Skip to main content

Gene Therapy Vectors

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Biochemistry and Molecular Biology ((BRIEFSBIOCHEM))

Abstract

Gene therapy vectors discussed here are oncoretrovirus and lentivirus based. Both types of vectors are integrating vectors; they are permanently and semi-randomly inserting their genetic information into the nucleus of the cell to be gene modified. The machinery of the original virus is being used to deliver the gene of interest; however, the virus particle has been rendered completely replication incompetent by removing all viral genes from the vector particle. Anti-HIV genes, which are packaged into these vector particles for delivery into the target cells, can be single genes or a combination of multiple genes, with their active anti-HIV component being RNA or protein based. Safety features have been engineered into latest generation lentiviral vectors, and efficient vector production methods based on transient plasmid transfection methods have been developed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Woffendin C et al (1994) Nonviral and viral delivery of a human immunodeficiency virus protective gene into primary human T cells. Proc Natl Acad Sci U S A 91(24):11581–11585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Kohn DB et al (1999) A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34(+) cells from the bone marrow of human immunodeficiency virus-1-infected children. Blood 94(1):368–371

    CAS  PubMed  Google Scholar 

  3. Podsakoff GM et al (2005) Selective survival of peripheral blood lymphocytes in children with HIV-1 following delivery of an anti-HIV gene to bone marrow CD34(+) cells. Mol Ther 12(1):77–86

    Article  CAS  PubMed  Google Scholar 

  4. Michienzi A et al (2002) A nucleolar TAR decoy inhibitor of HIV-1 replication. Proc Natl Acad Sci U S A 99(22):14047–14052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Anderson J, Akkina R (2005) TRIM5alpharh expression restricts HIV-1 infection in lentiviral vector-transduced CD34+-cell-derived macrophages. Mol Ther 12(4):687–696

    Article  CAS  PubMed  Google Scholar 

  6. DiGiusto DL et al (2010) RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med 2(36):36ra43

    Article  PubMed Central  PubMed  Google Scholar 

  7. Vigna E, Naldini L (2000) Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy. J Gene Med 2(5):308–316

    Article  CAS  PubMed  Google Scholar 

  8. Deichmann A et al (2011) Insertion sites in engrafted cells cluster within a limited repertoire of genomic areas after gammaretroviral vector gene therapy. Mol Ther 19(11):2031–2039

    Article  CAS  PubMed  Google Scholar 

  9. Mantovani J et al (2009) Diverse genomic integration of a lentiviral vector developed for the treatment of Wiskott-Aldrich syndrome. J Gene Med 11(8):645–654

    Article  CAS  PubMed  Google Scholar 

  10. Naldini L et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272(5259):263–267

    Article  CAS  PubMed  Google Scholar 

  11. Zufferey R et al (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15(9):871–875

    Article  CAS  PubMed  Google Scholar 

  12. Koya RC et al (2002) Transduction of acute myeloid leukemia cells with third generation self-inactivating lentiviral vectors expressing CD80 and GM-CSF: effects on proliferation, differentiation, and stimulation of allogeneic and autologous anti-leukemia immune responses. Leukemia 16(9):1645–1654

    Article  CAS  PubMed  Google Scholar 

  13. Whitwam T, Peretz M, Poeschla E (2001) Identification of a central DNA flap in feline immunodeficiency virus. J Virol 75(19):9407–9414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Higashimoto T et al (2007) The woodchuck hepatitis virus post-transcriptional regulatory element reduces readthrough transcription from retroviral vectors. Gene Ther 14(17):1298–1304

    Article  CAS  PubMed  Google Scholar 

  15. Di Matteo M et al (2012) Recent developments in transposon-mediated gene therapy. Expert Opin Biol Ther 12(7):841–858

    Article  PubMed  Google Scholar 

  16. Schroers R et al (2002) Lentiviral transduction of human T-lymphocytes with a RANTES intrakine inhibits human immunodeficiency virus type 1 infection. Gene Ther 9(13):889–897

    Article  CAS  PubMed  Google Scholar 

  17. Zhang MY et al (2010) Potent and broad neutralizing activity of a single chain antibody fragment against cell-free and cell-associated HIV-1. MAbs 2(3):266–274

    Article  PubMed Central  PubMed  Google Scholar 

  18. Holt N et al (2010) Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 28(8):839–847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Smyth RP, Davenport MP, Mak J (2012) The origin of genetic diversity in HIV-1. Virus Res 169(2):415–429

    Article  CAS  PubMed  Google Scholar 

  20. Zhou J, Rossi JJ (2011) Aptamer-targeted RNAi for HIV-1 therapy. Methods Mol Biol 721:355–371

    Article  CAS  PubMed  Google Scholar 

  21. Burnett JC, Rossi JJ (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19(1):60–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Zhou J, Rossi JJ (2011) Progress in RNAi-based antiviral therapeutics. Methods Mol Biol 721:67–75

    Article  CAS  PubMed  Google Scholar 

  23. Mitsuyasu RT et al (2009) Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat Med 15(3):285–292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Humeau LM et al (2004) Efficient lentiviral vector-mediated control of HIV-1 replication in CD4 lymphocytes from diverse HIV+ infected patients grouped according to CD4 count and viral load. Mol Ther 9(6):902–913

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Gerhard Bauer and Joseph S. Anderson

About this chapter

Cite this chapter

Bauer, G., Anderson, J.S. (2014). Gene Therapy Vectors. In: Gene Therapy for HIV. SpringerBriefs in Biochemistry and Molecular Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0434-1_4

Download citation

Publish with us

Policies and ethics