Multivariate Data Analysis (Chemometrics)

  • Sylvie Roussel
  • Sébastien Preys
  • Fabien Chauchard
  • Jordane Lallemand
Chapter
Part of the Food Engineering Series book series (FSES)

Abstract

Chemometrics plays a key role in PAT strategies. It is essential in understanding and diagnosing real-time processes, and keeping them under multivariate statistical control. This chapter will cover design of experiments, exploratory analysis, quantitative predictive modelling, classification, multivariate process monitoring and multi-block and multi-way analyses. The objective of the chapter is to describe chemometrics methods with a main focus on understanding, interpretation and evaluating the usefulness of the results.

Keywords

Sugar Corn Covariance Milling Acidity 

Notes

Acknowledgments

The authors want to thank Dr. Mazerolles from INRA for his multi-block section review, Dr. Williams from the Canadian Grain Commission, CAMO (Oslo, Norway) and Dr. Guillaume from Cemagref for authorising the usage of their data.

References

  1. Abrahamsson C, Johansson J et al (2003) Comparison of different variable selection methods conducted on NIR transmission measurements on intact tablets. Chemometr Intell Lab Syst 69:3–12Google Scholar
  2. Alsberg BK, Woodward AM et al (1997) An introduction to wavelet transforms for chemometricians: a time-frequency approach. Chemometr Intell Lab Syst 37(2):215–239Google Scholar
  3. Andersson CA (1999) Direct orthogonalization. Chemometr Intell Lab Syst 47(1):51–63Google Scholar
  4. Andrew A, Fearn T (2004) Transfer by orthogonal projection: making near-infrared calibrations robust to between-instrument variation. Chemometr Intell Lab Syst 72(1):51–56Google Scholar
  5. Ankerst M, Breunig MM et al (1999) OPTICS: ordering points to identify the clustering structure. ACM SIGMOD international conference on management of data (SIGMOD’99), PhiladelphiaGoogle Scholar
  6. Araujo PW, Brereton RG (1996a) Experimental design I. Screening. TrAC Trends Anal Chem 15(1):26–31Google Scholar
  7. Araujo PW, Brereton RG (1996b) Experimental design II. Optimization. TrAC Trends Anal Chem 15(2):63–70Google Scholar
  8. Azzouz T, Puigdoménech A et al (2003) Comparison between different data pretreatment methods in the analysis of forage samples using near-infrared diffuse reflectance spectroscopy and partial least-squares multivariate calibration method. Anal Chim Acta 484:121–134Google Scholar
  9. Barker M, Rayens W (2003) Partial least squares for discrimination. J Chemometr 17:166–173Google Scholar
  10. Barnes RJ, Dhanoa MS et al (1989) Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl Spectrosc 43(5):772–777Google Scholar
  11. Berrueta LA, Alonso-Salces RM et al (2007) Supervised pattern recognition in food analysis. J Chromatogr A 1158(1–2):196–214Google Scholar
  12. Bouveresse E, Massart DL (1996) Improvement of the piecewise direct standardisation procedure for the transfer of NIR spectra for multivariate calibration. Chemometr Intell Lab Syst 32:201–213Google Scholar
  13. Bouveresse E, Hartmann C et al (1996) Standardization of near-infrared spectrometric instruments. Anal Chem 68(6):982–990Google Scholar
  14. Box GEP, Draper NR (1987) Empirical model-building and response surfaces. Wiley, New YorkGoogle Scholar
  15. Breiman L, Friedman JH et al (1984) Classification and regression trees. Wadsworth International Group, BelmontGoogle Scholar
  16. Bro R (1996) Multiway calibration, multilinear PLS. J Chemometr 10:47–61Google Scholar
  17. Bro R (1997) PARAFAC. Tutorial and applications. Chemometr Intell Lab Syst 38(2):149–171Google Scholar
  18. Bro R (1999) Exploratory study of sugar production using fluorescence spectroscopy and multi-way analysis. Chemometr Intell Lab Syst 46(2):133–147Google Scholar
  19. Bro R, Andersson CA et al (1999) PARAFAC2—Part II. Modeling chromatographic data with retention time shifts. J Chemometr 13(3-4):295–309Google Scholar
  20. Bry X, Verron T et al (2009) Exploring a physico-chemical multi-array explanatory model with a new multiple covariance-based technique: structural equation exploratory regression. Anal Chim Acta 642(1–2):45–58Google Scholar
  21. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2):121–167Google Scholar
  22. Carroll JD, Chang J (1970) Analysis of individual differences in multidimensional scaling via an N-way generalization of ‘Eckart-Young’ decomposition. Psychometrika 35:283–319Google Scholar
  23. Centner V, Massart D-L et al (1996) Elimination of uninformative variables for multivariate calibration. Anal Chem 68(21):3851–3858Google Scholar
  24. Chauchard F, Cogdill R et al (2004a) Application of LS-SVM to non-linear phenomena in NIR spectroscopy: development of a robust and portable sensor for acidity prediction in grapes. Chemometr Intell Lab Syst 71(2):141–150Google Scholar
  25. Chauchard F, Roger JM et al (2004b) Correction of the temperature effect on near infrared calibration—application to soluble solid content prediction. J Near Infrared Spectrosc 12:199–205Google Scholar
  26. Chessel D, Hanafi M (1996) Analyses de la co-inertie de K nuages de points. Revue de Statistique Appliquée XLIV(2):35–60Google Scholar
  27. Christiansen KF, Vegarud G et al (2004) Hydrolyzed whey proteins as emulsifiers and stabilizers in high-pressure processed dressings. Food Hydrocoll 18(5):757–767Google Scholar
  28. Clark RD (1997) OptiSim: an extended dissimilarity selection method for finding diverse representative subsets. J Chem Inf Comput Sci 37:1181–1188Google Scholar
  29. Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Statistical Assoc 83(403):596–610Google Scholar
  30. Cogdill RP, Dardenne P (2003) Least-squares support vector machines for chemometrics: an introduction and evaluation. J Near Infrared Spectrosc 12(2):93–100Google Scholar
  31. Cornell JA (1990) Experiments with mixtures. Wiley, New YorkGoogle Scholar
  32. Cortes C, Vapnik V (1995) Support vector networks. Mach Learning 20:273–297Google Scholar
  33. Dahl KS, Piovoso MJ et al (1999) Translating third-order data analysis methods to chemical batch processes. Chemometr Intell Lab Syst 46(2):161–180Google Scholar
  34. Dantas-Filho HA, Galvao RKH et al (2004) A strategy for selecting calibration samples for multivariate modelling. Chemometr Intell Lab Syst 72:83–91Google Scholar
  35. Daszykowski M, Walczak B et al (2001) Looking for natural patterns in data: part 1. Density-based approach. Chemometr Intell Lab Syst 56(2):83–92Google Scholar
  36. Daszykowski M, Kaczmarek K et al (2007) Robust statistics in data analysis—a review. Basic concepts. Chemometr Intell Lab Syst 85:203–219Google Scholar
  37. Daubechies I (1990) The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inform Theory 36(5):961–1005Google Scholar
  38. Davies AMC, Britcher HV et al (1988) The application of fourier-transformed near-infrared spectra to quantitative analysis by comparison of similarity indices (CARNAC). Microchim Acta 94(1–6):61–64Google Scholar
  39. De Belie N, Sivertsvik M et al (2003) Differences in chewing sounds of dry-crisp snacks by multivariate data analysis. J Sound Vib 266(3):625–643Google Scholar
  40. De Jong S (1993) SIMPLS: an alternative approach to partial least squares regression. Chemometr Intell Lab Syst 18(3):251–263Google Scholar
  41. de Juan A, Tauler R (2003) Chemometrics applied to unravel multicomponent processes and mixtures: revisiting latest trends in multivariate resolution. Anal Chim Acta 500(1-2):195–210Google Scholar
  42. de Juan A, Tauler R (2006) Multivariate curve resolution (MCR) from 2000: progress in concepts and applications. Crit Rev Anal Chem 36:163–176Google Scholar
  43. De Maesschalck R, Jouan-Rimbaud D et al (2000) The Mahalanobis distance. Chemometr Intell Lab Syst 50(1):1–18Google Scholar
  44. Devaux MF, Bertrand D et al (1988) Application of multidimensional analyses to the extraction of discriminant spectral patterns from NIR spectra. Appl Spectrosc 42(6):941–1132Google Scholar
  45. Devaux MF, Robert P et al (1993) Canonical correlation analysis of mid and near infrared oil spectra. Appl Spectrosc 47:1024–1028Google Scholar
  46. Ellekjær MR, Ilseng MA et al (1996) A case study of the use of experimental design and multivariate analysis in product improvement. Food Qual Prefer 7(1):29–36Google Scholar
  47. Eriksson L, Johansson E et al (1998) Mixture design-design generation, PLS analysis, and model usage. Chemometr Intell Lab Syst 43(1–2):1–24Google Scholar
  48. Ester M, Kriegel H-P et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. 2nd international conference on knowledge discovery and data miningGoogle Scholar
  49. Fearn T (2001) Standardisation and calibration transfer for near infrared instrument: a review. J Near Infrared Spectrosc 9:229–244Google Scholar
  50. Felipe-Sotelo M, Gustems L et al (2006) Investigation of geographical and temporal distribution of tropospheric ozone in Catalonia (North-East Spain) during the period 2000–2004 using multivariate data analysis methods. Atmos Environ 40(38):7421–7436Google Scholar
  51. Fernández Pierna JA, Wahl F et al (2002) Methods for outlier detection in prediction. Chemometr Intell Lab Syst 63(1):27–39Google Scholar
  52. Fernández Pierna JA, Baeten V et al (2006) Screening of compound feeds using NIR hyperspectral data. Chemometr Intell Lab Syst 84(1–2):114–118Google Scholar
  53. Fernández-Ibáñez V, Fearn T et al (2010) Development and validation of near infrared microscopy spectral libraries of ingredients in animal feed as a first step to adopting traceability and authenticity as guarantors of food safety. Food Chemistry. (In press, corrected proof).Google Scholar
  54. Ferreira SLC, Santos WNL dos et al (2004) Doehlert matrix: a chemometric tool for analytical chemistry-review. Talanta 63(4):1061–1067Google Scholar
  55. Ferreira SLC, Bruns RE et al (2007) Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597(2):179–186Google Scholar
  56. Feudale RN, Tan H et al (2002a) Piecewise orthogonal signal correction. Chemometr Intell Lab Syst 63:129–138Google Scholar
  57. Feudale RN, Woody NA et al (2002b) Transfer of multivariate calibration models: a review. Chemometr Intell Lab Syst 64(2):181–192Google Scholar
  58. Fisher R (1936) The use of multiple measurements in taxonomic problems. Annals Eugenics 7:179–188Google Scholar
  59. Gacula MC, Jagbir Singh JR (1984) Statistical methods in food and consumer research. Academic, New YorkGoogle Scholar
  60. Galvao RKH, Araujo MCU et al (2005) A method for calibration and validation subset partitioning. Talanta 67:736–740Google Scholar
  61. Garcia-Munoz S, Kourti T et al (2003) Troubleshooting of an industrial batch process using multivariate methods. Ind Eng Chem Res 42:3592–3601Google Scholar
  62. Geladi P, MacDougall D et al (1985) Linearization and scatter-correction for near-infrared reflectance spectra of meat. Appl Spectrosc 39(3):491–500Google Scholar
  63. Ghosh J, Turner K (1994) Structural adaptation and generalization in supervised feed-forward networks. J Artificial Neural Netw 1(4):431–458Google Scholar
  64. Gnanadesikan R, Kettenring JR (1972) Robust estimates, residuals, and outlier detection with multiresponse data. Biometrics 28:81–124Google Scholar
  65. Goodacre R, Kell DB et al (1993) Rapid assessment of the adulteration of virgin olive oils by other seed oils using pyrolysis mass spectrometry and artificial neural networks. J Sci Food Agric 63:297–307Google Scholar
  66. Halkidi M, Batistakis Y et al (2002a) Cluster validity methods: part I. ACM SIGMOD Rec 31(2):40–45Google Scholar
  67. Halkidi M, Batistakis Y et al (2002b) Clustering validity checking methods: part II. ACM SIGMOD Rec 31(3):19–27Google Scholar
  68. Harshman RA (1970) Foundations of the PARAFAC procedure. UCLA Working Papers in Phonetics 16:1–84.Google Scholar
  69. Hart P (1967). Nearest neighbour pattern classifcation. IEEE Trans Inform Theory 13(1):21–27Google Scholar
  70. Hotelling H (1936). Relations between two sets of variants. Biometrika 28:321–377Google Scholar
  71. Igne B, Roger J-M et al (2009) Improving the transfer of near infrared prediction models by orthogonal methods. Chemometr Intell Lab Syst 99(1):57–65Google Scholar
  72. Jain AK (2009). Data clustering: 50 years beyond K-means. Pattern Recognit Lett. (In press, corrected proof)Google Scholar
  73. Jain AK, Murty MN et al (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323Google Scholar
  74. Jiang J-H, Liang Y et al (2004) Principles and methodologies in self-modeling curve resolution. Chemometr Intell Lab Syst 71(1):1–12Google Scholar
  75. Johnson SC (1966) Hierarchical clustering schemes. Psychometrika 32(3):241–254Google Scholar
  76. Kassidas A, MacGregor JF et al (1998) Synchronization of batch trajectories using dynamic time warping. AlChE J 44:864–875Google Scholar
  77. Kennard RW, Stone LA (1969) Computer aided design of experiments. Technometrics 11(1):137–148Google Scholar
  78. Kiang MY (2001) Extending the Kohonen self-organizing map networks for clustering analysis. Comput Stat Data Anal 38(2):161–180Google Scholar
  79. Kiers HAL, Berge JMFt et al (1999) PARAFAC2—part I. A direct fitting algorithm for the PARAFAC2 model. J Chemometr 13(3–4):275–294Google Scholar
  80. Kohler A, Skaga A et al (2002) Sorting salted cod fillets by computer vision: a pilot study. Comput Electr Agric 36(1):3–16Google Scholar
  81. Kohonen T (1990) The self organizing map. Proceedings of the IEEE 78(9):1464–1480Google Scholar
  82. Kohonen T (1998) The self-organizing map. Neurocomputing 21(1–3):1–6Google Scholar
  83. Kourti T (2006) Process analytical technology beyond real-time analyzers: the role of multivariate analysis. Crit Rev Anal Chem 36:257–278Google Scholar
  84. Lawton WH, Sylvestre EA (1971) Self modeling curve resolution. Technometrics 13:617–633Google Scholar
  85. Leardi R (2009) Experimental design in chemistry: a tutorial. Anal Chim Acta 652(1–2):161–172Google Scholar
  86. Leardi R, González AL (1998) Genetic algorithms applied to feature selection in PLS regression: how and when to use them. Chemometr Intell Lab Syst 41(2):195–207Google Scholar
  87. Liang Y-Z, Kvalheim OM (1996) Robust methods for multivariate analysis—a tutorial review. Chemometr Intell Lab Syst 32(1):1–10Google Scholar
  88. Lima FSG, Borges LEP (2002) Evaluation of standardisation methods of near infrared calibration models. J Near Infrared Spectrosc 10(4):269–278Google Scholar
  89. Lundstedt T, Seifert E et al (1998) Experimental design and optimization. Chemometr Intell Lab Syst 42(1–2):3–40Google Scholar
  90. MacGregor J, Yu H et al (2005) Data-based latent variable methods for process analysis, monitoring and control. Comput Chem Eng 29(6):1217–1223Google Scholar
  91. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. Fifth Berkeley symposium on mathematical statistics and probabilityGoogle Scholar
  92. Marbach R (2005) A new method for multiariate calibration. J Near Infrared Spectrosc 13:241–254Google Scholar
  93. Marbach R (2007a) Multivariate calibration: a science-based method—part 1. Pharmaceutical Manufacturing 6(1):42–47Google Scholar
  94. Marbach R (2007b) Multivariate calibration: a science-based method—part 2. Pharmaceutical Manufacturing 6(2):44–47Google Scholar
  95. Martens H, Stark E (2001) Extended multiplicative signal correction and spectral interference subtraction: new preprocessing methods for near infrared spectroscopy. J Pharm Biomed Anal 9(8):625–635Google Scholar
  96. Martens H, Anderssen E et al (2005) Regression of a data matrix on descriptors of both its rows and of its columns via latent variables: L-PLSR. Comput Stat Data Anal 48(1):103–123Google Scholar
  97. Mazerolles G, Hanafi M et al (2006) Common components and specific weights analysis: a chemometric method for dealing with complexity of food products. Chemometr Intell Lab Syst 81(1):41–49Google Scholar
  98. McClure WF, Norris KH et al (1977) Rapid spectrophotometric analysis of the chemical composition of tobacco. Part 1. Total reducing sugars. Beitr Tabakforsch 9(1):13–18Google Scholar
  99. Montgomery DC (1997) Multivariate quality control. Introduction to statistical quality control. John Wiley & Sons Inc, New York, pp 360–373Google Scholar
  100. Navea S, Tauler R et al (2006) Monitoring and modelling of protein processes using mass spectrometry, circular dichroism and multivariate curve resolution methods. Anal Chem 78:4768–4778Google Scholar
  101. Nomikos P, MacGregor JF (1995a) Multi-way partial least squares in monitoring batch processes. Chemometrics Intelligent Laboratory Systems 30(1):97–108Google Scholar
  102. Nomikos P, MacGregor JF (1995b) Multivariate SPC charts for monitoring batch processes. Technometrics 37:41–59Google Scholar
  103. Nørgaard L, Saudland A et al (2000) Interval partial least-squares regression (iPLS): a comparative chemometric study with an example from near-infrared spectroscopy. Appl Spectrosc 54(3):413–419Google Scholar
  104. Norris KH, Williams PC (1984) Optimization of mathematical treatments of raw near-infrared signal in the measurement of protein in hard red spring wheat: I. Influence of particle size. Cereal Chem 61:158–165Google Scholar
  105. Novales B, Guillaume S et al (1998) Particle size characterisation of in-flow milling products by video image analysis using global features. J Sci Food Agric 78(2):187–195Google Scholar
  106. Olivieri A, Faber NM et al (2006) Guidelines for calibration in analytical chemistry. Part 3: uncertainty estimation and figures of merit for multivariate calibration. Pure Appl Chem 78(3):633–661Google Scholar
  107. Ortiz MC, Sarabia L (2007) Quantitative determination in chromatographic analysis based on n-way calibration strategies. J Chromatogr A 1158(1–2):94–110Google Scholar
  108. Plackett RL, Burman JP (1946) The design of optimal multifactorial experiments. Biometrika 33:305–325Google Scholar
  109. Preys S, Roger JM et al (2008) Robust calibration using orthogonal projection and experimental design. Application to the correction of the light scattering effect on turbid NIR spectra. Chemometr Intell Lab Syst 91:28–33Google Scholar
  110. Qannari EM, Wakeling I et al (2000) Defining the underlying sensory dimensions. Food Qual Prefer 11(1–2):151–154Google Scholar
  111. Qin SJ, Valle S et al (2001) On unifying multiblock analysis with application to decentralized process monitoring. J Chemometr 15:715–742Google Scholar
  112. Rechtschaffner RL (1967) Saturated fractions of 2n and 3n fractional designs. Technometrics 9:569–575Google Scholar
  113. Rinnan A, Berg Fvd et al (2009) Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Analytical Chem 28(10):1201–1222Google Scholar
  114. Roger J-M, Chauchard F et al (2003) EPO-PLS external parameter orthogonalisation of PLS application to temperature-independent measurement of sugar content of intact fruits. Chemometr Intell Lab Syst 66(2):191–204Google Scholar
  115. Rouillé J, Le Bail A et al (2000) Influence of formulation and mixing conditions on breadmaking qualities of French frozen dough. J Food Eng 43(4):197–203Google Scholar
  116. Rousseeuw PJ (1984) Least median of squares regression. J Am Stat Assoc 79:871–880Google Scholar
  117. Roussel SA, Hardy CL et al (2001) Detection of Roundup Ready™ soybeans by near-infrared spectroscopy. Appl Spectrosc 55(10):1425–1430Google Scholar
  118. Roussel S, Bellon-Maurel V et al (2003) Authenticating white grape must variety with classification models based on aroma sensors, FT-IR and UV spectrometry. J Food Eng 60(4):407–419Google Scholar
  119. Rumelhart DE, Hinton GE et al (1986) Learning internal representations by error propagation. Parallel Distributed Processing, CambridgeGoogle Scholar
  120. Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36(8):1627–1639Google Scholar
  121. Serrano-Megías M, López-Nicolás JM (2006) Application of agglomerative hierarchical clustering to identify consumer tomato preferences: influence of physicochemical and sensory characteristics on consumer response. J Sci Food Agric 86(4):493–499Google Scholar
  122. Shenk JS, Westerhaus MO et al (1998) Investigation of a LOCAL calibration procedure for near infrared instruments. J Near Infrared Spectrosc 5(4):223–232Google Scholar
  123. Sirieix A, Downey G (1993) Commercial wheatflour authentication by discriminant analysis of near infrared reflectance spectra. J Near Infrared Spectrosc 1:187–197Google Scholar
  124. Snee RD (1977) Validation of regression models: methods and examples. Technometrics 19(4):415–428Google Scholar
  125. Svensson O, Kourti T et al (2002) An investigation of orthogonal signal correction algorithms and their characteristics. J Chemometr 16:176–188Google Scholar
  126. Tauler R (1995) Multivariate curve resolution applied to second order data. Chemometr Intell Lab Syst 30(1):133–146Google Scholar
  127. Thimm G, Fiesler E (1997) Pruning of neural networks. I.-R. R. 97-03. Valais, Switzerland, Dalle Molle Institute for perceptive artificial intelligenceGoogle Scholar
  128. Tillmann P, Paul C (1998) The repeatability file-a tool for reducing the sensitivity of near infrared spectroscopy calibrations to moisture variation. J Near Infrared Spectrosc 6(1):61–68Google Scholar
  129. Tokatli F, Cinar A et al (2005) HACCP with multivariate process monitoring and fault diagnosis techniques: application to a food pasteurization process. Food Control 16(5):411–422Google Scholar
  130. Tracy ND, Young JC et al (1992) Multivariate control charts for individual observations. J Qual Technol 24:88–95Google Scholar
  131. Trygg J, Wold S (2002) Orthogonal projections to latent structures (O-PLS). J Chemometr 16:119–128Google Scholar
  132. Tucker LR (1966) Some mathematical notes on three-mode factor analysis. Psychometrika 31:279–311Google Scholar
  133. van Sprang ENM, Ramaker H-J et al (2002) Critical evaluation of approaches for on-line batch process monitoring. Chem Eng Sci 57(18):3979–3991Google Scholar
  134. Wang Y, Veltkamp DJ et al (1991) Multivariate instrument standardization. Anal Chem 63(23):2750–2756Google Scholar
  135. Wangen LE, Kowalski BR (1988) A multiblock partial least squares algorithm for investigating complex chemical systems. J Chemometr 3:3–20Google Scholar
  136. Weigend AS, Huberman BA et al (1990) Predicting the future: a connectionist approach. Int J Neural Syst 1(3):193–209Google Scholar
  137. Westad F, Schmidt A et al (2008) Incorporating chemical band-assignment in near infrared spectroscopy regression models. J Near Infrared Spectrosc 16:265–273Google Scholar
  138. Westerhaus MO (1991) Improving repeatability of calibrations across instruments. 3rd International conference on near infrared spectroscopy, Gembloux, BelgiumGoogle Scholar
  139. Westerhuis JA, Kourti T et al (1998) Analysis of multiblock and hierarchical PCA and PLS models. J Chemometr 12:301–321Google Scholar
  140. Westerhuis JA, De Jong S et al (2001) Direct orthogonal signal correction. Chemometr Intell Lab Syst 56:13–25Google Scholar
  141. Wold H (1982) Soft modelling: the basic design and some extensions. System under indirect observation, vol 2. (H Wold, KG Jöreskog (eds)). Amsterdam, North Holland, pp 1–54Google Scholar
  142. Wold S (1992) Nonlinear partial least squares modelling II. Spline inner relation. Chemometr Intell Lab Syst 14(1–3):71–84Google Scholar
  143. Wold S, Sjostrom M (1977) SIMCA: a method for analyzing chemical data in terms of similarity and analogy—(Chapter Book). Chemometr Theory Appl 52:243–282Google Scholar
  144. Wold S, Martens H et al (1983) The multivariate calibration problem in chemistry solved by the PLS method. Matrix Pencils. Springer, HeidenbergGoogle Scholar
  145. Wold S, Martens H, & Wold H (1984) In S. Wold (Ed.), Muldast Proceedings, Technical Report, Research Group for Chemometrics, Umeå University, SwedenGoogle Scholar
  146. Wold S, Kettaneh-Wold N et al (1989) Nonlinear PLS modeling. Chemometr Intell Lab Syst 7(1–2):53–65Google Scholar
  147. Wold S, Kettaneh N et al (1996) Hierarchical multiblock PLS and PC models for easier model interpretation and as an alternative to variable selection. J Chemometr 10(5-6):463–482Google Scholar
  148. Wold S, Antti H et al (1998a) Orthogonal signal correction of near-infrared spectra. Chemometr Intell Lab Syst 44(1–2):175–185Google Scholar
  149. Wold S, Kettaneh N et al (1998b) Modelling and diagnostics of batch processes and analogous kinetic experiments. Chemometr Intell Lab Syst 44(1–2):331–340Google Scholar
  150. Wold S, Cheney J et al (2006) The chernometric analysis of point and dynamic data in pharmaceutical and biotech production (PAT)—some objectives and approaches. Chemometr Intell Lab Syst 84(1–2):159–163Google Scholar
  151. Wu W, Walczak B et al (1996) Feature reduction by Fourier transform in pattern recognition of NIR data. Anal Chim Acta 331:75–83Google Scholar
  152. Wülfert F, Kok WT et al (2000a) Correction of Temperature-Induced Spectral Variation by Continuous Piecewise Direct Standardization. Anal Chem 72:1639–1644Google Scholar
  153. Wülfert F, Kok WT et al (2000b) Linear techniques to correct for temperature-induced spectral variation in multivariate calibration. Chemometr Intell Lab Syst 51:189–200Google Scholar
  154. Zeaiter M, Roger JM et al (2005) Robustness of models developed by multivariate calibration. Part II: The influence of pre-processing methods. TrAC Trends Anal Chem 24(5):437–445Google Scholar
  155. Zeaiter M, Roger JM et al (2006) Dynamic orthogonal projection. A new method to maintain the on-line robustness of multivariate calibrations. Application to NIR-based monitoring of wine fermentations. Chemom Intell Lab Syst 80(2):227–235Google Scholar
  156. Zhu Y, Fearn T et al (2008) Error removal by orthogonal subtraction (EROS): a customised pretreatment for spectroscopic data. J Chemometr 22:130–134Google Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Sylvie Roussel
    • 1
  • Sébastien Preys
    • 1
  • Fabien Chauchard
    • 2
  • Jordane Lallemand
    • 1
  1. 1.OndalysClapiersFrance
  2. 2.IndatechClapiersFrance

Personalised recommendations