Skip to main content

The \(k-\varepsilon\) Model

  • Chapter
  • First Online:
  • 2236 Accesses

Abstract

Turbulent flows are considered as random motions, the velocity v and the pressure p being random variables. After having defined a clear probabilistic framework, we look for equations satisfied by the expectations \(\overline{\mathbf{v}}\) and \(\overline{p}\) of v and p, which yield the Reynolds stress \(\boldsymbol{\sigma }^{(R)} = \overline{\mathbf{v}^{\prime} \otimes \mathbf{v}^{\prime}}\). In keeping with the Boussinesq assumption, we write \(\boldsymbol{\sigma }^{(R)}\) in terms of the mean deformation tensor \(D\overline{\mathbf{v}}\) and the eddy viscosity ν t , which must be modeled. The modeling process leads to the assumption that ν t depends on the turbulent kinetic energy \(k = (1/2)\overline{\vert \mathbf{v}^{\prime}\vert ^{2}}\) and the turbulent diffusion \(\mathcal{E} = 2\nu \overline{\vert D\mathbf{v}^{\prime}\vert ^{2}}\), addressing the issue of finding equations for k and \(\mathcal{E}\) to compute ν t , and therefore \((\overline{\mathbf{v}},\overline{p})\). To realize this, hypotheses about turbulence are necessary, such as local homogeneity, expressed by the local invariance of the correlation tensors under translations. The concept of mild homogeneity is introduced, which is the minimal hypothesis about correlations that allows the derivation of the \(k -\mathcal{E}\) model carried out in this chapter, using additional standard closure assumptions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Avellaneda, M., Majda, A.J.: Approximate and exact renormalization theories for a model for turbulent transport. Phys. Fluids A 4(1), 41–57 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bailly, C., Comte Bellot, G.: Turbulence. CNRS éditions, Paris (2003)

    Google Scholar 

  3. Batchelor, G.K.: The Theory of Homogeneous Turbulence. Cambridge University Press, Cambridge (1953)

    MATH  Google Scholar 

  4. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North Holland, Amsterdam (1978)

    MATH  Google Scholar 

  5. Billingsley, P.: Probability and Measure. Wiley, New York (2008)

    Google Scholar 

  6. Burchard, H.: Applied Turbulence Modelling in Marine Waters. Springer, Berlin (2002)

    MATH  Google Scholar 

  7. Chacon Rebollo, T.: Oscillations due to the transport of micro structures. SIAM J. Appl. Math. 48(5), 1128–1146 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Davidson, L.: Fluid mechanics, turbulent flow and turbulence modeling. Chalmers University Course Notes (2013). Avaliable via DIALOG. http://www.tfd.chalmers.se/~lada/postscript_files/solids-and-fluids_turbulent-flow_turbulence-modelling.pdf

  9. Durbin, P.A.: Application of a near-wall turbulence model to boundary layers and heat transfer. Int. J. Heat Fluid Flow 14(4), 316–323 (1993)

    Article  Google Scholar 

  10. Foias, C.: Solutions statistiques des équations d’évolutions non linéaires. In: (French) Problems in Non-Linear Analysis (C.I.M.E., IV Ciclo, Varenna, 1970), pp. 129–188. Edizioni Cremonese, Rome (1971)

    Google Scholar 

  11. Foias, C.: Statistical study of Navier-Stokes equations I, II. Rend. Sem. Mat. Univ. Padova 48, 219–348 (1972); Statistical study of Navier-Stokes equations II. Rend. Sem. Mat. Univ. Padova 49, 9–123 (1973)

    MATH  Google Scholar 

  12. Foias, C.: On the statistical study of the Navier-Stokes equations. Partial Differential Equations and Related Topics (Program, Tulane University, New Orleans, 1974). Lecture Notes in Mathematics, vol. 446, pp. 184–197. Springer, Berlin (1975)

    Google Scholar 

  13. Foias C., Manley, O., Rosa, R., Temam, R.: Navier-Stokes Equations and Turbulence. Encyclopedia of Mathematics and Its Applications, vol. 83. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  14. Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluids for very large Reynolds number. Dokl. Akad. Nauk SSR 30, 9–13 (1941)

    Google Scholar 

  15. Kraichnan, R.H.: Diffusion by a random velocity field. Phys. Fluids 13, 22 (1970)

    Article  MATH  Google Scholar 

  16. Launder, B. E., Spalding, D.B.: Mathematical Models of Turbulence. Academic, New York (1972)

    MATH  Google Scholar 

  17. Lewandowski, R., Pichot, G.: Numerical simulation of water flow around a rigid fishing net. Comput. Methods Appl. Mech. Eng. 196, 4737–4754 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mclaughlin, D.W., Papanicolaou, G.C., Pironneau, O.: Convection of microstructure and related problems. SIAM J. Appl. Math. 45, 780–797 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mellor, G., Yamada, T.: Developement of turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 20, 851–875 (1982)

    Article  Google Scholar 

  20. Mohammadi, M., Pironneau, O.: Analysis of the k-Epsilon Turbulence Model. Masson, Paris (1994)

    Google Scholar 

  21. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  22. Prandtl, L.: Guide à Travers le Mécanique des Fluides. Dunod, Paris (1952)

    Google Scholar 

  23. Ruelle, D.: Chance and Chaos. Princeton University Press, Princeton (1991)

    Google Scholar 

  24. Taylor, G.I.: Statistical theory of turbulence. Part I-IV. Proc. Roy. Soc. A 151, 421–478 (1935)

    MATH  Google Scholar 

  25. Tikhomirov, V.M.: Selected Works of A.N. Kolmogorov: I: Mathematics and Mechanics. Kluwer, Dordrecht (1992)

    Google Scholar 

  26. Wilcox, D.C.: Reassessment of the scale-determining equation. AIAA J. 26(11), 1299–1310 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wilcox, D.C.: Turbulence Modeling for CFD, 2nd edn. DCW Industries Inc., La Canada (1998)

    Google Scholar 

  28. Young, W., Pumir, A., Pomeau, Y.: Anomalous diffusion of tracer in convection rolls. Phys. Fluids A 1(3), 462–469 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chacón Rebollo, T., Lewandowski, R. (2014). The \(k-\varepsilon\) Model. In: Mathematical and Numerical Foundations of Turbulence Models and Applications. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-0455-6_4

Download citation

Publish with us

Policies and ethics