Skip to main content

Social Network Analysis in HCI

Abstract

Social network analysis calculates and displays the relationships that exist among a collection of people, like those on a project, in an organization, or participating in a blog. From this analysis, the researcher can find key people, outliers, subgroups, and people who bridge subgroups. And, these analyses can reveal changes over time, for example, before and after a technology is introduced.

Keywords

  • Social Network
  • Network Analysis
  • Social Network Analysis
  • Social Networking Site
  • Twitter User

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-0378-8_17
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-1-4939-0378-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

References

  • Adamic, L. A., & Glance, N. (2005). The political blogosphere and the 2004 U.S. election: divided they blog. Proceedings of the 3rd International Workshop on Link Discovery, LinkKDD’05 (pp. 36–43). New York, NY: ACM.

    Google Scholar 

  • Ahn, J., Taieb-Maimon, M., Sopan, A., Plaisant, C., & Shneiderman, B. (2011). Temporal visualization of social network dynamics: Prototypes for nation of neighbors. In J. Salerno, S. Yang, D. Nau, & S.-K. Chai (Eds.), Social computing, behavioral-cultural modeling and prediction (Lecture notes in computer science, Vol. 6589, pp. 309–316). Berlin: Springer.

    CrossRef  Google Scholar 

  • Bakshy, E., Rosenn, I., Marlow, C., & Adamic, L. (2012). The role of social networks in information diffusion. Proceedings of the 21st International Conference on World Wide Web, WWW’12 (pp. 519–528). New York, NY: ACM.

    Google Scholar 

  • Barabasi, A. L. (2010). Bursts: The hidden pattern behind everything we do (1st ed.). New York: Dutton Adult.

    Google Scholar 

  • Beyer, H., & Holtzblatt, K. (1997). Contextual design: Defining customer-centered systems (1st ed.). San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Bonsignore, E. M., Dunne, C., Rotman, D., Smith, M., Capone, T., Hansen, D. L. et al. (2009). First steps to Netviz Nirvana: Evaluating social network analysis with NodeXL. International Conference on Computational Science and Engineering, 2009. CSE’09. (Vol. 4, pp. 332–339).

    Google Scholar 

  • Borgatti, S. P., & Foster, P. C. (2003). The network paradigm in organizational research: A review and typology. Journal of Management, 29(6), 991–1013.

    CrossRef  Google Scholar 

  • Burt, R. (1995). Structural holes: The social structure of competition. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Butts, C. T. (2008). Social network analysis: A methodological introduction. Asian Journal of Social Psychology, 11(1), 13–41.

    CrossRef  Google Scholar 

  • Chau, D. H., Kittur, A., Hong, J. I., & Faloutsos, C. (2011). Apolo: Making sense of large network data by combining rich user interaction and machine learning. Proceedings of the 2011 Annual Conference on Human Factors in Computing Systems, CHI’11 (pp. 167–176). New York, NY: ACM.

    Google Scholar 

  • Chen, J., Geyer, W., Dugan, C., Muller, M., & Guy, I. (2009). Make new friends, but keep the old: Recommending people on social networking sites. Proceedings of the 27th International Conference on Human Factors in Computing Systems, CHI’09 (pp. 201–210). New York, NY: ACM.

    Google Scholar 

  • Christakis, N. A., & Fowler, J. H. (2007). The spread of obesity in a large social network over 32 years. New England Journal of Medicine, 357(4), 370–379.

    CrossRef  Google Scholar 

  • Cross, R., Parker, A., & Borgatti, S. P. (2002). A bird’s-eye view: Using social network analysis to improve knowledge creation and sharing. IBM Institute for Business Value. Retrieved Jan 1, 2006, from http://www1.ibm.com/services/us/imc/pdf/g510166900abirdseyeviewusingsocialnetworkanalysis.pdf.

  • Cross, R., Parker, A., Prusak, L., & Borgatti, S. (2001). Knowing what we know: Supporting knowledge creation and sharing in social networks. Organizational Dynamics, 30(2), 100–120.

    CrossRef  Google Scholar 

  • Dawson, S. (2010). “Seeing” the learning community: An exploration of the development of a resource for monitoring online student networking. British Journal of Educational Technology, 41(5), 736–752.

    CrossRef  Google Scholar 

  • Ducheneaut, N., Yee, N., Nickell, E., & Moore, R. J. (2006). “Alone together?”: Exploring the social dynamics of massively multiplayer online games. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI’06 (pp. 407–416). New York, NY: ACM.

    Google Scholar 

  • Ducheneaut, N., Yee, N., Nickell, E., & Moore, R. J. (2007). The life and death of online gaming communities: a look at guilds in world of warcraft. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI’07 (pp. 839–848). New York, NY: ACM.

    Google Scholar 

  • Dunne, C., & Shneiderman, B. (2009). Improving graph drawing readability by incorporating readability metrics: A software tool for network analysts. University of Maryland, HCIL Tech Report HCIL-2009–13. Retrieved April 1, 2014, from http://www-lb.cs.umd.edu/~cdunne/hcil/pubs/Dunne09Improvinggraphdrawing.pdf.

  • Dunne, C., & Shneiderman, B. (2012). Motif simplification: Improving network visualization readability with fan and parallel glyphs. University of Maryland, HCIL Tech Report HCIL-2012-11. Retrieved April 1, 2014, from http://www.cs.umd.edu/~cdunne/hcil/pubs/Dunne12Motifsimplification_Improving.pdf.

  • Eagle, N., Pentland, A. (. S.)., & Lazer, D. (2009). Inferring friendship network structure by using mobile phone data. Proceedings of the National Academy of Sciences, 106(36), 15274–15278.

    CrossRef  Google Scholar 

  • Ehrlich, K., Lin, C.-Y., & Griffiths-Fisher, V. (2007). Searching for experts in the enterprise: Combining text and social network analysis. Proceedings of the 2007 International ACM Conference on Supporting Group Work, GROUP’ 07 (pp. 117–126). New York, NY: ACM.

    Google Scholar 

  • Eveland, J. D., Blanchard, A., Brown, W., & Mattocks, J. (1994). The role of “help networks” in facilitating use of CSCW tools. Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, CSCW’94 (pp. 265–274). New York, NY: ACM.

    Google Scholar 

  • Farooq, U., Ganoe, C. H., Carroll, J. M., & Giles, C. L. (2007). Supporting distributed scientific collaboration: Implications for designing the CiteSeer collaboratory. System Sciences, 2007. HICSS 2007. 40th Annual Hawaii International Conference on (pp. 26–26). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4076423.

  • Fisher, D., & Dourish, P. (2004). Social and temporal structures in everyday collaboration. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI’04 (pp. 551–558). New York, NY: ACM.

    Google Scholar 

  • Fowler, J. H., & Christakis, N. A. (2008). Dynamic spread of happiness in a large social network: Longitudinal analysis over 20 years in the Framingham Heart Study. British Medical Journal, 337, a 2338.

    CrossRef  Google Scholar 

  • Freeman, L. C. (2004). The development of social network analysis: A study in the sociology of science. Vancouver: Empirical Press.

    Google Scholar 

  • Gilbert, E. (2012a). Predicting tie strength in a new medium. Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work, CSCW’12 (pp. 1047–1056). New York, NY: ACM.

    Google Scholar 

  • Gilbert, E. (2012b). Designing social translucence over social networks. Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems, CHI’12 (pp. 2731–2740). New York, NY: ACM.

    Google Scholar 

  • Gilbert, E., & Karahalios, K. (2009). Predicting tie strength with social media. Proceedings of the 27th International Conference on Human Factors in Computing Systems, CHI’09 (pp. 211–220). New York, NY: ACM.

    Google Scholar 

  • Golbeck, J., & Hansen, D. (2011). Computing political preference among twitter followers. Proceedings of the 2011 Annual Conference on Human Factors in Computing Systems, CHI’11 (pp. 1105–1108). New York, NY: ACM.

    Google Scholar 

  • Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology, 78(6), 1360–1380.

    CrossRef  Google Scholar 

  • Hanneman, R. A., & Riddle, M. (2005). Introduction to social network methods. University of California Riverside. Retrieved April 1, 2014, from http://faculty.ucr.edu/~hanneman/nettext/.

  • Hansen, D. L., & Johnson, C. (2012). Veiled viral marketing: disseminating information on stigmatized illnesses via social networking sites. Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium, IHI’12 (pp. 247–254). New York, NY: ACM.

    Google Scholar 

  • Hansen, D. L., Rotman, D., Bonsignore, E., Milic-Frayling, N., Rodrigues, E. M., Smith, M., et al. (2009). Do you know the way to SNA?: A process model for analyzing and visualizing social media data. Human Computer Interaction Lab Tech Report HCIL-2009–17. University of Maryland.

    Google Scholar 

  • Hansen, D., Shneiderman, B., & Smith, M. A. (2010). Analyzing social media networks with NodeXL: Insights from a connected world (1st ed.). San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Haythornthwaite, C. (1996). Social network analysis: An approach and technique for the study of information exchange. Library & Information Science Research, 18(4), 323–342.

    CrossRef  Google Scholar 

  • Haythornthwaite, C. (2001). Exploring multiplexity: Social network structures in a computer-supported distance learning class. The Information Society, 17(3), 211–226.

    CrossRef  Google Scholar 

  • Himelboim, I., Hansen, D., & Bowser, A. (2012). Playing in the same Twitter network. Information, Communication & Society, 1–24. http://www.tandfonline.com/doi/abs/10.1080/1369118X.2012.706316#.UzpGVa1dUSQ.

  • Kairam, S. R., Wang, D. J., & Leskovec, J. (2012). The life and death of online groups: Predicting group growth and longevity. Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, WSDM’12 (pp. 673–682). New York, NY: ACM.

    Google Scholar 

  • Keegan, B., Gergle, D., & Contractor, N. (2012). Staying in the loop: Structure and dynamics of Wikipedia’s breaking news collaborations. http://dl.acm.org/citation.cfm?id=2462934.

  • Kempe, D., Kleinberg, J., & Tardos, É. (2003). Maximizing the spread of influence through a social network. Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’03 (pp. 137–146). New York, NY: ACM.

    Google Scholar 

  • Kivran-Swaine, F., Govindan, P., & Naaman, M. (2011). The impact of network structure on breaking ties in online social networks: unfollowing on twitter. Proceedings of the 2011 Annual Conference on Human Factors in Computing Systems, CHI’11 (pp. 1101–1104). New York, NY: ACM.

    Google Scholar 

  • Kleinberg, J. (2008). The convergence of social and technological networks. Communications of the ACM, 51(11), 66–72.

    CrossRef  Google Scholar 

  • Kossinets, G., & Watts, D. J. (2006). Empirical analysis of an evolving social network. Science, 311(5757), 88–90.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Kwak, H., Lee, C., Park, H., & Moon, S. (2010). What is Twitter, a social network or a news media? Proceedings of the 19th International Conference on World Wide Web, WWW’10 (pp. 591–600). New York, NY: ACM.

    Google Scholar 

  • Leskovec, J., Adamic, L. A., & Huberman, B. A. (2007). The dynamics of viral marketing. ACM Transactions on the Web, 1, 1.

    CrossRef  Google Scholar 

  • Leskovec, J., & Faloutsos, C. (2006). Sampling from large graphs. Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’06 (pp. 631–636). New York, NY: ACM.

    Google Scholar 

  • Leskovec, J., & Horvitz, E. (2008). Planetary-scale views on a large instant-messaging network. Proceedings of the 17th International Conference on World Wide Web, WWW’08 (pp. 915–924). New York, NY: ACM.

    Google Scholar 

  • Marsden, P. V. (2005). Recent developments in network measurement. In P. J. Carrington, J. Scott, & S. Wasserman (Eds.), Models and methods in social network analysis (Structural analysis in the social sciences). New York, NY: Cambridge University Press.

    Google Scholar 

  • McDonald, D. W. (2003). Recommending collaboration with social networks: A comparative evaluation. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI’03 (pp. 593–600). New York, NY: ACM.

    Google Scholar 

  • Milgram, S. (1967). The small world problem. Psychology Today, 2, 60–67.

    Google Scholar 

  • Müller-Prothmann, T. (2006). Leveraging knowledge communication for innovation. Framework, Methods and Applications of Social Network Analysis in Research and Development. Frankfurt a. M. et al.: Peter Lang.

    Google Scholar 

  • Munson, S. A., & Resnick, P. (2010). Presenting diverse political opinions: How and how much. Proceedings of the 28th International Conference on Human Factors in Computing Systems, CHI’10 (pp. 1457–1466). New York, NY: ACM.

    Google Scholar 

  • Newman, M. (2010). Networks: An introduction (1st ed.). New York, NY: Oxford University Press.

    CrossRef  Google Scholar 

  • Newman, M., Barabási, A. L., & Watts, D. J. (2006). The structure and dynamics of networks (1st ed.). Princeton, NJ: Princeton University Press.

    MATH  Google Scholar 

  • Perer, A., & Guy, I. (2012). SaNDVis: Visual social network analytics for the enterprise. Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work Companion, CSCW’12 (pp. 275–276). New York, NY: ACM.

    Google Scholar 

  • Perer, A., & Shneiderman, B. (2008). Integrating statistics and visualization: Case studies of gaining clarity during exploratory data analysis. Proceedings of the Twenty-Sixth Annual SIGCHI Conference on Human Factors in Computing Systems, CHI’08 (pp. 265–274). New York, NY: ACM.

    Google Scholar 

  • Pickering, J. M., & King, J. L. (1992). Hardwiring weak ties: Individual and institutional issues in computer mediated communication. Proceedings of the 1992 ACM Conference on Computer-Supported Cooperative Work, CSCW’92 (pp. 356–361). New York, NY: ACM.

    Google Scholar 

  • Rogers, E. M. (1995). Diffusion of innovations. New York: Simon and Schuster.

    Google Scholar 

  • Steinfield, C., DiMicco, J. M., Ellison, N. B., & Lampe, C. (2009). Bowling online: Social networking and social capital within the organization. Proceedings of the Fourth International Conference on Communities and Technologies, C&T’09 (pp. 245–254). New York, NY: ACM.

    Google Scholar 

  • Ugander, J., Karrer, B., Backstrom, L., & Marlow, C. (2011). The anatomy of the Facebook social graph. arXiv:1111.4503. Retrieved April 1, 2014, from http://arxiv.org/abs/1111.4503.

  • Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications (1st ed.). Cambridge: Cambridge University Press.

    CrossRef  Google Scholar 

  • Wellman, B. (2001). Physical place and cyberplace: The rise of personalized networking. International Journal of Urban and Regional Research, 25(2), 227–252.

    CrossRef  Google Scholar 

  • Welser, H. T., Gleave, E., Fisher, D., & Smith, M. (2007). Visualizing the signatures of social roles in online discussion groups. Journal of Social Structure, 8(2), 1–32.

    Google Scholar 

  • Welser, H. T., Underwood, P., Cosley, D., Hansen, D., & Black, L. (2010). Wiki networks: connections of creativity and collaboration. In D. L. Hansen, B. Shneiderman, & M. Smith (Eds.), Analyzing social media networks with NodeXL (pp. 247–271). New York: Morgan Kaufmann.

    Google Scholar 

  • Zaphiris, P., & Sarwar, R. (2006). Trends, similarities, and differences in the usage of teen and senior public online newsgroups. ACM Transactions on Computer-Human Interaction, 13(3), 403–422.

    CrossRef  Google Scholar 

  • Zhang, J., Ackerman, M. S., & Adamic, L. (2007). Expertise networks in online communities: Structure and algorithms. Proceedings of the 16th International Conference on World Wide Web, WWW’07 (pp. 221–230). New York, NY: ACM.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek L. Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hansen, D.L., Smith, M.A. (2014). Social Network Analysis in HCI. In: Olson, J., Kellogg, W. (eds) Ways of Knowing in HCI. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0378-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0378-8_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0377-1

  • Online ISBN: 978-1-4939-0378-8

  • eBook Packages: Computer ScienceComputer Science (R0)