Skip to main content

Blood Platelet as a Peripheral Cell in Oxidative Stress in Psychiatric Disorders

  • Chapter
  • First Online:
Book cover Studies on Psychiatric Disorders

Abstract

Enhanced production of reactive oxygen/nitrogen species (ROS/RNS) and the oxidative changes in the brain may be reflected by abnormalities in peripheral blood platelets from patients with psychiatric diseases. Platelets, the smallest anucleated blood cells with a relatively short half-life time, are useful models to study the mechanism of cell signaling pathways or the extent of oxidative damage and changes in the central nervous system. To determine the oxidative stress in platelets, the analysis of specific markers such as lipid peroxidation, level of nitrotyrosine and carbonyl groups in proteins, free low molecular thiols and protein thiols, and activity of antioxidative enzymes together with estimation of platelet function are used. Platelets may have important clinical implications either diagnostically or as a research tool. Moreover, a major advantage in studying the platelets lies in their ease of access in patients. Here, the structure and function of platelets and their role in inflammatory and psychiatric diseases are described. The effects of ROS/RNS, especially nitric oxide and peroxynitrite on platelets, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADAM:

A disintegrin and metalloprotease

ADP:

Adenosine diphosphate

AMPAR:

Glutamate receptor

cAMP:

Cyclic adenosine monophosphate

CGMP:

Cyclic guanosine monophosphate

COX:

Cyclooxygenase

DAG:

Diacylglycerol

DAT:

Dopamine transporter

DTS:

Dense tubular system

EAAT:

Excitatory amino acid transporter

EGF:

Epidermal growth factor

FGF:

Fibroblast growth factor

GP:

Glycoprotein

GPCRs:

G protein-coupled receptors

GPX:

Glutathione peroxidase

GSH:

Glutathione

GSSG:

Oxidized glutathione

HMWK:

High molecular weight kininogen

IL:

Interleukin

LIGHT:

Cytokine

LOX:

Lipoxygenase

MAO:

Monoamine oxidase

MDA:

Malonyldialdehyde

MMP:

Matrix metalloproteinase

MP:

Microparticle

NF-kB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NO:

Nitric oxide

NOS:

Nitric oxide synthase

OCS:

Open canalicular system

PAF:

Platelet-activating factor

PAR:

Protease-activated receptor

PC:

Phosphatidylserine

PDGF:

Platelet-derived growth factor

PE:

Phosphatidylethanolamine

PF4 :

Platelet factor 4

PGH2 :

Prostaglandin H2

PKC:

Protein kinase C

PKG:

Protein kinase G

PLA2 :

Phospholipase A2

PLC:

Phospholipase C

RANTES:

Regulated on activation, normal T-cell expressed and secreted

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

RSNOs:

S-nitrosothiols

SOD:

Superoxide dismutase

SSRI:

Selective serotonin reuptake inhibitor

TBARS:

Thiobarbituric acid reactive substance

TGF:

Transforming growth factor

TIMPs:

Tissue inhibitor of metalloproteinases

TNF:

Tumor necrosis factor

TP:

Thromboxane receptor

TXA2 :

Thromboxane A2

Tyr:

Tyrosine

VASP:

Vasodilator-stimulated phosphoprotein

References

  • Ambrosio G, Golino P, Pascucci I, Rosolowsky M, Campbell WB, DeClerck F, Tritto I, Chiariello M (1994) Modulation of platelet function by reactive oxygen metabolites. Am J Physiol 267:308–318

    Google Scholar 

  • Armstrong RA (1996) Platelet prostanoid receptors. Pharmacol Ther 72:171–191

    CAS  PubMed  Google Scholar 

  • Arteel GE, Briviba K, Sies H (1999) Protection against peroxynitrite. FEBS Lett 445:226–230

    CAS  PubMed  Google Scholar 

  • Baier PC, Koch JM, Seeck-Hirschner M, Ohlmeyer K, Wilms S, Aldenhoff JB, Hinze-Selch D (2009) A flow-cytometric method to investigate glutamate-receptor-sensitivity in whole blood platelets – results from healthy controls and patients with schizophrenia. J Psychiatr Res 43:585–591

    PubMed  Google Scholar 

  • Bakken AM, Staeffler A, Jorgensen HA, Holmsen H (2006) Glycerophospholipid molecular species in platelets and brain tissues – are platelets a good model for neurons? Platelets 17:484–492

    CAS  PubMed  Google Scholar 

  • Barradas MA, Mikhailidis DP (1993) The use of platelets as models for neurons: possible applications to the investigation of eating disorders. Biomed Pharmacother 47:11–18

    CAS  PubMed  Google Scholar 

  • Bartosz G (1996) Peroxynitrite: mediator of the toxic action of nitric oxide. Acta Biochim Pol 43:645–659

    CAS  PubMed  Google Scholar 

  • Beaulieu LM, Freedman JE (2009) NFkappaB regulation of platelet function: no nucleus, no genes, no problem? J Thromb Haemost 7:1329–1332

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:1424–1437

    Google Scholar 

  • Begni B, Tremolizzo L, D’Orlando C, Bono MS, Garofolo R, Longoni M, Ferrarese C (2005) Substrate-induced modulation of glutamate uptake in human platelets. Br J Pharmacol 145:792–799

    CAS  PubMed Central  PubMed  Google Scholar 

  • Begonja AJ, Teichmann L, Geiger J, Gambaryan S, Walter U (2006) Platelet regulation by NO/cGMP signaling and NAD(P)H oxidase-generated ROS. Blood Cells Mol Dis 36:166–170

    CAS  PubMed  Google Scholar 

  • Berk M, Plein H, Csizmadia T (1999) Supersensitive platelet glutamate receptors as a possible peripheral marker in schizophrenia. Int Clin Psychopharmacol 14:119–122

    CAS  PubMed  Google Scholar 

  • Berk M, Plein H, Belsham B (2000) The specificity of platelet glutamate receptor supersensitivity in psychotic disorders. Life Sci 66:2427–2432

    CAS  PubMed  Google Scholar 

  • Berk M, Plein H, Ferreira D (2001) Platelet glutamate receptor supersensitivity in major depressive disorder. Clin Neuropharmacol 24:129–132

    CAS  PubMed  Google Scholar 

  • Berk M, Ng F, Dean O, Dodd S, Bush AI (2008) Glutathione: a novel treatment target in psychiatry. Trends Pharmacol Sci 29:346–351

    CAS  PubMed  Google Scholar 

  • Bermejo E, Saenz DA, Alberto F, Rosenstein RE, Bari SE, Lazzari MA (2005) Effect of nitroxyl on human platelets function. Thromb Haemost 94:578–584

    CAS  PubMed  Google Scholar 

  • Bernstein HG, Bogerts B, Keilhoff G (2005) The many faces of nitric oxide in schizophrenia. A review. Schizophr Res 78:69–86

    PubMed  Google Scholar 

  • Bismuth-Evenzal Y, Gonopolsky Y, Gurwitz D, Iancu I, Weizman A, Rehavi M (2012) Decreased serotonin content and reduced agonist-induced aggregation in platelets of patients chronically medicated with SSRI drugs. J Affect Disord 136:99–103

    CAS  PubMed  Google Scholar 

  • Blackmore PF (2011) Biphasic effects of nitric oxide on calcium influx in human platelets. Thromb Res 127:8–14

    Google Scholar 

  • Blair P, Flaumenhaft R (2009) Platelet alpha-granules: basic biology and clinical correlates. Blood Rev 23:177–189

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blockmans D, Deckmyn H, Vermylen J (1995) Platelet activation. Blood Rev 9:143–156

    CAS  PubMed  Google Scholar 

  • Borges VC, Santos FW, Rocha JB, Nogueira CW (2007) Heavy metals modulate glutamatergic system in human platelets. Neurochem Res 32:953–958

    CAS  PubMed  Google Scholar 

  • Boulos C, Jiang H, Balazy M (2000) Diffusion of peroxynitrite into the human platelet inhibits cyclooxygenase via nitration of tyrosine residues. J Pharmacol Exp Ther 293:222–229

    CAS  PubMed  Google Scholar 

  • Brill A, Chauhan AK, Canault M, Walsh MT, Bergmeier W, Wagner DD (2009) Oxidative stress activates ADAM17/TACE and induces its target receptor shedding in platelets in a p38-dependent fashion. Cardiovasc Res 84:137–144

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown AS, Moro MA, Masse JM, Cramer EM, Radomski M, Darley-Usmar V (1998) Nitric oxide-dependent and independent effects on human platelets treated with peroxynitrite. Cardiovasc Res 40:380–388

    CAS  PubMed  Google Scholar 

  • Bruce EC, Musselman DL (2005) Depression, alterations in platelet function, and ischemic heart disease. Psychosom Med 67:34–36

    Google Scholar 

  • Bruckdorfer KR (2001) The nitration of proteins in platelets. C R Acad Sci III 324:611–615

    CAS  PubMed  Google Scholar 

  • Brydon L, Magid K, Steptoe A (2006) Platelets, coronary heart disease, and stress. Brain Behav Immun 20:113–119

    CAS  PubMed  Google Scholar 

  • Butt E, Abel K, Krieger M, Palm D, Hoppe V, Hoppe J, Walter U (1994) cAMP- and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J Biol Chem 269:14509–14517

    CAS  PubMed  Google Scholar 

  • Camacho A, Dimsdale JE (2000) Platelets and psychiatry: lessons learned from old and new studies. Psychosom Med 62:326–336

    CAS  PubMed  Google Scholar 

  • Catani MV, Gasperi V, Catanzaro G, Baldassarri S, Bertoni A, Sinigaglia F, Avigliano L, Maccarrone M (2010) Human platelets express authentic CB and CB receptors. Curr Neurovasc Res 7:311–318

    CAS  PubMed  Google Scholar 

  • Celano CM, Huffman JC (2011) Depression and cardiac disease: a review. Cardiol Rev 19:130–142

    PubMed  Google Scholar 

  • Chakrabarti S, Clutton P, Varghese S, Cox D, Mascelli MA, Freedman JE (2004) Glycoprotein IIb/IIIa inhibition enhances platelet nitric oxide release. Thromb Res 113:225–233

    CAS  PubMed  Google Scholar 

  • Chakrabarti S, Varghese S, Vitseva O, Tanriverdi K, Freedman JE (2005) CD40 ligand influences platelet release of reactive oxygen intermediates. Arterioscler Thromb Vasc Biol 25:2428–2434

    CAS  PubMed  Google Scholar 

  • Chavakis T, Santoso S, Clemetson KJ, Sachs UJ, Isordia-Salas I, Pixley RA, Nawroth PP, Colman RW, Preissner KT (2003) High molecular weight kininogen regulates platelet-leukocyte interactions by bridging Mac-1 and glycoprotein Ib. J Biol Chem 278:45375–45381

    CAS  PubMed  Google Scholar 

  • Chen H (2009) Possible role of platelet GluR1 receptors in comorbid depression and cardiovascular disease. Cardiovasc Psychiatry Neurol 2009:424728

    PubMed Central  PubMed  Google Scholar 

  • Chung AW, Radomski A, Alonso-Escolano D, Jurasz P, Stewart MW, Malinski T, Radomski MW (2004) Platelet-leukocyte aggregation induced by PAR agonists: regulation by nitric oxide and matrix metalloproteinases. Br J Pharmacol 143:845–855

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coles B, Bloodsworth A, Eiserich JP, Coffey MJ, McLoughlin RM, Giddings JC, Lewis MJ, Haslam RJ, Freeman BA, O’Donnell VB (2002) Nitrolinoleate inhibits platelet activation by attenuating calcium mobilization and inducing phosphorylation of vasodilator-stimulated phosphoprotein through elevation of cAMP. J Biol Chem 277:5832–5840

    CAS  PubMed  Google Scholar 

  • Cooper D, Stokes KY, Tailor A, Granger DN (2002) Oxidative stress promotes blood cell-endothelial cell interactions in the microcirculation. Cardiovasc Toxicol 2:165–180

    CAS  PubMed  Google Scholar 

  • Crane MS, Ollosson R, Moore KP, Rossi AG, Megson IL (2002) Novel role for low molecular weight plasma thiols in nitric oxide-mediated control of platelet function. J Biol Chem 277:46858–46863

    CAS  PubMed  Google Scholar 

  • Da PM, Cesura AM, Launay JM, Richards JG (1988) Platelets as a model for neurones? Experientia 44:115–126

    Google Scholar 

  • Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A (2003a) Protein carbonylation in human diseases. Trends Mol Med 9:169–176

    CAS  PubMed  Google Scholar 

  • Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003b) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38

    CAS  PubMed  Google Scholar 

  • Das I, Khan NS (1998) Increased arachidonic acid induced platelet chemiluminescence indicates cyclooxygenase overactivity in schizophrenic subjects. Prostaglandins Leukot Essent Fatty Acids 58:165–168

    CAS  PubMed  Google Scholar 

  • Dean O, Giorlando F, Berk M (2011) N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action. J Psychiatry Neurosci 36:78–86

    PubMed Central  PubMed  Google Scholar 

  • Del Principe D, Menichelli A, De Matteis W, Di Corpo M, Di Giulio S, Finazzi-Agro A (1985) Hydrogen peroxide has a role in the aggregation of human platelets. FEBS Lett 185:142–146

    PubMed  Google Scholar 

  • Del Principe D, Menichelli A, De Matteis W, Di Corpo M, Di Giulio S, Finazzi-Agro A (1991) Hydrogen peroxide is an intermediate in the platelet activation cascade triggered by collagen, but not by thrombin. Thromb Res 62:365–375

    PubMed  Google Scholar 

  • Dietrich-Muszalska A, Olas B (2009a) Modifications of blood platelet proteins of patients with schizophrenia. Platelets 20:90–96

    CAS  PubMed  Google Scholar 

  • Dietrich-Muszalska A, Olas B (2009b) The changes of aggregability of blood platelets in schizophrenia. World J Biol Psychiatry 10:171–176

    PubMed  Google Scholar 

  • Dietrich-Muszalska A, Olas B, Rabe-Jablonska J (2005) Oxidative stress in blood platelets from schizophrenic patients. Platelets 16:386–391

    CAS  PubMed  Google Scholar 

  • do Nascimento CA, Nogueira CW, Borges VC, Rocha JB (2006) Changes in [(3)H]-glutamate uptake into platelets from patients with bipolar I disorder. Psychiatry Res 141:343–347

    CAS  PubMed  Google Scholar 

  • du Bois TM, Deng C, Huang XF (2005) Membrane phospholipid composition, alterations in neurotransmitter systems and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 29:878–888

    PubMed  Google Scholar 

  • Ducrocq C, Blanchard B, Pignatelli B, Ohshima H (1999) Peroxynitrite: an endogenous oxidizing and nitrating agent. Cell Mol Life Sci 55:1068–1077

    CAS  PubMed  Google Scholar 

  • Dwivedi Y, Pandey GN (2009) Pharmacological characterization of inositol 1,4,5-tris phosphate receptors in human platelet membranes. Cardiovasc Psychiatry Neurol 2009:618586

    PubMed Central  PubMed  Google Scholar 

  • Essex DW (2009) Redox control of platelet function. Antioxid Redox Signal 11:1191–1225

    CAS  PubMed  Google Scholar 

  • Essex DW, Li M (2003) Redox control of platelet aggregation. Biochemistry 42:129–136

    CAS  PubMed  Google Scholar 

  • Essex DW, Li M (2006) Redox modification of platelet glycoproteins. Curr Drug Targets 7:1233–1241

    CAS  PubMed  Google Scholar 

  • Fisar Z, Raboch J (2008) Depression, antidepressants, and peripheral blood components. Neuro Endocrinol Lett 29:17–28

    CAS  PubMed  Google Scholar 

  • Forstermann U (2010) Nitric oxide and oxidative stress in vascular disease. Pflugers Arch 459:923–939

    PubMed  Google Scholar 

  • Frankhauser P, Grimmer Y, Bugert P, Deuschle M, Schmidt M, Schloss P (2006) Characterization of the neuronal dopamine transporter DAT in human blood platelets. Neurosci Lett 399:197–201

    CAS  PubMed  Google Scholar 

  • Freedman JE (2008) Oxidative stress and platelets. Arterioscler Thromb Vasc Biol 28:11–16

    Google Scholar 

  • Freedman JE, Loscalzo J, Barnard MR, Alpert C, Keaney JF, Michelson AD (1997) Nitric oxide released from activated platelets inhibits platelet recruitment. J Clin Invest 100:350–356

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaston B (1999) Nitric oxide and thiol groups. Biochim Biophys Acta 1411:323–333

    CAS  PubMed  Google Scholar 

  • Gattaz WF, Schmitt A, Maras A (1995) Increased platelet phospholipase A2 activity in schizophrenia. Schizophr Res 16:1–6

    CAS  PubMed  Google Scholar 

  • Gibson KR, Neilson IL, Barrett F, Winterburn TJ, Sharma S, MacRury SM, Megson IL (2009) Evaluation of the antioxidant properties of N-acetylcysteine in human platelets: prerequisite for bioconversion to glutathione for antioxidant and antiplatelet activity. J Cardiovasc Pharmacol 54:319–326

    CAS  PubMed  Google Scholar 

  • Giustarini D, Campoccia G, Fanetti G, Rossi R, Giannerini F, Lusini L, Di SP (2000) Minor thiols cysteine and cysteinylglycine regulate the competition between glutathione and protein SH groups in human platelets subjected to oxidative stress. Arch Biochem Biophys 380:1–10

    CAS  PubMed  Google Scholar 

  • Gopalakrishna R, Jaken S (2000) Protein kinase C signaling and oxidative stress. Free Radic Biol Med 28:1349–1361

    CAS  PubMed  Google Scholar 

  • Gordge MP, Xiao F (2010) S-nitrosothiols as selective antithrombotic agents – possible mechanisms. Br J Pharmacol 159:1572–1580

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamberg M, Svensson J, Samuelsson B (1975) Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci U S A 72:2994–2998

    CAS  PubMed Central  PubMed  Google Scholar 

  • Handin RI, Karabin R, Boxer GJ (1977) Enhancement of platelet function by superoxide anion. J Clin Invest 59:959–965

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hattori K, Fukuzako H, Hashiguchi T, Hamada S, Murata Y, Isosaka T, Yuasa S, Yagi T (2009) Decreased expression of Fyn protein and disbalanced alternative splicing patterns in platelets from patients with schizophrenia. Psychiatry Res 168:119–128

    CAS  PubMed  Google Scholar 

  • Hedin HL, Fowler CJ (1999) Further studies of the effects of diamide and hydrogen peroxide on calcium signaling in the human platelet. Methods Find Exp Clin Pharmacol 21:321–325

    CAS  PubMed  Google Scholar 

  • Hernandez-Hernandez A, Sanchez-Yague J, Martin-Valmaseda EM, Llanillo M (1999) Oxidative inactivation of human and sheep platelet membrane-associated phosphotyrosine phosphatase activity. Free Radic Biol Med 26:1218–1230

    CAS  PubMed  Google Scholar 

  • Hirata K, Kuroda R, Sakoda T, Katayama M, Inoue N, Suematsu M, Kawashima S, Yokoyama M (1995) Inhibition of endothelial nitric oxide synthase activity by protein kinase C. Hypertension 25:180–185

    CAS  PubMed  Google Scholar 

  • Horrobin DF (1996) Schizophrenia as a membrane lipid disorder which is expressed throughout the body. Prostaglandins Leukot Essent Fatty Acids 55:3–7

    CAS  PubMed  Google Scholar 

  • Horstman LL, Jy W, Ahn YS, Zivadinov R, Maghzi AH, Etemadifar M, Steven AJ, Minagar A (2010) Role of platelets in neuroinflammation: a wide-angle perspective. J Neuroinflammation 7:10

    PubMed Central  PubMed  Google Scholar 

  • Hranilovic D, Bujas-Petkovic Z, Tomicic M, Bordukalo-Niksic T, Blazevic S, Cicin-Sain L (2009) Hyperserotonemia in autism: activity of 5HT-associated platelet proteins. J Neural Transm 116:493–501

    CAS  PubMed  Google Scholar 

  • Huie RE, Padmaja S (1993) The reaction of no with superoxide. Free Radic Res Commun 18:195–199

    CAS  PubMed  Google Scholar 

  • Inwald DP, McDowall A, Peters MJ, Callard RE, Klein NJ (2003) CD40 is constitutively expressed on platelets and provides a novel mechanism for platelet activation. Circ Res 92:1041–1048

    CAS  PubMed  Google Scholar 

  • Irani K, Pham Y, Coleman LD, Roos C, Cooke GE, Miodovnik A, Karim N, Wilhide CC, Bray PF, Goldschmidt-Clermont PJ (1998) Priming of platelet alphaIIbbeta3 by oxidants is associated with tyrosine phosphorylation of beta3. Arterioscler Thromb Vasc Biol 18:1698–1706

    CAS  PubMed  Google Scholar 

  • Ischiropoulos H (1998) Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch Biochem Biophys 356:1–11

    CAS  PubMed  Google Scholar 

  • Ischiropoulos H (2003) Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophys Res Commun 305:776–783

    CAS  PubMed  Google Scholar 

  • Ischiropoulos H, Al-Mehdi AB (1995) Peroxynitrite-mediated oxidative protein modifications. FEBS Lett 364:279–282

    CAS  PubMed  Google Scholar 

  • Ischiropoulos H, Gow A (2005) Pathophysiological functions of nitric oxide-mediated protein modifications. Toxicology 208:299–303

    CAS  PubMed  Google Scholar 

  • Iuliano L, Pedersen JZ, Pratico D, Rotilio G, Violi F (1994) Role of hydroxyl radicals in the activation of human platelets. Eur J Biochem 221:695–704

    CAS  PubMed  Google Scholar 

  • Iuliano L, Colavita AR, Leo R, Pratico D, Violi F (1997) Oxygen free radicals and platelet activation. Free Radic Biol Med 22:999–1006

    CAS  PubMed  Google Scholar 

  • Jahn B, Hansch GM (1990) Oxygen radical generation in human platelets: dependence on 12-lipoxygenase activity and on the glutathione cycle. Int Arch Allergy Appl Immunol 93:73–79

    CAS  PubMed  Google Scholar 

  • Janusonis S (2008) Origin of the blood hyperserotonemia of autism. Theor Biol Med Model 5:10

    PubMed Central  PubMed  Google Scholar 

  • Johnston-Cox HA, Ravid K (2011) Adenosine and blood platelets. Purinergic Signal 7:357–365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kafka MS, van Kammen DP, Bunney WE Jr (1979) Reduced cyclic AMP production in the blood platelets from schizophrenic patients. Am J Psychiatry 136:685–687

    CAS  PubMed  Google Scholar 

  • Kaiya H, Ofuji M, Nozaki M, Tsurumi K (1990) Platelet prostaglandin E1 hyposensitivity in schizophrenia: decrease in cyclic AMP formation and in inhibitory effects on aggregation. Psychopharmacol Bull 26:381–384

    CAS  PubMed  Google Scholar 

  • Kalyanaraman B (2004) Nitrated lipids: a class of cell-signaling molecules. Proc Natl Acad Sci U S A 101:11527–11528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kamath S, Blann AD, Lip GY (2001) Platelet activation: assessment and quantification. Eur Heart J 22:1561–1571

    CAS  PubMed  Google Scholar 

  • Kato Y, Kawakishi S, Aoki T, Itakura K, Osawa T (1997) Oxidative modification of tryptophan residues exposed to peroxynitrite. Biochem Biophys Res Commun 234:82–84

    CAS  PubMed  Google Scholar 

  • Kazek B, Huzarska M, Grzybowska-Chlebowczyk U, Kajor M, Ciupinska-Kajor M, Wos H, Marszal E (2010) Platelet and intestinal 5-HT2A receptor mRNA in autistic spectrum disorders – results of a pilot study. Acta Neurobiol Exp (Wars) 70:232–238

    Google Scholar 

  • Khait VD, Huang YY, Malone KM, Oquendo M, Brodsky B, Sher L, Mann JJ (2002) Is there circannual variation of human platelet 5-HT(2A) binding in depression? J Affect Disord 71:249–258

    CAS  PubMed  Google Scholar 

  • Khan J, Brennand DM, Bradley N, Gao B, Bruckdorfer R, Jacobs M (1998) 3-Nitrotyrosine in the proteins of human plasma determined by an ELISA method. Biochem J 330:795–801

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klotz LO, Sies H (2003) Defenses against peroxynitrite: selenocompounds and flavonoids. Toxicol Lett 140–141:125–132

    PubMed  Google Scholar 

  • Komiya T, Higurashi K, Iizuka K, Mizuno Y (1999) A novel free radical scavenger, nicaraven, inhibits human platelet aggregation in vitro. Clin Neuropharmacol 22:11–14

    CAS  PubMed  Google Scholar 

  • Kovacic Z, Henigsberg N, Pivac N, Nedic G, Borovecki A (2008) Platelet serotonin concentration and suicidal behavior in combat related posttraumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry 32:544–551

    CAS  PubMed  Google Scholar 

  • Krotz F, Sohn HY, Gloe T, Zahler S, Riexinger T, Schiele TM, Becker BF, Theisen K, Klauss V, Pohl U (2002) NAD(P)H oxidase-dependent platelet superoxide anion release increases platelet recruitment. Blood 100:917–924

    CAS  PubMed  Google Scholar 

  • Krotz F, Sohn HY, Pohl U (2004) Reactive oxygen species: players in the platelet game. Arterioscler Thromb Vasc Biol 24:1988–1996

    PubMed  Google Scholar 

  • Leoncini G, Bruzzese D, Signorello MG (2005) The L-arginine/NO pathway in the early phases of platelet stimulation by collagen. Biochem Pharmacol 69:289–296

    CAS  PubMed  Google Scholar 

  • Lesch KP, Wolozin BL, Murphy DL, Reiderer P (1993) Primary structure of the human platelet serotonin uptake site: identity with the brain serotonin transporter. J Neurochem 60:2319–2322

    CAS  PubMed  Google Scholar 

  • Li Z, Delaney MK, O’Brien KA, Du X (2010) Signaling during platelet adhesion and activation. Arterioscler Thromb Vasc Biol 30:2341–2349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liaudet L, Vassalli G, Pacher P (2009) Role of peroxynitrite in the redox regulation of cell signal transduction pathways. Front Biosci 14:4809–4814

    Google Scholar 

  • Lieb J, Karmali R, Horrobin D (1983) Elevated levels of prostaglandin E2 and thromboxane B2 in depression. Prostaglandins Leukot Med 10:361–367

    CAS  PubMed  Google Scholar 

  • Ljubicic D, Stipcevic T, Pivac N, Jakovljevic M, Muck-Seler D (2007) The influence of daylight exposure on platelet 5-HT levels in patients with major depression and schizophrenia. J Photochem Photobiol B 89:63–69

    CAS  PubMed  Google Scholar 

  • Lohmann SM, Walter U (2005) Tracking functions of cGMP-dependent protein kinases (cGK). Front Biosci 10:1313–1328

    CAS  PubMed  Google Scholar 

  • Lopez JJ, Salido GM, Gomez-Arteta E, Rosado JA, Pariente JA (2007) Thrombin induces apoptotic events through the generation of reactive oxygen species in human platelets. J Thromb Haemost 5:1283–1291

    CAS  PubMed  Google Scholar 

  • Low SY, Sabetkar M, Bruckdorfer KR, Naseem KM (2002) The role of protein nitration in the inhibition of platelet activation by peroxynitrite. FEBS Lett 511:59–64

    CAS  PubMed  Google Scholar 

  • Lufrano M, Balazy M (2003) Interactions of peroxynitrite and other nitrating substances with human platelets: the role of glutathione and peroxynitrite permeability. Biochem Pharmacol 65:515–523

    CAS  PubMed  Google Scholar 

  • Maes M, Van der Planken M, Van GA, Desnyder R (1996) Blood coagulation and platelet aggregation in major depression. J Affect Disord 40:35–40

    CAS  PubMed  Google Scholar 

  • Magos T (2002) Correlation between platelet monoamine oxidase activity and the strength of a visual illusion. Vision Res 42:2031–2035

    CAS  PubMed  Google Scholar 

  • Mahadik SP, Mukherjee S (1996) Cultured skin fibroblasts as a cell model for investigating schizophrenia. J Psychiatr Res 30:421–439

    CAS  PubMed  Google Scholar 

  • Mahadik SP, Evans D, Lal H (2001) Oxidative stress and role of antioxidant and omega-3 essential fatty acid supplementation in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 25:463–493

    CAS  PubMed  Google Scholar 

  • Mangano RM, Schwarcz R (1981) The human platelet as a model for the glutamatergic neuron: platelet uptake of L-glutamate. J Neurochem 36:1067–1076

    CAS  PubMed  Google Scholar 

  • Manickam N, Ahmad SS, Essex DW (2011) Vicinal thiols are required for activation of the alphaIIbbeta3 platelet integrin. J Thromb Haemost 9:1207–1215

    CAS  PubMed  Google Scholar 

  • Marcondes S, Cardoso MH, Morganti RP, Thomazzi SM, Lilla S, Murad F, De NG, Antunes E (2006) Cyclic GMP-independent mechanisms contribute to the inhibition of platelet adhesion by nitric oxide donor: a role for alpha-actinin nitration. Proc Natl Acad Sci U S A 103:3434–3439

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maresca M, Colao C, Leoncini G (1992) Generation of hydrogen peroxide in resting and activated platelets. Cell Biochem Funct 10:79–85

    CAS  PubMed  Google Scholar 

  • Marjanovic JA, Li Z, Stojanovic A, Du X (2005) Stimulatory roles of nitric-oxide synthase 3 and guanylyl cyclase in platelet activation. J Biol Chem 280:37430–37438

    CAS  PubMed  Google Scholar 

  • Matsubara M, Hayashi N, Jing T, Titani K (2003) Regulation of endothelial nitric oxide synthase by protein kinase C. J Biochem 133:773–781

    CAS  PubMed  Google Scholar 

  • Mayer B, Schrammel A, Klatt P, Koesling D, Schmidt K (1995) Peroxynitrite-induced accumulation of cyclic GMP in endothelial cells and stimulation of purified soluble guanylyl cyclase. Dependence on glutathione and possible role of S-nitrosation. J Biol Chem 270:17355–17360

    CAS  PubMed  Google Scholar 

  • McNicol A, Israels SJ (2008) Beyond hemostasis: the role of platelets in inflammation, malignancy and infection. Cardiovasc Hematol Disord Drug Targets 8:99–117

    CAS  PubMed  Google Scholar 

  • Mehta JL, Chen LY, Kone BC, Mehta P, Turner P (1995) Identification of constitutive and inducible forms of nitric oxide synthase in human platelets. J Lab Clin Med 125:370–377

    CAS  PubMed  Google Scholar 

  • Mendoza-Sotelo J, Torner C, Alvarado-Vasquez N, Lazo-Langner A, Lopez G, Arango I, Pavon L, Gonzalez-Trujano E, Moreno J (2010) Ultrastructural changes and immunolocalization of P-selectin in platelets from patients with major depression. Psychiatry Res 176:179–182

    CAS  PubMed  Google Scholar 

  • Mikuni M, Kusumi I, Kagaya A, Kuroda Y, Mori H, Takahashi K (1991) Increased 5-HT-2 receptor function as measured by serotonin-stimulated phosphoinositide hydrolysis in platelets of depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 15:49–61

    CAS  PubMed  Google Scholar 

  • Miller DM, Grover TA, Nayini N, Aust SD (1993) Xanthine oxidase- and iron-dependent lipid peroxidation. Arch Biochem Biophys 301:1–7

    CAS  PubMed  Google Scholar 

  • Minetti M, Mallozzi C, Di Stasi AM (2002) Peroxynitrite activates kinases of the src family and upregulates tyrosine phosphorylation signaling. Free Radic Biol Med 33:744–754

    CAS  PubMed  Google Scholar 

  • Moebius J, Zahedi RP, Lewandrowski U, Berger C, Walter U, Sickmann A (2005) The human platelet membrane proteome reveals several new potential membrane proteins. Mol Cell Proteomics 4:1754–1761

    CAS  PubMed  Google Scholar 

  • Mondoro TH, Shafer BC, Vostal JG (1997) Peroxynitrite-induced tyrosine nitration and phosphorylation in human platelets. Free Radic Biol Med 22:1055–1063

    CAS  PubMed  Google Scholar 

  • Morgan LT, Thomas CP, Kuhn H, O’Donnell VB (2010) Thrombin-activated human platelets acutely generate oxidized docosahexaenoic-acid-containing phospholipids via 12-lipoxygenase. Biochem J 431:141–148

    CAS  PubMed  Google Scholar 

  • Moro MA, Darley-Usmar VM, Goodwin DA, Read NG, Zamora-Pino R, Feelisch M, Radomski MW, Moncada S (1994) Paradoxical fate and biological action of peroxynitrite on human platelets. Proc Natl Acad Sci U S A 91:6702–6706

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morrel CN (2008) Reactive oxygen species. Finding the right balance. Circ Res 103:571–572

    Google Scholar 

  • Morrell CN, Sun H, Ikeda M, Beique JC, Swaim AM, Mason E, Martin TV, Thompson LE, Gozen O, Ampagoomian D, Sprengel R, Rothstein J, Faraday N, Huganir R, Lowenstein CJ (2008) Glutamate mediates platelet activation through the AMPA receptor. J Exp Med 205:575–584

    PubMed Central  PubMed  Google Scholar 

  • Munzel T, Feil R, Mulsch A, Lohmann SM, Hofmann F, Walter U (2003) Physiology and pathophysiology of vascular signaling controlled by guanosine 3′,5′-cyclic monophosphate-dependent protein kinase [corrected]. Circulation 108:2172–2183

    PubMed  Google Scholar 

  • Muruganandam A, Mutus B (1994) Isolation of nitric oxide synthase from human platelets. Biochim Biophys Acta 1200:1–6

    CAS  PubMed  Google Scholar 

  • Nagai K, Inazu T, Yamamura H (1994) p72syk is activated by vanadate plus H2O2 in porcine platelets and phosphorylates GTPase activating protein on tyrosine residue(s). J Biochem 116:1176–1181

    CAS  PubMed  Google Scholar 

  • Nakamura T, Lipton SA (2011) Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases. Cell Death Differ 18:1478–1486

    CAS  PubMed Central  PubMed  Google Scholar 

  • Naseem KM, Low SY, Sabetkar M, Bradley NJ, Khan J, Jacobs M, Bruckdorfer KR (2000) The nitration of platelet cytosolic proteins during agonist-induced activation of platelets. FEBS Lett 473:119–122

    CAS  PubMed  Google Scholar 

  • Nemeroff CB, Owens MJ (2009) The role of serotonin in the pathophysiology of depression: as important as ever. Clin Chem 55:1578–1579

    CAS  PubMed  Google Scholar 

  • Ng F, Berk M, Dean O, Bush AI (2008) Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychopharmacol 11:851–876

    CAS  PubMed  Google Scholar 

  • Nishida M, Maruyama Y, Tanaka R, Kontani K, Nagao T, Kurose H (2000) G alpha(i) and G alpha(o) are target proteins of reactive oxygen species. Nature 408:492–495

    CAS  PubMed  Google Scholar 

  • Nowak P, Wachowicz B (2001a) Studies on pig blood platelet responses to peroxynitrite action. Platelets 12:376–381

    CAS  PubMed  Google Scholar 

  • Nowak P, Wachowicz B (2001b) The effects of peroxynitrite on pig platelet lipid peroxidation and the secretory process induced by thrombin. Cytobios 106:179–187

    CAS  PubMed  Google Scholar 

  • Nowak P, Wachowicz B (2002) Peroxynitrite-mediated modification of fibrinogen affects platelet aggregation and adhesion. Platelets 13:293–299

    CAS  PubMed  Google Scholar 

  • Nowak P, Olas B, Bald E, Glowacki R, Wachowicz B (2003) Peroxynitrite-induced changes of thiol groups in human blood platelets. Platelets 14:375–379

    CAS  PubMed  Google Scholar 

  • Nurden AT (2011) Platelets, inflammation and tissue regeneration. Thromb Haemost 105(Suppl 1):13–33

    Google Scholar 

  • Olas B, Wachowicz B (2005) Resveratrol, a phenolic antioxidant with effects on blood platelet functions. Platelets 16:251–260

    CAS  PubMed  Google Scholar 

  • Olas B, Wachowicz B (2007) Role of reactive nitrogen species in blood platelet functions. Platelets 18:555–565

    CAS  PubMed  Google Scholar 

  • Olas B, Zbikowska HM, Wachowicz B, Krajewski T, Buczynski A, Magnuszewska A (1999) Inhibitory effect of resveratrol on free radical generation in blood platelets. Acta Biochim Pol 46:961–966

    CAS  PubMed  Google Scholar 

  • Olas B, Nowak P, Kolodziejczyk J, Wachowicz B (2004a) The effects of antioxidants on peroxynitrite-induced changes in platelet proteins. Thromb Res 113:399–406

    CAS  PubMed  Google Scholar 

  • Olas B, Nowak P, Wachowicz B (2004b) Resveratrol protects against peroxynitrite-induced thiol oxidation in blood platelets. Cell Mol Biol Lett 9:577–587

    CAS  PubMed  Google Scholar 

  • Olas B, Nowak P, Ponczek M, Wachowicz B (2006) Resveratrol, a natural phenolic compound may reduce carbonylation proteins induced by peroxynitrite in blood platelets. Gen Physiol Biophys 25:215–222

    CAS  PubMed  Google Scholar 

  • Olas B, Kedzierska M, Wachowicz B (2008) Comparative studies on homocysteine and its metabolite-homocysteine thiolactone action in blood platelets in vitro. Platelets 19:520–527

    CAS  PubMed  Google Scholar 

  • Olas B, Wachowicz B, Nowak P (2009) Oxidative/nitrative modification of blood platelet proteins induced by thrombin in vitro. Thromb Res 123:758–762

    CAS  PubMed  Google Scholar 

  • Otterdal K, Smith C, Oie E, Pedersen TM, Yndestad A, Stang E, Endresen K, Solum NO, Aukrust P, Damas JK (2006) Platelet-derived LIGHT induces inflammatory responses in endothelial cells and monocytes. Blood 108:928–935

    CAS  PubMed  Google Scholar 

  • Palmar M, Marcano A, Castejon O (1997) Fine structural alterations of blood platelets in depression. Biol Psychiatry 42:965–968

    CAS  PubMed  Google Scholar 

  • Pandey GN, Ren X, Dwivedi Y, Pavuluri MN (2008) Decreased protein kinase C (PKC) in platelets of pediatric bipolar patients: effect of treatment with mood stabilizing drugs. J Psychiatr Res 42:106–116

    PubMed Central  PubMed  Google Scholar 

  • Pandey GN, Ren X, Rizavi HS, Dwivedi Y (2010) Glycogen synthase kinase-3beta in the platelets of patients with mood disorders: effect of treatment. J Psychiatr Res 44:143–148

    PubMed  Google Scholar 

  • Patel RP, McAndrew J, Sellak H, White CR, Jo H, Freeman BA, Darley-Usmar VM (1999) Biological aspects of reactive nitrogen species. Biochim Biophys Acta 1411:385–400

    CAS  PubMed  Google Scholar 

  • Pereira RN, Moss BM, Assumpão CR, Cardoso CB, Mann GE, Brunini TM, Mendes-Ribeiro AC (2010) Oxidative stress, l-arginine-nitric oxide and arginase pathways in platelets from adolescents with anorexia nervosa. Blood Cells Mol. Dis 15;44(3):164-8

    Google Scholar 

  • Pignatelli P, Pulcinelli FM, Lenti L, Gazzaniga PP, Violi F (1998) Hydrogen peroxide is involved in collagen-induced platelet activation. Blood 91:484–490

    CAS  PubMed  Google Scholar 

  • Pignatelli P, Sanguigni V, Lenti L, Ferro D, Finocchi A, Rossi P, Violi F (2004) gp91phox-dependent expression of platelet CD40 ligand. Circulation 110:1326–1329

    CAS  PubMed  Google Scholar 

  • Pignatelli P, Di SS, Buchetti B, Sanguigni V, Brunelli A, Violi F (2006) Polyphenols enhance platelet nitric oxide by inhibiting protein kinase C-dependent NADPH oxidase activation: effect on platelet recruitment. FASEB J 20:1082–1089

    CAS  PubMed  Google Scholar 

  • Plein H, Berk M (2001) The platelet as a peripheral marker in psychiatric illness. Hum Psychopharmacol 16:229–236

    CAS  PubMed  Google Scholar 

  • Pratico D, Pasin M, Barry OP, Ghiselli A, Sabatino G, Iuliano L, FitzGerald GA, Violi F (1999) Iron-dependent human platelet activation and hydroxyl radical formation: involvement of protein kinase C. Circulation 99:3118–3124

    CAS  PubMed  Google Scholar 

  • Pryor SR (2000) Is platelet release of 2-arachidonoyl-glycerol a mediator of cognitive deficits? An endocannabinoid theory of schizophrenia and arousal. Med Hypotheses 55:494–501

    CAS  PubMed  Google Scholar 

  • Pryor WA, Squadrito GL (1995) The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 268:699–722

    Google Scholar 

  • Quijano C, Alvarez B, Gatti RM, Augusto O, Radi R (1997) Pathways of peroxynitrite oxidation of thiol groups. Biochem J 322:167–173

    CAS  PubMed Central  PubMed  Google Scholar 

  • Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci U S A 101:4003–4008

    CAS  PubMed Central  PubMed  Google Scholar 

  • Radomski MW, Palmer RM, Moncada S (1987a) Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 2:1057–1058

    CAS  PubMed  Google Scholar 

  • Radomski MW, Palmer RM, Moncada S (1987b) The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium. Biochem Biophys Res Commun 148:1482–1489

    CAS  PubMed  Google Scholar 

  • Radomski MW, Palmer RM, Moncada S (1990) Characterization of the L-arginine: nitric oxide pathway in human platelets. Br J Pharmacol 101:325–328

    CAS  PubMed Central  PubMed  Google Scholar 

  • Radomski MW, Rees DD, Dutra A, Moncada S (1992) S-nitroso-glutathione inhibits platelet activation in vitro and in vivo. Br J Pharmacol 107:745–749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Radomski MW, Zakar T, Salas E (1996) Nitric oxide in platelets. Methods Enzymol 269:88–107

    CAS  PubMed  Google Scholar 

  • Reddy R, Sahebarao MP, Mukherjee S, Murthy JN (1991) Enzymes of the antioxidant defense system in chronic schizophrenic patients. Biol Psychiatry 30:409–412

    CAS  PubMed  Google Scholar 

  • Reiter CD, Teng RJ, Beckman JS (2000) Superoxide reacts with nitric oxide to nitrate tyrosine at physiological pH via peroxynitrite. J Biol Chem 275:32460–32466

    CAS  PubMed  Google Scholar 

  • Rivera J, Lozano ML, Navarro-Nunez L, Vicente V (2009) Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica 94:700–711

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodrigues PN, Bandeira MM, Assumpcao CR, Cardoso CB, Mann GE, Brunini TM, Mendes-Ribeiro AC (2010) Oxidative stress, l-arginine-nitric oxide and arginase pathways in platelets from adolescents with anorexia nervosa. Blood Cells Mol Dis 44:164–168

    Google Scholar 

  • Sabetkar M, Low SY, Naseem KM, Bruckdorfer KR (2002) The nitration of proteins in platelets: significance in platelet function. Free Radic Biol Med 33:728–736

    CAS  PubMed  Google Scholar 

  • Sabetkar M, Low SY, Bradley NJ, Jacobs M, Naseem KM, Richard BK (2008) The nitration of platelet vasodilator stimulated phosphoprotein following exposure to low concentrations of hydrogen peroxide. Platelets 19:282–292

    CAS  PubMed  Google Scholar 

  • Safai-Kutti S, Kutti J, Gillberg C (1985) Impaired in vivo platelet reactivity in infantile autism. Acta Paediatr Scand 74:799–800

    CAS  PubMed  Google Scholar 

  • Sah R, Galeffi F, Ahrens R, Jordan G, Schwartz-Bloom RD (2002) Modulation of the GABA(A)-gated chloride channel by reactive oxygen species. J Neurochem 80:383–391

    CAS  PubMed  Google Scholar 

  • Salvemini D, Botting R (1993) Modulation of platelet function by free radicals and free-radical scavengers. Trends Pharmacol Sci 14:36–42

    CAS  PubMed  Google Scholar 

  • Santilli F, Basili S, Ferroni P, Davi G (2007) CD40/CD40L system and vascular disease. Intern Emerg Med 2:256–268

    CAS  PubMed  Google Scholar 

  • Sase K, Michel T (1995) Expression of constitutive endothelial nitric oxide synthase in human blood platelets. Life Sci 57:2049–2055

    CAS  PubMed  Google Scholar 

  • Savini I, Arnone R, Rossi A, Catani MV, Del PD, Avigliano L (2010) Redox modulation of Ecto-NOX1 in human platelets. Mol Membr Biol 27:160–169

    CAS  PubMed  Google Scholar 

  • Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212

    CAS  PubMed  Google Scholar 

  • Schedel A, Thornton S, Kluter H, Bugert P (2010) The effect of psychoactive drugs on in vitro platelet function. Transfus Med Hemother 37:293–298

    PubMed Central  PubMed  Google Scholar 

  • Serebruany VL, O’Connor CM, Gurbel PA (2001) Effect of selective serotonin reuptake inhibitors on platelets in patients with coronary artery disease. Am J Cardiol 87:1398–1400

    CAS  PubMed  Google Scholar 

  • Shamova EV, Gorudko IV, Drozd ES, Chizhik SA, Martinovich GG, Cherenkevich SN, Timoshenko AV (2011) Redox regulation of morphology, cell stiffness, and lectin-induced aggregation of human platelets. Eur Biophys J 40:195–208

    CAS  PubMed  Google Scholar 

  • Signorello MG, Pascale R, Leoncini G (2003) Transport of L-arginine and nitric oxide formation in human platelets. Eur J Biochem 270:2005–2012

    CAS  PubMed  Google Scholar 

  • Signorello MG, Giacobbe E, Passalacqua M, Leoncini G (2011) The anandamide effect on NO/cGMP pathway in human platelets. J Cell Biochem 112:924–932

    CAS  PubMed  Google Scholar 

  • Sill JC, Proper JA, Johnson ME, Uhl CB, Katusic ZS (2007) Reactive oxygen species and human platelet GP IIb/IIIa receptor activation. Platelets 18:613–619

    CAS  PubMed  Google Scholar 

  • Smyth SS, McEver RP, Weyrich AS, Morrell CN, Hoffman MR, Arepally GM, French PA, Dauerman HL, Becker RC (2009) Platelet functions beyond hemostasis. J Thromb Haemost 7:1759–1766

    CAS  PubMed  Google Scholar 

  • Stahl SM (1977) The human platelet. A diagnostic and research tool for the study of biogenic amines in psychiatric and neurologic disorders. Arch Gen Psychiatry 34:509–516

    CAS  PubMed  Google Scholar 

  • Stokes KY, Calahan L, Hamric CM, Russell JM, Granger DN (2009) CD40/CD40L contributes to hypercholesterolemia-induced microvascular inflammation. Am J Physiol Heart Circ Physiol 296:H689–H697

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takajo Y, Ikeda H, Haramaki N, Murohara T, Imaizumi T (2001) Augmented oxidative stress of platelets in chronic smokers. Mechanisms of impaired platelet-derived nitric oxide bioactivity and augmented platelet aggregability. J Am Coll Cardiol 38:1320–1327

    CAS  PubMed  Google Scholar 

  • Thornton P, McColl BW, Greenhalgh A, Denes A, Allan SM, Rothwell NJ (2010) Platelet interleukin-1alpha drives cerebrovascular inflammation. Blood 115:3632–3639

    CAS  PubMed  Google Scholar 

  • Tsaluchidu S, Cocchi M, Tonello L, Puri BK (2008) Fatty acids and oxidative stress in psychiatric disorders. BMC Psychiatry 8:5

    Google Scholar 

  • Tseng YL, Chiang ML, Huang TF, Su KP, Lane HY, Lai YC (2010) A selective serotonin reuptake inhibitor, citalopram, inhibits collagen-induced platelet aggregation and activation. Thromb Res 126:517–523

    CAS  PubMed  Google Scholar 

  • Urbich C, Dernbach E, Aicher A, Zeiher AM, Dimmeler S (2002) CD40 ligand inhibits endothelial cell migration by increasing production of endothelial reactive oxygen species. Circulation 106:981–986

    CAS  PubMed  Google Scholar 

  • Velayudhan A, Sunitha TA, Balachander S, Reddy JY, Khanna S (1999) A study of platelet serotonin receptor in mania. Biol Psychiatry 45:1059–1062

    CAS  PubMed  Google Scholar 

  • Velenovska M, Fisar Z (2007) Effect of cannabinoids on platelet serotonin uptake. Addict Biol 12:158–166

    CAS  PubMed  Google Scholar 

  • Wachowicz B, Olas B, Zbikowska HM, Buczynski A (2002) Generation of reactive oxygen species in blood platelets. Platelets 13:175–182

    CAS  PubMed  Google Scholar 

  • Wachowicz B, Rywaniak JZ, Nowak P (2008) Apoptotic markers in human blood platelets treated with peroxynitrite. Platelets 19:624–635

    CAS  PubMed  Google Scholar 

  • Walsh MT, Ryan M, Hillmann A, Condren R, Kenny D, Dinan T, Thakore JH (2002) Elevated expression of integrin alpha(IIb) beta(IIIa) in drug-naive, first-episode schizophrenic patients. Biol Psychiatry 52:874–879

    CAS  PubMed  Google Scholar 

  • Weyrich AS, Schwertz H, Kraiss LW, Zimmerman GA (2009) Protein synthesis by platelets: historical and new perspectives. J Thromb Haemost 7:241–246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wittstein IS (2010) Depression, anxiety, and platelet reactivity in patients with coronary heart disease. Eur Heart J 31:1548–1550

    PubMed  Google Scholar 

  • Wong CM, Marcocci L, Liu L, Suzuki YJ (2010) Cell signaling by protein carbonylation and decarbonylation. Antioxid Redox Signal 12:393–404

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamawaki S, Kagaya A, Tawara Y, Inagaki M (1998) Intracellular calcium signaling systems in the pathophysiology of affective disorders. Life Sci 62:1665–1670

    CAS  PubMed  Google Scholar 

  • Yao JK, Yasaei P, van Kammen DP (1992) Increased turnover of platelet phosphatidylinositol in schizophrenia. Prostaglandins Leukot Essent Fatty Acids 46:39–46

    CAS  PubMed  Google Scholar 

  • Yao JK, van Kammen DP, Gurklis J, Peters JL (1994) Platelet aggregation and dense granule secretion in schizophrenia. Psychiatry Res 54:13–24

    CAS  PubMed  Google Scholar 

  • Yao JK, van Kammen DP, Moss HB, Sokulski DE (1996) Decreased serotonergic responsivity in platelets of drug-free patients with schizophrenia. Psychiatry Res 63:123–132

    CAS  PubMed  Google Scholar 

  • Yao JK, Reddy RD, van Kammen DP (2001) Oxidative damage and schizophrenia: an overview of the evidence and its therapeutic implications. CNS Drugs 15:287–310

    CAS  PubMed  Google Scholar 

  • Yao JK, Magan S, Sonel AF, Gurklis JA, Sanders R, Reddy RD (2004) Effects of omega-3 fatty acid on platelet serotonin responsivity in patients with schizophrenia. Prostaglandins Leukot Essent Fatty Acids 71:171–176

    CAS  PubMed  Google Scholar 

  • Yao Y, Walsh WJ, McGinnis WR, Pratico D (2006) Altered vascular phenotype in autism: correlation with oxidative stress. Arch Neurol 63:1161–1164

    PubMed  Google Scholar 

  • Zafar MU, Paz-Yepes M, Shimbo D, Vilahur G, Burg MM, Chaplin W, Fuster V, Davidson KW, Badimon JJ (2010) Anxiety is a better predictor of platelet reactivity in coronary artery disease patients than depression. Eur Heart J 31:1573–1582

    PubMed Central  PubMed  Google Scholar 

  • Zahedi RP, Begonja AJ, Gambaryan S, Sickmann A (2006) Phosphoproteomics of human platelets: a quest for novel activation pathways. Biochim Biophys Acta 1764:1963–1976

    CAS  PubMed  Google Scholar 

  • Zalsman G, Aslanov-Farbstein D, Rehavi M, Roz N, Vermeiren R, Laor N, Weizman A, Toren P (2011) Platelet vesicular monoamine transporter 2 density in the disruptive behavior disorders. J Child Adolesc Psychopharmacol 21:341–344

    PubMed  Google Scholar 

  • Zhou Q, Hellermann GR, Solomonson LP (1995) Nitric oxide release from resting human platelets. Thromb Res 77:87–96

    CAS  PubMed  Google Scholar 

  • Zoia C, Cogliati T, Tagliabue E, Cavaletti G, Sala G, Galimberti G, Rivolta I, Rossi V, Frattola L, Ferrarese C (2004) Glutamate transporters in platelets: EAAT1 decrease in aging and in Alzheimer’s disease. Neurobiol Aging 25:149–157

    CAS  PubMed  Google Scholar 

  • Zou MH, Leist M, Ullrich V (1999) Selective nitration of prostacyclin synthase and defective vasorelaxation in atherosclerotic bovine coronary arteries. Am J Pathol 154:1359–1365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zvetkova E, Antonova N, Ivanov I, Savov Y, Gluhcheva Y (2010) Platelet morphological, functional and rheological properties attributable to addictions. Clin Hemorheol Microcirc 45:245–251

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Wachowicz Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wachowicz, B. (2015). Blood Platelet as a Peripheral Cell in Oxidative Stress in Psychiatric Disorders. In: Dietrich-Muszalska, A., Chauhan, V., Grignon, S. (eds) Studies on Psychiatric Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0440-2_16

Download citation

Publish with us

Policies and ethics