Advertisement

Gibberellin Implication in Plant Growth and Stress Responses

  • Eugenio G. Minguet
  • David Alabadí
  • Miguel A. Blázquez
Chapter

Abstract

Hormones gibberellins (GAs) are a class of diterpenoid acids that control many aspects of plants’ life, including both developmental processes and stress responses. Nowadays, we have a good understanding of how GA levels are regulated and how this information is translated into physiological responses, mainly through genetic and biochemical approaches carried out during the last two decades in rice and Arabidopsis. Here, we review the current knowledge of the GA pathway from GA metabolism to the downstream responses and pay special attention to the regulatory molecular mechanisms. GA biosynthesis starts in plastids, whereas its last steps, and also the GA inactivation, take place in the cytosol. Importantly, the expression of gene coding enzymes that catalyze limiting steps, for example, the soluble GA 20-oxidases, is usually regulated by environmental cues, making the GA level very sensitive to changes in the environment. The binding of the hormone to the GID1 receptor provokes the degradation of the master negative regulators in the pathway, the transcriptional regulators DELLA proteins, and GA-promoted responses proceed. The biochemical basis of the GID1-GA-DELLA regulatory module is well established, but how DELLA proteins regulate downstream events is a matter of current intensive research. In this regard, the regulation of transcription factors’ activity through direct physical interaction seems to be an extended yet not unique mechanism of DELLA action. Finally, how all this wealth of information is being used with biotechnological purposes is also discussed.

Keywords

Gibberellins Metabolism Signal transduction DELLA Growth Stress 

References

  1. Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357–3365PubMedGoogle Scholar
  2. Achard P, Liao L, Jiang C, Desnos T, Bartlett J, Fu X et al (2007) DELLAs contribute to plant photomorphogenesis. Plant Physiol 143:1163–1172PubMedCentralPubMedGoogle Scholar
  3. Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008a) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129PubMedCentralPubMedGoogle Scholar
  4. Achard P, Renou JP, Berthome R, Harberd NP, Genschik P (2008b) Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol 18:656–660PubMedGoogle Scholar
  5. Alabadí D, Gil J, Blázquez MA, García-Martínez JL (2004) Gibberellins repress photomorphogenesis in darkness. Plant Physiol 134:1050–1057PubMedCentralPubMedGoogle Scholar
  6. Alabadí D, Gallego-Bartolomé J, Orlando L, García-Cárcel L, Rubio V, Martínez C et al (2008) Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness. Plant J 53:324–335PubMedGoogle Scholar
  7. Al-Sady B, Ni W, Kircher S, Schafer E, Quail PH (2006) Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation. Mol Cell 23:439–446PubMedGoogle Scholar
  8. An F, Zhang X, Zhu Z, Ji Y, He W, Jiang Z et al (2012) Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings. Cell Res 22:915–927PubMedCentralPubMedGoogle Scholar
  9. Arana MV, Marín-de la Rosa N, Maloof JN, Blázquez MA, Alabadí D (2011) Circadian oscillation of gibberellin signaling in Arabidopsis. Proc Natl Acad Sci U S A 108:9292–9297PubMedCentralPubMedGoogle Scholar
  10. Ariizumi T, Steber CM (2011) Mutations in the F-box gene SNEEZY result in decreased Arabidopsis GA signaling. Plant Signal Behav 6:831–833PubMedCentralPubMedGoogle Scholar
  11. Ariizumi T, Murase K, Sun TP, Steber CM (2008) Proteolysis-independent downregulation of DELLA repression in Arabidopsis by the gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1. Plant Cell 20:2447–2459PubMedCentralPubMedGoogle Scholar
  12. Ariizumi T, Lawrence PK, Steber CM (2011) The role of two f-box proteins, SLEEPY1 and SNEEZY, in Arabidopsis gibberellin signaling. Plant Physiol 155:765–775PubMedCentralPubMedGoogle Scholar
  13. Arnaud N, Girin T, Sorefan K, Fuentes S, Wood TA, Lawrenson T et al (2010) Gibberellins control fruit patterning in Arabidopsis thaliana. Genes Dev 24:2127–2132PubMedCentralPubMedGoogle Scholar
  14. Asano K, Hirano K, Ueguchi-Tanaka M, Angeles-Shim RB, Komura T, Satoh H et al (2009) Isolation and characterization of dominant dwarf mutants, Slr1-d, in rice. Mol Genet Genomics 281:223–231PubMedGoogle Scholar
  15. Bai MY, Shang JX, Oh E, Fan M, Bai Y, Zentella R et al (2012) Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat Cell Biol 14:810–817PubMedCentralPubMedGoogle Scholar
  16. Bassel GW, Mullen RT, Bewley JD (2008) Procera is a putative DELLA mutant in tomato (Solanum lycopersicum): effects on the seed and vegetative plant. J Exp Bot 59:585–593PubMedGoogle Scholar
  17. Blázquez MA, Green R, Nilsson O, Sussman MR, Weigel D (1998) Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 10:791–800PubMedCentralPubMedGoogle Scholar
  18. Boss PK, Thomas MR (2002) Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature 416:847–850PubMedGoogle Scholar
  19. Busov VB, Meilan R, Pearce DW, Ma C, Rood SB, Strauss SH (2003) Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature. Plant Physiol 132:1283–1291PubMedCentralPubMedGoogle Scholar
  20. Busov V, Meilan R, Pearce DW, Rood SB, Ma C, Tschaplinski TJ et al (2006) Transgenic modification of gai or rgl1 causes dwarfing and alters gibberellins, root growth, and metabolite profiles in Populus. Planta 224:288–299PubMedGoogle Scholar
  21. Carrera E, Bou J, Garcia-Martinez JL, Prat S (2000) Changes in GA 20-oxidase gene expression strongly affect stem length, tuber induction and tuber yield of potato plants. Plant J 22:247–256PubMedGoogle Scholar
  22. Chandler PM, Marion-Poll A, Ellis M, Gubler F (2002) Mutants at the Slender1 locus of barley cv Himalaya. Molecular and physiological characterization. Plant Physiol 129:181–190PubMedCentralPubMedGoogle Scholar
  23. Chiang HH, Hwang I, Goodman HM (1995) Isolation of the Arabidopsis GA4 locus. Plant Cell 7:195–201PubMedCentralPubMedGoogle Scholar
  24. Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O et al (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671PubMedGoogle Scholar
  25. Claeys H, Skirycz A, Maleux K, Inze D (2012) DELLA signaling mediates stress-induced cell differentiation in Arabidopsis leaves through modulation of anaphase-promoting complex/cyclosome activity. Plant Physiol 159:739–747PubMedCentralPubMedGoogle Scholar
  26. Coles JP, Phillips AL, Croker SJ, Garcia-Lepe R, Lewis MJ, Hedden P (1999) Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J 17:547–556PubMedGoogle Scholar
  27. Curtis IS, Hanada A, Yamaguchi S, Kamiya Y (2005) Modification of plant architecture through the expression of GA 2-oxidase under the control of an estrogen inducible promoter in Arabidopsis thaliana L. Planta 222:957–967PubMedGoogle Scholar
  28. Dai C, Xue HW (2010) Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling. EMBO J 29:1916–1927PubMedCentralPubMedGoogle Scholar
  29. Davidson SE, Elliott RC, Helliwell CA, Poole AT, Reid JB (2003) The pea gene NA encodes ent-kaurenoic acid oxidase. Plant Physiol 131:335–344PubMedCentralPubMedGoogle Scholar
  30. Daviere JM, Achard P (2013) Gibberellin signaling in plants. Development 140:1147–1151PubMedGoogle Scholar
  31. Dayan J, Schwarzkopf M, Avni A, Aloni R (2010) Enhancing plant growth and fiber production by silencing GA 2-oxidase. Plant Biotechnol J 8:425–435PubMedGoogle Scholar
  32. de Lucas M, Daviere JM, Rodriguez-Falcon M, Pontin M, Iglesias-Pedraz JM, Lorrain S et al (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451:480–484PubMedGoogle Scholar
  33. Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G et al (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–433PubMedGoogle Scholar
  34. Dill A, Sun T (2001) Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159:777–785PubMedCentralPubMedGoogle Scholar
  35. Dill A, Jung HS, Sun TP (2001) The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc Natl Acad Sci U S A 98:14162–14167PubMedCentralPubMedGoogle Scholar
  36. Dill A, Thomas SG, Hu J, Steber CM, Sun TP (2004) The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell 16:1392–1405PubMedCentralPubMedGoogle Scholar
  37. Djakovic-Petrovic T, de Wit M, Voesenek LA, Pierik R (2007) DELLA protein function in growth responses to canopy signals. Plant J 51:117–126PubMedGoogle Scholar
  38. El-Sharkawy I, El Kayal W, Prasath D, Fernandez H, Bouzayen M, Svircev AM et al (2012) Identification and genetic characterization of a gibberellin 2-oxidase gene that controls tree stature and reproductive growth in plum. J Exp Bot 63:1225–1239PubMedCentralPubMedGoogle Scholar
  39. Engstrom EM (2011) Phylogenetic analysis of GRAS proteins from moss, lycophyte and vascular plant lineages reveals that GRAS genes arose and underwent substantial diversification in the ancestral lineage common to bryophytes and vascular plants. Plant Signal Behav 6:850–854PubMedCentralPubMedGoogle Scholar
  40. Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788PubMedGoogle Scholar
  41. Eriksson S, Bohlenius H, Moritz T, Nilsson O (2006) GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell 18:2172–2181PubMedCentralPubMedGoogle Scholar
  42. Evans LT, King RW, Chu AM, Mander LN, Pharis RP (1990) Gibberellin structure and florigenic activity in Lolium temulentum, a long-day plant. Planta 182:97–106PubMedGoogle Scholar
  43. Fagoaga C, Tadeo FR, Iglesias DJ, Huerta L, Lliso I, Vidal AM et al (2007) Engineering of gibberellin levels in citrus by sense and antisense overexpression of a GA 20-oxidase gene modifies plant architecture. J Exp Bot 58:1407–1420PubMedGoogle Scholar
  44. Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F et al (2008) Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451:475–479PubMedCentralPubMedGoogle Scholar
  45. Fernandez-Calvo P, Chini A, Fernandez-Barbero G, Chico JM, Gimenez-Ibanez S, Geerinck J et al (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–715PubMedCentralPubMedGoogle Scholar
  46. Feurtado JA, Huang D, Wicki-Stordeur L, Hemstock LE, Potentier MS, Tsang EW et al (2011) The Arabidopsis C2H2 zinc finger INDETERMINATE DOMAIN1/ENHYDROUS promotes the transition to germination by regulating light and hormonal signaling during seed maturation. Plant Cell 23:1772–1794PubMedCentralPubMedGoogle Scholar
  47. Fleet CM, Yamaguchi S, Hanada A, Kawaide H, David CJ, Kamiya Y et al (2003) Overexpression of AtCPS and AtKS in Arabidopsis confers increased ent-kaurene production but no increase in bioactive gibberellins. Plant Physiol 132:830–839PubMedCentralPubMedGoogle Scholar
  48. Folta KM, Pontin MA, Karlin-Neumann G, Bottini R, Spalding EP (2003) Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light. Plant J 36:203–214PubMedGoogle Scholar
  49. Frigerio M, Alabadí D, Pérez-Gómez J, García-Cárcel L, Phillips AL, Hedden P et al (2006) Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol 142:553–563PubMedCentralPubMedGoogle Scholar
  50. Fu X, Richards DE, Ait-Ali T, Hynes LW, Ougham H, Peng J et al (2002) Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor. Plant Cell 14:3191–3200PubMedCentralPubMedGoogle Scholar
  51. Fu X, Richards DE, Fleck B, Xie D, Burton N, Harberd NP (2004) The Arabidopsis mutant sleepy1gar2-1 protein promotes plant growth by increasing the affinity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein substrates. Plant Cell 16:1406–1418PubMedCentralPubMedGoogle Scholar
  52. Fukazawa J, Sakai T, Ishida S, Yamaguchi I, Kamiya Y, Takahashi Y (2000) Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell 12:901–915PubMedCentralPubMedGoogle Scholar
  53. Fukuda M, Matsuo S, Kikuchi K, Mitsuhashi W, Toyomasu T, Honda I (2009) The endogenous level of GA(1) is upregulated by high temperature during stem elongation in lettuce through LsGA3ox1 expression. J Plant Physiol 166:2077–2084PubMedGoogle Scholar
  54. Gallego-Bartolomé J, Minguet EG, Marín JA, Prat S, Blázquez MA, Alabadí D (2010) Transcriptional diversification and functional conservation between DELLA proteins in Arabidopsis. Mol Biol Evol 27:1247–1256PubMedGoogle Scholar
  55. Gallego-Bartolomé J, Alabadí D, Blázquez MA (2011a) DELLA-induced early transcriptional changes during etiolated development in Arabidopsis thaliana. PLoS One 6:e23918PubMedCentralPubMedGoogle Scholar
  56. Gallego-Bartolomé J, Arana MV, Vandenbussche F, Zadnikova P, Minguet EG, Guardiola V et al (2011b) Hierarchy of hormone action controlling apical hook development in Arabidopsis. Plant J 67:622–634PubMedGoogle Scholar
  57. Gallego-Bartolomé J, Kami C, Fankhauser C, Alabadí D, Blázquez MA (2011c) A hormonal regulatory module that provides flexibility to tropic responses. Plant Physiol 156:1819–1825PubMedCentralPubMedGoogle Scholar
  58. Gallego-Bartolomé J, Minguet EG, Grau-Enguix F, Abbas M, Locascio A, Thomas SG et al (2012) Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proc Natl Acad Sci U S A 109:13446–13451PubMedCentralPubMedGoogle Scholar
  59. Gallego-Giraldo L, Ubeda-Tomas S, Gisbert C, Garcia-Martinez JL, Moritz T, Lopez-Diaz I (2008) Gibberellin homeostasis in tobacco is regulated by gibberellin metabolism genes with different gibberellin sensitivity. Plant Cell Physiol 49:679–690PubMedGoogle Scholar
  60. Galvao VC, Horrer D, Kuttner F, Schmid M (2012) Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development 139:4072–4082PubMedGoogle Scholar
  61. Gan Y, Liu C, Yu H, Broun P (2007) Integration of cytokinin and gibberellin signalling by Arabidopsis transcription factors GIS, ZFP8 and GIS2 in the regulation of epidermal cell fate. Development 134:2073–2081PubMedGoogle Scholar
  62. Garcia-Hurtado N, Carrera E, Ruiz-Rivero O, Lopez-Gresa MP, Hedden P, Gong F et al (2012) The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. J Exp Bot 63:5803–5813PubMedGoogle Scholar
  63. Gil J, García-Martínez JL (2000) Light regulation of gibberellin A1 content and expression of genes coding for GA 20-oxidase and GA 3b-hydroxylase in etiolated pea seedlings. Physiol Plant 108:223–229Google Scholar
  64. Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, Kitano H et al (2004) GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J 37:626–634PubMedGoogle Scholar
  65. Griffiths J, Murase K, Rieu I, Zentella R, Zhang ZL, Powers SJ et al (2006) Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18:3399–3414PubMedCentralPubMedGoogle Scholar
  66. Guardiola JL, Monerri C, Agustí M (1982) The inhibitory effect of gibberellic acid on flowering in Citrus. Physiol Plant 55:136–142Google Scholar
  67. Gubler F, Chandler PM, White RG, Llewellyn DJ, Jacobsen JV (2002) Gibberellin signaling in barley aleurone cells. Control of SLN1 and GAMYB expression. Plant Physiol 129:191–200PubMedCentralPubMedGoogle Scholar
  68. Hamama L, Naouar A, Gala R, Voisine L, Pierre S, Jeauffre J et al (2012) Overexpression of RoDELLA impacts the height, branching, and flowering behaviour of Pelargonium × domesticum transgenic plants. Plant Cell Rep 31:2015–2029PubMedGoogle Scholar
  69. Hartweck LM, Scott CL, Olszewski NE (2002) Two O-linked N-acetylglucosamine transferase genes of Arabidopsis thaliana L. Heynh. have overlapping functions necessary for gamete and seed development. Genetics 161:1279–1291PubMedCentralPubMedGoogle Scholar
  70. Hartweck LM, Genger RK, Grey WM, Olszewski NE (2006) SECRET AGENT and SPINDLY have overlapping roles in the development of Arabidopsis thaliana L. Heyn. J Exp Bot 57:865–875PubMedGoogle Scholar
  71. Hedden P (2003) The genes of the Green Revolution. Trends Genet 19:5–9PubMedGoogle Scholar
  72. Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5:523–530PubMedGoogle Scholar
  73. Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736PubMedGoogle Scholar
  74. Helliwell CA, Sheldon CC, Olive MR, Walker AR, Zeevaart JA, Peacock WJ et al (1998) Cloning of the Arabidopsis ent-kaurene oxidase gene GA3. Proc Natl Acad Sci U S A 95:9019–9024PubMedCentralPubMedGoogle Scholar
  75. Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ (2001a) The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci U S A 98:2065–2070PubMedCentralPubMedGoogle Scholar
  76. Helliwell CA, Sullivan JA, Mould RM, Gray JC, Peacock WJ, Dennis ES (2001b) A plastid envelope location of Arabidopsis ent-kaurene oxidase links the plastid and endoplasmic reticulum steps of the gibberellin biosynthesis pathway. Plant J 28:201–208PubMedGoogle Scholar
  77. Hirano K, Nakajima M, Asano K, Nishiyama T, Sakakibara H, Kojima M et al (2007) The GID1-mediated gibberellin perception mechanism is conserved in the Lycophyte Selaginella moellendorffii but not in the Bryophyte Physcomitrella patens. Plant Cell 19:3058–3079PubMedCentralPubMedGoogle Scholar
  78. Hirano K, Asano K, Tsuji H, Kawamura M, Mori H, Kitano H et al (2010) Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. Plant Cell 22:2680–2696PubMedCentralPubMedGoogle Scholar
  79. Hirano K, Kouketu E, Katoh H, Aya K, Ueguchi-Tanaka M, Matsuoka M (2012) The suppressive function of the rice DELLA protein SLR1 is dependent on its transcriptional activation activity. Plant J 71:443–453PubMedGoogle Scholar
  80. Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY (2012) Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 24:2635–2648PubMedCentralPubMedGoogle Scholar
  81. Hou X, Hu WW, Shen L, Lee LY, Tao Z, Han JH et al (2008) Global identification of DELLA target genes during Arabidopsis flower development. Plant Physiol 147:1126–1142PubMedCentralPubMedGoogle Scholar
  82. Hou X, Lee LY, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19:884–894PubMedGoogle Scholar
  83. Hu J, Mitchum MG, Barnaby N, Ayele BT, Ogawa M, Nam E et al (2008) Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. Plant Cell 20:320–336PubMedCentralPubMedGoogle Scholar
  84. Huang S, Raman AS, Ream JE, Fujiwara H, Cerny RE, Brown SM (1998) Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis. Plant Physiol 118:773–781PubMedCentralPubMedGoogle Scholar
  85. Hurtado-Guerrero R, Dorfmueller HC, van Aalten DM (2008) Molecular mechanisms of O-GlcNAcylation. Curr Opin Struct Biol 18:551–557PubMedGoogle Scholar
  86. Hussain A, Cao D, Cheng H, Wen Z, Peng J (2005) Identification of the conserved serine/threonine residues important for gibberellin-sensitivity of Arabidopsis RGL2 protein. Plant J 44:88–99PubMedGoogle Scholar
  87. Hussain A, Cao D, Peng J (2007) Identification of conserved tyrosine residues important for gibberellin sensitivity of Arabidopsis RGL2 protein. Planta 226:475–483PubMedGoogle Scholar
  88. Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y et al (2001) slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13:999–1010PubMedCentralPubMedGoogle Scholar
  89. Ishida S, Fukazawa J, Yuasa T, Takahashi Y (2004) Involvement of 14-3-3 signaling protein binding in the functional regulation of the transcriptional activator REPRESSION OF SHOOT GROWTH by gibberellins. Plant Cell 16:2641–2651PubMedCentralPubMedGoogle Scholar
  90. Israelsson M, Mellerowicz E, Chono M, Gullberg J, Moritz T (2004) Cloning and overproduction of gibberellin 3-oxidase in hybrid aspen trees. Effects on gibberellin homeostasis and development. Plant Physiol 135:221–230PubMedCentralPubMedGoogle Scholar
  91. Israelsson M, Sundberg B, Moritz T (2005) Tissue-specific localization of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen. Plant J 44:494–504PubMedGoogle Scholar
  92. Itoh H, Ueguchi-Tanaka M, Sato Y, Ashikari M, Matsuoka M (2002) The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell 14:57–70PubMedCentralPubMedGoogle Scholar
  93. Itoh H, Sasaki A, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Hasegawa Y et al (2005) Dissection of the phosphorylation of rice DELLA protein, SLENDER RICE1. Plant Cell Physiol 46:1392–1399PubMedGoogle Scholar
  94. Iuchi S, Suzuki H, Kim YC, Iuchi A, Kuromori T, Ueguchi-Tanaka M et al (2007) Multiple loss-of-function of Arabidopsis gibberellin receptor AtGID1s completely shuts down a gibberellin signal. Plant J 50:958–966PubMedGoogle Scholar
  95. Jacobsen SE, Olszewski NE (1993) Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell 5:887–896PubMedCentralPubMedGoogle Scholar
  96. Jacobsen SE, Binkowski KA, Olszewski NE (1996) SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction in Arabidopsis. Proc Natl Acad Sci U S A 93:9292–9296PubMedCentralPubMedGoogle Scholar
  97. Jasinski S, Tattersall A, Piazza P, Hay A, Martinez-Garcia JF, Schmitz G et al (2008) PROCERA encodes a DELLA protein that mediates control of dissected leaf form in tomato. Plant J 56:603–612PubMedGoogle Scholar
  98. Kasahara H, Hanada A, Kuzuyama T, Takagi M, Kamiya Y, Yamaguchi S (2002) Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J Biol Chem 277:45188–45194PubMedGoogle Scholar
  99. Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822PubMedGoogle Scholar
  100. King KE, Moritz T, Harberd NP (2001a) Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA. Genetics 159:767–776PubMedCentralPubMedGoogle Scholar
  101. King RW, Moritz T, Evans LT, Junttila O, Herlt AJ (2001b) Long-day induction of flowering in Lolium temulentum involves sequential increases in specific gibberellins at the shoot apex. Plant Physiol 127:624–632PubMedCentralPubMedGoogle Scholar
  102. King RW, Evans LT, Mander LN, Moritz T, Pharis RP, Twitchin B (2003) Synthesis of gibberellin GA6 and its role in flowering of Lolium temulentum. Phytochemistry 62:77–82PubMedGoogle Scholar
  103. Koornneef M, Van der Veen JH (1980) Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.) Heynh. Theor Appl Genet 58:257–263PubMedGoogle Scholar
  104. Koornneef M, Elgersma A, Hanhart CJ, van Loenen-Martinet EP, van Rign L, Zeevaart JAD (1985) A gibberellin insensitive mutant of Arabidopsis thaliana. Physiol Plant 65:33–39Google Scholar
  105. Lange T, Hedden P, Graebe JE (1994) Expression cloning of a gibberellin 20-oxidase, a multifunctional enzyme involved in gibberellin biosynthesis. Proc Natl Acad Sci U S A 91:8552–8556PubMedCentralPubMedGoogle Scholar
  106. Lechner E, Achard P, Vansiri A, Potuschak T, Genschik P (2006) F-box proteins everywhere. Curr Opin Plant Biol 9:631–638PubMedGoogle Scholar
  107. Lee DJ, Zeevaart JA (2002) Differential regulation of RNA levels of gibberellin dioxygenases by photoperiod in spinach. Plant Physiol 130:2085–2094PubMedCentralPubMedGoogle Scholar
  108. Lee DJ, Zeevaart JA (2007) Regulation of gibberellin 20-oxidase1 expression in spinach by photoperiod. Planta 226:35–44PubMedGoogle Scholar
  109. Lee S, Cheng H, King KE, Wang W, He Y, Hussain A et al (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev 16:646–658PubMedCentralPubMedGoogle Scholar
  110. Lee MH, Kim B, Song SK, Heo JO, Yu NI, Lee SA et al (2008) Large-scale analysis of the GRAS gene family in Arabidopsis thaliana. Plant Mol Biol 67:659–670PubMedGoogle Scholar
  111. Li QF, Wang C, Jiang L, Li S, Sun SS, He JX (2012) An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Sci Signal 5:ra72PubMedGoogle Scholar
  112. Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65PubMedGoogle Scholar
  113. Locascio A, Blazquez MA, Alabadi D (2013) Dynamic regulation of cortical microtubule organization through prefoldin-DELLA interaction. Curr Biol 23:804–809PubMedGoogle Scholar
  114. Lofke C, Zwiewka M, Heilmann I, Van Montagu MC, Teichmann T, Friml J (2013) Asymmetric gibberellin signaling regulates vacuolar trafficking of PIN auxin transporters during root gravitropism. Proc Natl Acad Sci U S A 110:3627–3632PubMedCentralPubMedGoogle Scholar
  115. Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2008) The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J 56:613–626PubMedGoogle Scholar
  116. Magome H, Nomura T, Hanada A, Takeda-Kamiya N, Ohnishi T, Shinma Y et al (2013) CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice. Proc Natl Acad Sci U S A 110:1947–1952PubMedCentralPubMedGoogle Scholar
  117. Martí C, Orzáez D, Ellul P, Moreno V, Carbonell J, Granell A (2007) Silencing of DELLA induces facultative parthenocarpy in tomato fruits. Plant J 52:865–876PubMedGoogle Scholar
  118. Martin DN, Proebsting WM, Hedden P (1999) The SLENDER gene of pea encodes a gibberellin 2-oxidase. Plant Physiol 121:775–781PubMedCentralPubMedGoogle Scholar
  119. Matsushita A, Furumoto T, Ishida S, Takahashi Y (2007) AGF1, an AT-hook protein, is necessary for the negative feedback of AtGA3ox1 encoding GA 3-oxidase. Plant Physiol 143:1152–1162PubMedCentralPubMedGoogle Scholar
  120. Mauriat M, Moritz T (2009) Analyses of GA20ox- and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation. Plant J 58:989–1003PubMedGoogle Scholar
  121. Maymon I, Greenboim-Wainberg Y, Sagiv S, Kieber JJ, Moshelion M, Olszewski N et al (2009) Cytosolic activity of SPINDLY implies the existence of a DELLA-independent gibberellin-response pathway. Plant J 58:979–988PubMedGoogle Scholar
  122. McGinnis KM, Thomas SG, Soule JD, Strader LC, Zale JM, Sun TP et al (2003) The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell 15:1120–1130PubMedCentralPubMedGoogle Scholar
  123. Middleton AM, Ubeda-Tomas S, Griffiths J, Holman T, Hedden P, Thomas SG et al (2012) Mathematical modeling elucidates the role of transcriptional feedback in gibberellin signaling. Proc Natl Acad Sci U S A 109:7571–7576PubMedCentralPubMedGoogle Scholar
  124. Millán-Zambrano G, Rodríguez-Gil A, Penate X, de Miguel-Jiménez L, Morillo-Huesca M, Krogan N et al (2013) The prefoldin complex regulates chromatin dynamics during transcription elongation. PLoS Genet 9:e1003776PubMedCentralPubMedGoogle Scholar
  125. Mitchum MG, Yamaguchi S, Hanada A, Kuwahara A, Yoshioka Y, Kato T et al (2006) Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J 45:804–818PubMedGoogle Scholar
  126. Moriconi JI, Buet A, Simontacchi M, Santa-Maria GE (2012) Near-isogenic wheat lines carrying altered function alleles of the Rht-1 genes exhibit differential responses to potassium deprivation. Plant Sci 185–186:199–207PubMedGoogle Scholar
  127. Murase K, Hirano Y, Sun TP, Hakoshima T (2008) Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456:459–463PubMedGoogle Scholar
  128. Nakajima M, Shimada A, Takashi Y, Kim YC, Park SH, Ueguchi-Tanaka M et al (2006) Identification and characterization of Arabidopsis gibberellin receptors. Plant J 46:880–889PubMedGoogle Scholar
  129. Nambara E, Akazawa T, McCourt P (1991) Effects of the gibberellin biosynthetic inhibitor uniconazole on mutants of Arabidopsis. Plant Physiol 97:736–738PubMedCentralPubMedGoogle Scholar
  130. Navarro L, Bari R, Achard P, Lison P, Nemri A, Harberd NP et al (2008) DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol 18:650–655PubMedGoogle Scholar
  131. Nozue K, Covington MF, Duek PD, Lorrain S, Fankhauser C, Harmer SL et al (2007) Rhythmic growth explained by coincidence between internal and external cues. Nature 448:358–361PubMedGoogle Scholar
  132. O’Neill DP, Ross JJ (2002) Auxin regulation of the gibberellin pathway in pea. Plant Physiol 130:1974–1982PubMedCentralPubMedGoogle Scholar
  133. O’Neill DP, Ross JJ, Reid JB (2000) Changes in gibberellin A(1) levels and response during de-etiolation of pea seedlings. Plant Physiol 124:805–812PubMedCentralPubMedGoogle Scholar
  134. O’Neill DP, Davidson SE, Clarke VC, Yamauchi Y, Yamaguchi S, Kamiya Y et al (2010) Regulation of the gibberellin pathway by auxin and DELLA proteins. Planta 232:1141–1149PubMedGoogle Scholar
  135. Ogawa M, Kusano T, Katsumi M, Sano H (2000) Rice gibberellin-insensitive gene homolog, OsGAI, encodes a nuclear-localized protein capable of gene activation at transcriptional level. Gene 245:21–29PubMedGoogle Scholar
  136. Oh E, Yamaguchi S, Kamiya Y, Bae G, Chung WI, Choi G (2006) Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant J 47:124–139PubMedGoogle Scholar
  137. Oh E, Yamaguchi S, Hu J, Yusuke J, Jung B, Paik I et al (2007) PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19:1192–1208PubMedCentralPubMedGoogle Scholar
  138. Oikawa T, Koshioka M, Kojima K, Yoshida H, Kawata M (2004) A role of OsGA20ox1, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice. Plant Mol Biol 55:687–700PubMedGoogle Scholar
  139. Osnato M, Castillejo C, Matias-Hernandez L, Pelaz S (2012) TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis. Nat Commun 3:808PubMedGoogle Scholar
  140. Park J, Nguyen KT, Park E, Jeon JS, Choi G (2013) DELLA proteins and their interacting RING Finger proteins repress gibberellin responses by binding to the promoters of a subset of gibberellin-responsive genes in Arabidopsis. Plant Cell 25:927–943PubMedCentralPubMedGoogle Scholar
  141. Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP, Sparks CA et al (2011) Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol 157:1820–1831PubMedCentralPubMedGoogle Scholar
  142. Peng J, Harberd NP (1993) Derivative alleles of the Arabidopsis gibberellin-insensitive (gai) mutation confer a wild-type phenotype. Plant Cell 5:351–360PubMedCentralPubMedGoogle Scholar
  143. Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP et al (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev 11:3194–3205PubMedCentralPubMedGoogle Scholar
  144. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE et al (1999a) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261PubMedGoogle Scholar
  145. Peng J, Richards DE, Moritz T, Cano-Delgado A, Harberd NP (1999b) Extragenic suppressors of the Arabidopsis gai mutation alter the dose–response relationship of diverse gibberellin responses. Plant Physiol 119:1199–1208PubMedCentralPubMedGoogle Scholar
  146. Phillips AL, Ward DA, Uknes S, Appleford NE, Lange T, Huttly AK et al (1995) Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol 108:1049–1057PubMedCentralPubMedGoogle Scholar
  147. Pimenta Lange MJ, Liebrandt A, Arnold L, Chmielewska SM, Felsberger A, Freier E et al (2013) Functional characterization of gibberellin oxidases from cucumber, Cucumis sativus L. Phytochemistry 90:62–69PubMedGoogle Scholar
  148. Piotrowska A, Bajguz A (2011) Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins, and jasmonates. Phytochemistry 72(17):2097–2112Google Scholar
  149. Plackett AR, Powers SJ, Fernandez-Garcia N, Urbanova T, Takebayashi Y, Seo M et al (2012) Analysis of the developmental roles of the Arabidopsis gibberellin 20-oxidases demonstrates that GA20ox1, -2, and -3 are the dominant paralogs. Plant Cell 24:941–960PubMedCentralPubMedGoogle Scholar
  150. Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN (1999) The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18:111–119PubMedGoogle Scholar
  151. Rademacher W (2000) GROWTH RETARDANTS: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol 51:501–531PubMedGoogle Scholar
  152. Reid JB, Botwright NA, Smith JJ, O’Neill DP, Kerckhoffs LH (2002) Control of gibberellin levels and gene expression during de-etiolation in pea. Plant Physiol 128:734–741PubMedCentralPubMedGoogle Scholar
  153. Richards DE, Peng J, Harberd NP (2000) Plant GRAS and metazoan STATs: one family? Bioessays 22:573–577PubMedGoogle Scholar
  154. Rieu I, Eriksson S, Powers SJ, Gong F, Griffiths J, Woolley L et al (2008a) Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. Plant Cell 20:2420–2436PubMedCentralPubMedGoogle Scholar
  155. Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers SJ, Gong F et al (2008b) The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J 53:488–504PubMedGoogle Scholar
  156. Robertson M, Swain SM, Chandler PM, Olszewski NE (1998) Identification of a negative regulator of gibberellin action, HvSPY, in barley. Plant Cell 10:995–1007PubMedCentralPubMedGoogle Scholar
  157. Ross JJ, O’Neill DP, Smith JJ, Kerckhoffs LH, Elliott RC (2000) Evidence that auxin promotes gibberellin A1 biosynthesis in pea. Plant J 21:547–552PubMedGoogle Scholar
  158. Saito T, Abe H, Yamane H, Sakurai A, Murofushi N, Takio K et al (1995) Purification and properties of ent-kaurene synthase B from immature seeds of pumpkin. Plant Physiol 109:1239–1245PubMedCentralPubMedGoogle Scholar
  159. Sakamoto T, Kobayashi M, Itoh H, Tagiri A, Kayano T, Tanaka H et al (2001) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol 125:1508–1516PubMedCentralPubMedGoogle Scholar
  160. Sakamoto T, Morinaka Y, Ishiyama K, Kobayashi M, Itoh H, Kayano T et al (2003) Genetic manipulation of gibberellin metabolism in transgenic rice. Nat Biotechnol 21:909–913PubMedGoogle Scholar
  161. Sarnowska EA, Rolicka AT, Bucior E, Cwiek P, Tohge T, Fernie AR et al (2013) DELLA-interacting SWI3C core subunit of switch/sucrose nonfermenting chromatin remodeling complex modulates gibberellin responses and hormonal cross talk in Arabidopsis. Plant Physiol 163:305–317PubMedGoogle Scholar
  162. Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M et al (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299:1896–1898PubMedGoogle Scholar
  163. Saville RJ, Gosman N, Burt CJ, Makepeace J, Steed A, Corbitt M et al (2012) The ‘Green Revolution’ dwarfing genes play a role in disease resistance in Triticum aestivum and Hordeum vulgare. J Exp Bot 63:1271–1283PubMedCentralPubMedGoogle Scholar
  164. Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JA, Amasino RM (2003) Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15:151–163PubMedCentralPubMedGoogle Scholar
  165. Seo M, Hanada A, Kuwahara A, Endo A, Okamoto M, Yamauchi Y et al (2006) Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Plant J 48:354–366PubMedGoogle Scholar
  166. Shani E, Weinstain R, Zhang Y, Castillejo C, Kaiserli E, Chory J et al (2013) Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root. Proc Natl Acad Sci U S A 110:4834–4839PubMedCentralPubMedGoogle Scholar
  167. Shimada A, Ueguchi-Tanaka M, Sakamoto T, Fujioka S, Takatsuto S, Yoshida S et al (2006) The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis. Plant J 48:390–402PubMedGoogle Scholar
  168. Shimada A, Ueguchi-Tanaka M, Nakatsu T, Nakajima M, Naoe Y, Ohmiya H et al (2008) Structural basis for gibberellin recognition by its receptor GID1. Nature 456:520–523PubMedGoogle Scholar
  169. Shinomura T, Nagatani A, Hanzawa H, Kubota M, Watanabe M, Furuya M (1996) Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc Natl Acad Sci U S A 93:8129–8133PubMedCentralPubMedGoogle Scholar
  170. Silverstone AL, Chang C, Krol E, Sun TP (1997a) Developmental regulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana. Plant J 12:9–19PubMedGoogle Scholar
  171. Silverstone AL, Mak PY, Martinez EC, Sun TP (1997b) The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana. Genetics 146:1087–1099PubMedCentralPubMedGoogle Scholar
  172. Silverstone AL, Ciampaglio CN, Sun T (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10:155–169PubMedCentralPubMedGoogle Scholar
  173. Silverstone AL, Jung HS, Dill A, Kawaide H, Kamiya Y, Sun TP (2001) Repressing a repressor: gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13:1555–1566PubMedCentralPubMedGoogle Scholar
  174. Silverstone AL, Tseng TS, Swain SM, Dill A, Jeong SY, Olszewski NE et al (2007) Functional analysis of SPINDLY in gibberellin signaling in Arabidopsis. Plant Physiol 143:987–1000PubMedCentralPubMedGoogle Scholar
  175. Stavang JA, Gallego-Bartolomé J, Gómez MD, Yoshida S, Asami T, Olsen JE et al (2009) Hormonal regulation of temperature-induced growth in Arabidopsis. Plant J 60:589–601PubMedGoogle Scholar
  176. Steber CM, Cooney SE, McCourt P (1998) Isolation of the GA-response mutant sly1 as a suppressor of ABI1-1 in Arabidopsis thaliana. Genetics 149:509–521PubMedCentralPubMedGoogle Scholar
  177. Steiner E, Efroni I, Gopalraj M, Saathoff K, Tseng TS, Kieffer M et al (2012) The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers. Plant Cell 24:96–108PubMedCentralPubMedGoogle Scholar
  178. Strader LC, Ritchie S, Soule JD, McGinnis KM, Steber CM (2004) Recessive-interfering mutations in the gibberellin signaling gene SLEEPY1 are rescued by overexpression of its homologue, SNEEZY. Proc Natl Acad Sci U S A 101:12771–12776PubMedCentralPubMedGoogle Scholar
  179. Sun TP (2010) Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development. Plant Physiol 154:567–570PubMedCentralPubMedGoogle Scholar
  180. Sun TP, Kamiya Y (1994) The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell 6:1509–1518PubMedCentralPubMedGoogle Scholar
  181. Sun X, Jones WT, Harvey D, Edwards PJ, Pascal SM, Kirk C et al (2010) N-terminal domains of DELLA proteins are intrinsically unstructured in the absence of interaction with GID1/gibberellic acid receptors. J Biol Chem 285:11557–11571PubMedCentralPubMedGoogle Scholar
  182. Suzuki H, Park SH, Okubo K, Kitamura J, Ueguchi-Tanaka M, Iuchi S et al (2009) Differential expression and affinities of Arabidopsis gibberellin receptors can explain variation in phenotypes of multiple knock-out mutants. Plant J 60:48–55PubMedGoogle Scholar
  183. Swain SM, Tseng TS, Olszewski NE (2001) Altered expression of SPINDLY affects gibberellin response and plant development. Plant Physiol 126:1174–1185PubMedCentralPubMedGoogle Scholar
  184. Swain SM, Tseng TS, Thornton TM, Gopalraj M, Olszewski NE (2002) SPINDLY is a nuclear-localized repressor of gibberellin signal transduction expressed throughout the plant. Plant Physiol 129:605–615PubMedCentralPubMedGoogle Scholar
  185. Talón M, Koornneef M, Zeevaart JA (1990) Endogenous gibberellins in Arabidopsis thaliana and possible steps blocked in the biosynthetic pathways of the semidwarf ga4 and ga5 mutants. Proc Natl Acad Sci U S A 87:7983–7987PubMedCentralPubMedGoogle Scholar
  186. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G et al (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448:661–665PubMedGoogle Scholar
  187. Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2- oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci U S A 96:4698–4703PubMedCentralPubMedGoogle Scholar
  188. Tian C, Wan P, Sun S, Li J, Chen M (2004) Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. Plant Mol Biol 54:519–532PubMedGoogle Scholar
  189. Toh S, Imamura A, Watanabe A, Nakabayashi K, Okamoto M, Jikumaru Y et al (2008) High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol 146:1368–1385PubMedCentralPubMedGoogle Scholar
  190. Tong H, Jin Y, Liu W, Li F, Fang J, Yin Y et al (2009) DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J 58:803–816PubMedGoogle Scholar
  191. Toyomasu T, Kawaide H, Mitsuhashi W, Inoue Y, Kamiya Y (1998) Phytochrome regulates gibberellin biosynthesis during germination of photoblastic lettuce seeds. Plant Physiol 118:1517–1523PubMedCentralPubMedGoogle Scholar
  192. Tseng TS, Salome PA, McClung CR, Olszewski NE (2004) SPINDLY and GIGANTEA interact and act in Arabidopsis thaliana pathways involved in light responses, flowering, and rhythms in cotyledon movements. Plant Cell 16:1550–1563PubMedCentralPubMedGoogle Scholar
  193. Úbeda-Tomás S, Swarup R, Coates J, Swarup K, Laplaze L, Beemster GT et al (2008) Root growth in Arabidopsis requires gibberellin/DELLA signalling in the endodermis. Nat Cell Biol 10:625–628PubMedGoogle Scholar
  194. Ubeda-Tomas S, Federici F, Casimiro I, Beemster GT, Bhalerao R, Swarup R et al (2009) Gibberellin signaling in the endodermis controls Arabidopsis root meristem size. Curr Biol 19:1194–1199PubMedGoogle Scholar
  195. Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M et al (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698PubMedGoogle Scholar
  196. Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S et al (2007) Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell 19:2140–2155PubMedCentralPubMedGoogle Scholar
  197. Ueguchi-Tanaka M, Hirano K, Hasegawa Y, Kitano H, Matsuoka M (2008) Release of the repressive activity of rice DELLA protein SLR1 by gibberellin does not require SLR1 degradation in the gid2 mutant. Plant Cell 20:2437–2446PubMedCentralPubMedGoogle Scholar
  198. Vainberg IE, Lewis SA, Rommelaere H, Ampe C, Vandekerckhove J, Klein HL et al (1998) Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93:863–873PubMedGoogle Scholar
  199. Vandenbussche F, Fierro AC, Wiedemann G, Reski R, Van Der Straeten D (2007) Evolutionary conservation of plant gibberellin signalling pathway components. BMC Plant Biol 7:65PubMedCentralPubMedGoogle Scholar
  200. Varbanova M, Yamaguchi S, Yang Y, McKelvey K, Hanada A, Borochov R et al (2007) Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. Plant Cell 19:32–45PubMedCentralPubMedGoogle Scholar
  201. Vettakkorumakankav NN, Falk D, Saxena P, Fletcher RA (1999) A crucial role for gibberellins in stress protection of plants. Plant Cell Physiol 40:542–548Google Scholar
  202. Vidal AM, Gisbert C, Talon M, Primo-Millo E, Lopez-Diaz I, Garcia-Martinez JL (2001) The ectopic overexpression of a citrus gibberellin 20-oxidase enhances the non-13-hydroxylation pathway of gibberellin biosynthesis and induces an extremely elongated phenotype in tobacco. Physiol Plant 112:251–260PubMedGoogle Scholar
  203. Wang F, Zhu D, Huang X, Li S, Gong Y, Yao Q et al (2009) Biochemical insights on degradation of Arabidopsis DELLA proteins gained from a cell-free assay system. Plant Cell 21:2378–2390PubMedCentralPubMedGoogle Scholar
  204. Weston DE, Elliott RC, Lester DR, Rameau C, Reid JB, Murfet IC et al (2008) The Pea DELLA proteins LA and CRY are important regulators of gibberellin synthesis and root growth. Plant Physiol 147:199–205PubMedCentralPubMedGoogle Scholar
  205. Wild M, Daviere JM, Cheminant S, Regnault T, Baumberger N, Heintz D et al (2012) The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses. Plant Cell 24:3307–3319PubMedCentralPubMedGoogle Scholar
  206. Williams J, Phillips AL, Gaskin P, Hedden P (1998) Function and substrate specificity of the gibberellin 3beta-hydroxylase encoded by the Arabidopsis GA4 gene. Plant Physiol 117:559–563PubMedCentralPubMedGoogle Scholar
  207. Willige BC, Ghosh S, Nill C, Zourelidou M, Dohmann EM, Maier A et al (2007) The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. Plant Cell 19:1209–1220PubMedCentralPubMedGoogle Scholar
  208. Wilson RN, Somerville CR (1995) Phenotypic suppression of the gibberellin-insensitive (gai) mutant of Arabidopsis. Plant Physiol 108:495–502PubMedCentralPubMedGoogle Scholar
  209. Wilson RN, Heckman JW, Somerville CR (1992) Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol 100:403–408PubMedCentralPubMedGoogle Scholar
  210. Wolbang CM, Ross JJ (2001) Auxin promotes gibberellin biosynthesis in decapitated tobacco plants. Planta 214:153–157PubMedGoogle Scholar
  211. Wolbang CM, Chandler PM, Smith JJ, Ross JJ (2004) Auxin from the developing inflorescence is required for the biosynthesis of active gibberellins in barley stems. Plant Physiol 134:769–776PubMedCentralPubMedGoogle Scholar
  212. Xu YL, Li L, Wu K, Peeters AJ, Gage DA, Zeevaart JA (1995) The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: molecular cloning and functional expression. Proc Natl Acad Sci U S A 92:6640–6644PubMedCentralPubMedGoogle Scholar
  213. Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251PubMedGoogle Scholar
  214. Yamaguchi S, Smith MW, Brown RG, Kamiya Y, Sun T (1998a) Phytochrome regulation and differential expression of gibberellin 3beta-hydroxylase genes in germinating Arabidopsis seeds. Plant Cell 10:2115–2126PubMedCentralPubMedGoogle Scholar
  215. Yamaguchi S, Sun T, Kawaide H, Kamiya Y (1998b) The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis. Plant Physiol 116:1271–1278PubMedCentralPubMedGoogle Scholar
  216. Yamamoto Y, Hirai T, Yamamoto E, Kawamura M, Sato T, Kitano H et al (2010) A rice gid1 suppressor mutant reveals that gibberellin is not always required for interaction between its receptor, GID1, and DELLA proteins. Plant Cell 22:3589–3602PubMedCentralPubMedGoogle Scholar
  217. Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S (2004) Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16:367–378PubMedCentralPubMedGoogle Scholar
  218. Yasumura Y, Crumpton-Taylor M, Fuentes S, Harberd NP (2007) Step-by-step acquisition of the gibberellin-DELLA growth-regulatory mechanism during land-plant evolution. Curr Biol 17:1225–1230PubMedGoogle Scholar
  219. Yaxley JR, Ross JJ, Sherriff LJ, Reid JB (2001) Gibberellin biosynthesis mutations and root development in pea. Plant Physiol 125:627–633PubMedCentralPubMedGoogle Scholar
  220. Yu H, Ito T, Zhao Y, Peng J, Kumar P, Meyerowitz EM (2004) Floral homeotic genes are targets of gibberellin signaling in flower development. Proc Natl Acad Sci U S A 101:7827–7832PubMedCentralPubMedGoogle Scholar
  221. Yu S, Galvao VC, Zhang YC, Horrer D, Zhang TQ, Hao YH et al (2012) Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE transcription factors. Plant Cell 24:3320–3332PubMedCentralPubMedGoogle Scholar
  222. Zeevaart JA, Gage DA, Talon M (1993) Gibberellin A1 is required for stem elongation in spinach. Proc Natl Acad Sci U S A 90:7401–7405PubMedCentralPubMedGoogle Scholar
  223. Zentella R, Zhang ZL, Park M, Thomas SG, Endo A, Murase K et al (2007) Global analysis of della direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19:3037–3057PubMedCentralPubMedGoogle Scholar
  224. Zhang Y, Zhang B, Yan D, Dong W, Yang W, Li Q et al (2011a) Two Arabidopsis cytochrome P450 monooxygenases, CYP714A1 and CYP714A2, function redundantly in plant development through gibberellin deactivation. Plant J 67:342–353PubMedGoogle Scholar
  225. Zhang ZL, Ogawa M, Fleet CM, Zentella R, Hu J, Heo JO et al (2011b) Scarecrow-like 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis. Proc Natl Acad Sci U S A 108:2160–2165PubMedCentralPubMedGoogle Scholar
  226. Zhao X, Yu X, Foo E, Symons GM, Lopez J, Bendehakkalu KT et al (2007) A study of gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyl elongation. Plant Physiol 145:106–118PubMedCentralPubMedGoogle Scholar
  227. Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B et al (2006) ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18:442–456PubMedCentralPubMedGoogle Scholar
  228. Zhu LH, Li XY, Welander M (2008) Overexpression of the Arabidopsis gai gene in apple significantly reduces plant size. Plant Cell Rep 27:289–296PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Eugenio G. Minguet
    • 1
  • David Alabadí
    • 1
  • Miguel A. Blázquez
    • 1
  1. 1.Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV)ValenciaSpain

Personalised recommendations