Skip to main content

Principles of Gene Therapy

  • Chapter
  • First Online:
  • 1362 Accesses

Part of the book series: SpringerBriefs in Biochemistry and Molecular Biology ((BRIEFSBIOCHEM))

Abstract

Gene therapy for somatic cells is defined as the insertion, removal, or manipulation of genes, for therapeutic purposes. Gene transfer can be accomplished by the insertion of naked DNA and the application of nonviral gene transfer (transfection) or viral gene transfer (transduction) methods. These methods vary widely in their gene transfer efficacy and also in the duration of expression of the transferred gene. For durable gene expression, retroviral or lentiviral gene transfer vectors are used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kohn DB (2010) Update on gene therapy for immunodeficiencies. Clin Immunol 135(2):247–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Fuchs M (2006) Gene therapy. An ethical profile of a new medical territory. J Gene Med 8(11):1358–1362

    Article  PubMed  Google Scholar 

  3. Wolff J et al (2005) Non-viral approaches for gene transfer. Acta Myol 24(3):202–208

    CAS  PubMed  Google Scholar 

  4. Melman A et al (2007) Plasmid-based gene transfer for treatment of erectile dysfunction and overactive bladder: results of a phase I trial. Isr Med Assoc J 9(3):143–146

    CAS  PubMed  Google Scholar 

  5. Chiarella P, Fazio VM, Signori E (2010) Application of electroporation in DNA vaccination protocols. Curr Gene Ther 10(4):281–286

    Article  CAS  PubMed  Google Scholar 

  6. Woffendin C et al (1994) Nonviral and viral delivery of a human immunodeficiency virus protective gene into primary human T cells. Proc Natl Acad Sci U S A 91(24):11581–11585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Chalberg TW et al (2006) Gene transfer to rabbit retina with electron avalanche transfection. Invest Ophthalmol Vis Sci 47(9):4083–4090

    Article  PubMed  Google Scholar 

  8. Zolochevska O, Figueiredo ML (2012) Advances in sonoporation strategies for cancer. Front Biosci (Schol Ed) 4:988–1006

    Article  Google Scholar 

  9. Plank C et al (2011) Magnetofection™ platform: from magnetic nanoparticles to novel nucleic acid therapeutics. Ther Deliv 2(6):717–726

    Article  CAS  PubMed  Google Scholar 

  10. Pozzi D et al (2009) Toward the rational design of lipid gene vectors: shape coupling between lipoplex and anionic cellular lipids controls the phase evolution of lipoplexes and the efficiency of DNA release. ACS Appl Mater Interfaces 1(10):2237–2249

    Article  CAS  PubMed  Google Scholar 

  11. Caracciolo G, Amenitsch H (2012) Cationic liposome/DNA complexes: from structure to interactions with cellular membranes. Eur Biophys J 41(10):815–829

    Article  CAS  PubMed  Google Scholar 

  12. Wakabayashi T et al (2008) A phase I clinical trial of interferon-beta gene therapy for high-grade glioma: novel findings from gene expression profiling and autopsy. J Gene Med 10(4):329–339

    Article  CAS  PubMed  Google Scholar 

  13. Zhou J et al (2011) Systemic administration of combinatorial dsiRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice. Mol Ther 19(12):2228–2238

    Article  CAS  PubMed  Google Scholar 

  14. Shaw KL, Kohn DB (2011) A tale of two SCIDs. Sci Transl Med 3(97):97ps36

    Article  PubMed  Google Scholar 

  15. Hacein-Bey-Abina S et al (2010) Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 363(4):355–364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Gaspar HB et al (2011) Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction. Sci Transl Med 3(97):97ra80

    PubMed  Google Scholar 

  17. Jia H (2006) Controversial Chinese gene-therapy drug entering unfamiliar territory. Nat Rev Drug Discov 5(4):269–270

    Article  CAS  PubMed  Google Scholar 

  18. Wilson JM (2009) Lessons learned from the gene therapy trial for ornithine transcarbamylase deficiency. Mol Genet Metab 96(4):151–157

    Article  CAS  PubMed  Google Scholar 

  19. Wilson RF (2010) The death of Jesse Gelsinger: new evidence of the influence of money and prestige in human research. Am J Law Med 36(2–3):295–325

    PubMed  Google Scholar 

  20. Bennett J et al (2012) AAV2 gene therapy readministration in three adults with congenital blindness. Sci Transl Med 4(120):120ra15

    Article  PubMed  Google Scholar 

  21. Goins WF, Cohen JB, Glorioso JC (2012) Gene therapy for the treatment of chronic peripheral nervous system pain. Neurobiol Dis 48(2):255–270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Gerhard Bauer and Joseph S. Anderson

About this chapter

Cite this chapter

Bauer, G., Anderson, J.S. (2014). Principles of Gene Therapy. In: Gene Therapy for HIV. SpringerBriefs in Biochemistry and Molecular Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0434-1_1

Download citation

Publish with us

Policies and ethics