterone production. Metabolism 48(9):1167–1171

    Article  PubMed  CAS  Google Scholar 

  66. Young DB, Smith MJ Jr, Jackson TE, Scott RE (1984) Multiplicative interaction between angiotensin II and K concentration in stimulation of aldosterone. Am J Physiol 247(3 Pt 1):E328–E335

    PubMed  CAS  Google Scholar 

  67. Zylbergold P, Ramakrishnan N, Hebert T (2010) The role of G proteins in assembly and function of Kir3 inwardly rectifying potassium channels. Channels (Austin) 4(5):411–421

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria-Christina Zennaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zennaro, MC., Boulkroun, S. (2014). From Genetic Abnormalities to Pathophysiological Mechanisms. In: Hellman, P. (eds) Primary Aldosteronism. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0509-6_5

Download citation

Publish with us

Policies and ethics