Skip to main content

Sunscreens

Abstract

Sunscreens have become since more than 40 years the most popular means of protection against UV radiation (UVR) in Western countries. Organic and inorganic filters with different absorption spectrum exist. They filter or scatter UVR. Protection from UVB is quantified as a minimal erythema dose-based sun protection factor. UVA protection testing is less standardized: Persistent pigment darkening and critical wavelength are currently used methods. Marketing and labeling of sunscreens underlay national regulation which explains major differences between the European and the US sunscreen market. Sunscreens are most performing in sunburn prevention. Broad spectrum UVB and UVA protection and regular application in sufficient amounts are essential for prevention of skin cancers, UV-induced immunosuppression, and skin aging. A significant benefit from regular sunscreen use has not yet been demonstrated for primary prevention of basai cell carcinoma and melanoma. Concerning the prevention of actinic keratoses, squamous cell carcinomas, and skin aging, the effect of sunscreens is significant, but it remains incomplete. Some organic UV filters (PABA derivatives, cinnamates, benzophenones, and octocrylene) have been described to cause photoallergy. Percutaneous absorption and endocrine disrupting activity of small-sized organic and nano-sized inorganic UV filters have been reported. On lesional skin and in pediatrie settings, these products should be used with caution. Cutaneous vitamin D synthesis depending on skin-carcinogenic UVB radiation, the potential risk of vitamin D deficiency by sunscreen use has become a major subject of public health debate. Sunscreens indeed impair vitamin D synthesis if they are used in the recommended amount of 2mg/cm2, but not in lesser thickness below 1.5 mg/cm2 that corresponds better to what users apply in real life conditions. Large molecular last generation UVB-UVA broad spectrum sunscreens have a better benefit-risk ratio than former organic filters: They offer better protection in the UVA band, they are non toxic and non allergenic. A better outeome of sunscreen efficacy especially in primary skin cancer prevention may be achieved with these molecules.

Keywords

  • Skin Cancer
  • Actinic Keratose
  • Skin Aging
  • Minimal Erythema Dose
  • Basal Cell Carcinoma

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-0437-2_25
  • Chapter length: 35 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-0437-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Bens .

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Landes Bioscience and Springer Science+Business Media, LCC

About this chapter

Cite this chapter

Bens, G. (2014). Sunscreens. In: Sunlight, Vitamin D and Skin Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0437-2_25

Download citation