Effects of Phosphodiesterase-5 Inhibitors on Testicular and Sperm Function

  • Nathaly François
  • Raunak D. Patel
  • Tobias S. Köhler


Phosphodiesterase-5 inhibitors (PDE-5i) are the mainstay of treatment for erectile dysfunction. Over the years, however, they have also been investigated as a potential option for the management of male infertility beyond improving suboptimal erections stemming from the stressors of infertility. Several mechanisms for the effects of these medications have been proposed. The focus of many of these investigations has been the effect of PDE-5i on sperm function and spermatogenesis. Most of the published data to date suggests a favorable effect of PDE-5i on sperm function and spermatogenesis, or no effect at all. The process of sperm capacitation, in which spermatozoa undergo transformation within the female genital tract in order to bind to the zona pellucida, initiate of the acrosome reaction, and fertilize of an egg, may also be impacted by PDE-5i. The contractile elements associated with the transport of spermatozoa, including those surrounding the seminiferous tubules, efferent ducts, and epididymal ducts, may also be affected by PDE-5i. Furthermore, PDE-5i have the potential to influence the vas deferens, seminal vesicles, and prostate.


Erectile Dysfunction Atrial Natriuretic Peptide Assisted Reproductive Technology Sperm Motility Seminiferous Tubule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lenzi A, Lombardo F, Salacone P, Gandini L, Jannini EA. Stress, sexual dysfunctions, and male infertility. J Endocrinol Invest. 2003;26:72–6.PubMedGoogle Scholar
  2. 2.
    Tur-Kaspa I, Segal S, Moffa F, Massobrio M, Meltzer S. Viagra for temporary erectile dysfunction during treatments with assisted reproductive technologies. Hum Reprod. 1999;14:1783–4.PubMedCrossRefGoogle Scholar
  3. 3.
    Kalsi JS, Bahadur G, Muneer A, Ozturk O, Christopher N, Ralph DJ, et al. Novel PDE5 inhibitors for the treatment of male erectile dysfunction. Reprod Biomed Online. 2003;7:456–61.PubMedCrossRefGoogle Scholar
  4. 4.
    Aversa A, Mazzilli F, Rossi T, Delfino M, Isidori AM, Fabbri A. Effect of sildenafil (Viagra) administration on seminal parameters and post-ejaculatory refractory time in normal males. Hum Reprod. 2000;15:131–4.PubMedCrossRefGoogle Scholar
  5. 5.
    Kaplan B, Ben-Rafael Z, Peled Y, Bar-Hava I, Bar J, Orvieto R. Oral sildenafil may reverse secondary ejaculatory dysfunction during infertility treatment. Fertil Steril. 1999;72:1144–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Lu S, Zhao Y, Hu J, Li X, Zhang H, You L, Chen ZJ. Combined use of phosphodiesterase-5 inhibitors and selective serotonin reuptake inhibitors for temporary ejaculation failure in couple undergoing assisted reproductive technologies. Fertil Steril. 2009;91(5):1806–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Byun JS, Lyu SW, Seok HH, Kim WJ, Shim SH, Bak CW. Sexual dysfunctions induced by stress of timed intercourse and medical treatment. BJU Int. 2013;111(4 Pt B):227–34.CrossRefGoogle Scholar
  8. 8.
    Jannini EA, Lombardo F, Salacone P, Gandini L, Lenzi A. Treatment of sexual dysfunctions secondary to male infertility with sildenafil citrate. Fertil Steril. 2004;81(3):705–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Dimitriadis F, Giannakis D, Pardalidis N, Zikopoulos K, Paraskevaidis E, Giotitsas N, et al. Effects of phosphodiesterase-5 inhibitors on sperm parameters and fertilizing capacity. Asian J Androl. 2008;10:115–33.PubMedCrossRefGoogle Scholar
  10. 10.
    First international consultation on erectile dysfunction: sponsored by World Health Organization (WHO), International Consultation on Urological Disease (ICUD), and Société Internationale d'Urologie (SIU). Paris, 1–3 July 1999.Google Scholar
  11. 11.
    Fawcett L, Baxendale R, Stacey P, McGrouther C, Harrow I, Soderling S, et al. Molecular cloning and characterization of a distinct human phosphodiesterase gene family: PDE11A. Proc Natl Acad Sci U S A. 2000;97:3702–7.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Baxendale RW Burslem F Phillips SC. Phosphodiesterase type 11 (PDE11) cellular localization: progress towards defining a physiological role in testis and/or reproduction. J Urol Suppl. 2001;165:[abstract]1395.Google Scholar
  13. 13.
    Mostafa T. Oral phosphodiesterase-5 inhibitors and sperm functions. Int J Impot Res. 2008;20(6):530–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Pomara G, Morelli G, Canale D, Turchi P, Caglieresi C, Moschini C, Liguori G, Selli C, Macchia E, Martino E, Francesca F. Alterations in sperm motility after acute oral administration of sildenafil or tadalafil in young, infertile men. Fertil Steril. 2007;8(4):860–5.CrossRefGoogle Scholar
  15. 15.
    De Lefièvre L, Lamirande E, Gagnon C. The cyclic GMP-specific phosphodiesterase inhibitor, sildenafil, stimulates human sperm motility and capacitation but not acrosome reaction. J Androl. 2000;21:929–37.PubMedGoogle Scholar
  16. 16.
    Rago R, Salacone P, Caponecchia L, Marcucci I, Flori C, Sebastianelli A. Effect of vardenafil on semen parameters in infertile men: a pilot study evaluating short-term treatment. J Endocrinol Invest. 2012;35(10):897–900.PubMedGoogle Scholar
  17. 17.
    Glenn DR, McVicar CM, McClure N, Lewis SE. Sildenafil citrate improves sperm motility but causes a premature acrosome reaction in vitro. Fertil Steril. 2007;87(5):1064–70.PubMedCrossRefGoogle Scholar
  18. 18.
    Ali ST, Rakkah NI. Neurophysiological role of sildenafil citrate (Viagra) on seminal parameters in diabetic males with and without neuropathy. Pak J Pharm Sci. 2007;20(1):35–42.Google Scholar
  19. 19.
    du Plessis SS, de Jongh PS, Franken DR. Effect of acute in vivo sildenafil and in vitro 8-bromo-cGMP treatments on semen parameters and sperm function. Fertil Steril. 2004;81:1026–33.PubMedCrossRefGoogle Scholar
  20. 20.
    Andrade JR, Traboulsi A, Hussain A, Dubin NH. In vitro effects of SC and phentolamine, drugs used for erectile dysfunction, on human sperm motility. Am J Obstet Gynecol. 2000;182:1093–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Burger M, Sikka SC, Bivalacqua TJ, Lamb DJ, Hellstrom WJ. The effect of sildenafil on human sperm motion and function from normal and infertile men. Int J Impot Res. 2000;12(4):229–34.PubMedCrossRefGoogle Scholar
  22. 22.
    Jarvi K, Dula E, Drehobl M, Pryor J, Shapiro J, Seger M. Daily vardenafil for 6 months has no detrimental effects on semen characteristics or reproductive hormones in men with normal baseline levels. J Urol. 2008;179:1060–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Purvis K, Muirhead GJ, Harness JA. The effects of sildenafil on human sperm function in healthy volunteers. Br J Clin Pharmacol. 2002;53:53S.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Hellstrom WJ, Overstreet JW, Yu A, Saikali K, Shen W, Beasley Jr CM, Watkins VS. Tadalafil has no detrimental effect on human spermatogenesis or reproductive hormones. J Urol. 2003;170(3):887–91.PubMedCrossRefGoogle Scholar
  25. 25.
    Hellstrom WJ, Gittelman M, Jarow J, Steidle C, McMurray J, Talley D, Watts S, Mitchell CL, McGill JM. An evaluation of semen characteristics in men 45 years of age or older after daily dosing with tadalafil 20 mg: results of a multicenter, randomized, double-blind, placebo-controlled, 9-month study. Eur Urol. 2008;53(5):1058–65.PubMedCrossRefGoogle Scholar
  26. 26.
    Khalaf MA, Abbas MF, El-Fakahany HM. Effects of chronic tadalafil use on the testes and sperm parameters of old albino rats. Andrologia. 2012;44 Suppl 1:370–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Dimitriadis F, Tsambalas S, Tsounapi P, Kawamura H, Vlachopoulou E, Haliasos N, Gratsias S, Watanabe T, Saito M, Miyagawa I, Sofikitis N. Effects of phosphodiesterase-5 inhibitors on Leydig cell secretory function in oligoasthenospermic infertile men: a randomized trial. BJU Int. 2010;106(8):1181–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Baxendale RW, Fraser LR. Mammalian sperm phosphodiesterases and their involvement in receptor-mediated cell signaling important for capacitation. Mol Reprod Dev. 2005;71:495–508.PubMedCrossRefGoogle Scholar
  29. 29.
    Fournier V, Leclerc P, Cormier N, Bailey JL. Implication of calmodulin-dependent phosphodiesterase type 1 during bovine sperm capacitation. J Androl. 2003;24:104–12.PubMedGoogle Scholar
  30. 30.
    De Lefievre L, Lamirande E, Gagnon C. The cyclic GMP-specific phosphodiesterase inhibitor, sildenafil, stimulates human sperm motility and capacitation but not acrosome reaction. J Androl. 2000;21:929–37.PubMedGoogle Scholar
  31. 31.
    Biel M, Sautter A, Ludwig A, Hofmann F, Zong X. Cyclic nucleotide-gated channels—mediators of NO: cGMP-regulated processes. Naunyn Schmiedebergs Arch Pharmcol. 1998;358:140–4.CrossRefGoogle Scholar
  32. 32.
    Scipioni A, Stefanini S, Santone R, Giorgi M. Immunohistochemical localization of PDE% in Leydig and myoid cells of prepuberal an adult rat testis. Histochem Cell Biol. 2005;124:401–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Cuadra DL, Chan PJ, Patton WC, Stewart SC, King A. Type 5 phosphodiesterase regulation of human sperm motility. Am J Obstet Gynecol. 2000;182:1013–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Setchell BP, Maddocks S, Brooks DE, Knobil E, Neill JD, editors. The physiology of reproduction. New York: Raven Press; 1994. p. 1063–175.Google Scholar
  35. 35.
    Francis SH. Phosphodiesterase 11: is it a player in human testicular function? Int J Impot Res. 2005;17:216–23.CrossRefGoogle Scholar
  36. 36.
    Wayman C, Phillips S, Lunny C, Webb T, Fawcett L, Baxendale R, et al. Phosphodiesterase 11 regulation of spermatozoa physiology. Int J Impot Res. 2005;17:216–23.PubMedCrossRefGoogle Scholar
  37. 37.
    Middendorff R, Muller D, Mewe M, Mukhopadhyay AK, Holstein AF, Davidoff MS. The tunica albuginea of the human testis is characterized by complex contraction and relaxation activities regulated by cyclic GMP. J Clin Endocrinol Metab. 2002;87:3486–99.PubMedCrossRefGoogle Scholar
  38. 38.
    Middendorff R, Muller D, Wichers S, Holstein AF, Davidoff MS, Holstein AF, Muller D. Generation of cyclic guanosine monophosphate by heme oxygenases in the human testis—a regulatory role for carbon monoxide in sertoli cells? Biol Reprod. 2000;63:651–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Sundkvist E, Jaeger R, Sager G. Pharmacological characterization of the ATP-dependent low K(m) guanosine 3′,5′-cyclic mono- phosphate (cGMP) transporter in human erythrocytes. Biochem Pharmacol. 2002;63:945–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Mewe M, Bauer CK, Muller D, Middendorff R. Regulation of spontaneous contractile activity in the bovine epididymal duct by cyclic guanosine 5’-monophosphate-dependent pathways. Endocrinology. 2006;147:2051–62.PubMedCrossRefGoogle Scholar
  41. 41.
    Chen J, Mabjeesh NJ, Matzkin H, Greenstein A. Efficacy of sildenafil as adjuvant therapy to selective serotonin reuptake inhibitor in alleviating premature ejaculation. Urology. 2003;61:197–200.PubMedCrossRefGoogle Scholar
  42. 42.
    Bilge SS, Kesim Y, Kurt M, Aksoz E, Celik S. Possible role of sildenafil in inhibiting rat vas deferens contractions by influencing the purinergic system. Int J Urol. 2005;12:829–34.PubMedCrossRefGoogle Scholar
  43. 43.
    Medina P, Segarra G, Torondel B, Chuan P, Domenech C, Vila JM, et al. Inhibition of neuroeffector transmission in human vas deferens by sildenafil. Br J Pharmacol. 2000;131:871–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Wang L, Chopp M, Szalad A, Liu Z, Bolz M, Alvarez FM, et al. Phosphodiesterase-5 is a therapeutic target for peripheral neuropathy in diabetic mice. Neuroscience. 2011;193:399–410.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Patil CS, Singh VP, Singh S, Kulkarni SK. Modulatory effect of the PDE-5 inhibitor sildenafil in diabetic neuropathy. Pharmacology. 2004;72:190–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Ali ST, Rakkah NI. Neurophysiological role of sildenafil citrate (Viagra) on seminal parameters in diabetic males with and without neuropathy. Pak J Pharm Sci. 2007;20:36–42.PubMedGoogle Scholar
  47. 47.
    Kamenov ZA. Comparison of the first intake of vardenafil and tadalafil in patients with diabetic neuropathy and diabetic erectile dysfunction. J Sex Med. 2011;8:851–64.PubMedCrossRefGoogle Scholar
  48. 48.
    La Vignera S. Seminal vesicles of infertile patients with male accessory gland infection: ultrasound evaluation after prolonged treatment with tadalafil, a selective phosphodiesterase-5 inhibitor. Andrologia. 2012.Google Scholar
  49. 49.
    Dimitriadis F, Tsounapi P, Saito M, Watanabe T, Sylakos A, Tsabalas S. Is there a role for PDE5 inhibitors in the management of male infertility due to defects in testicular or epididymal function? Curr Pharm Des. 2009;15:3506–20.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Nathaly François
    • 1
  • Raunak D. Patel
    • 2
  • Tobias S. Köhler
    • 3
  1. 1.Division of Urology, Department of SurgerySouthern Illinois University School of MedicineSpringfieldUSA
  2. 2.Department of SurgerySouthern Illinois University School of MedicineSpringfieldUSA
  3. 3.Division of Urology, Department of SurgerySouthern Illinois University School of MedicineSpringfieldUSA

Personalised recommendations