Skip to main content

Frontiers: The Future of Software Thermal Management

  • Chapter
  • First Online:
The Art of Software Thermal Management for Embedded Systems
  • 1053 Accesses

Abstract

The field of Software Thermal Management is young. Although derived from firmly-rooted studies in thermodynamics, electronics component design, electrical engineering, and software engineering, there are a number of unanswered questions and opportunities for the de-fragmentation of approaches. This chapter contains a list of suggested areas for future research to advance the field of Software Thermal Management.

The measure of success is not whether you have a tough problem to deal with, but whether it is the same problem you had last year.

John Foster Dulles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu, Y.-H., Benini, L., De Micheli, G.: Operating-system directed power reduction. In: Proceedings of the 2000 International Symposium on Low Power Electronics and Design, 2000. ISLPED 00. pp. 3742 (2000)

    Google Scholar 

  2. Ren, Z., Krogh, B.H., Marculescu, R.: Hierarchical adaptive dynamic power management. In: Proceedings Design, Automation and Test in Europe Conference and Exhibition, 2004. vol. 1 pp. 136141 (2004)

    Google Scholar 

  3. Erbes, T., Shukla, S.K., Kachroo, P.: Stochastic learning feedback hybrid automata for dynamic power management in embedded systems. In: Proceedings of the 2005 IEEE Mid-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05. pp. 208213 (2005)

    Google Scholar 

  4. Zanini, F., Sabry, M.M., Atienza, D., De Micheli, G.: Hierarchical thermal management policy for high-Performance 3D systems with liquid cooling. IEEE. J. Emerg. Sel. Top. Circ. Syst. 1, 88101 (2011)

    Google Scholar 

  5. Paul, A., Chen, B.-W., Jeong, J., Wang, J.-F.: Dynamic power management for embedded ubiquitous systems. In: 2013 International Conference on Orange Technologies (ICOT). pp. 6771 (2013)

    Google Scholar 

  6. Irani, S., Shukla, S., Gupta, R.: Competitive analysis of dynamic power management strategies for systems with multiple power saving states. In: Proceedings Design, Automation and Test in Europe Conference and Exhibition, 2002. pp. 117123 (2002)

    Google Scholar 

  7. Sesic, A., Dautovic, S., Malbasa, V.: Dynamic Power Management of a system with a two-Priority request queue using probabilistic-model checking. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27, 403407 (2008)

    Google Scholar 

  8. Qiu, Q., Qu, Q., Pedram, M.: Stochastic modeling of a power-managed system-construction and optimization. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 20, 12001217 (2001)

    Google Scholar 

  9. Shih, H.C., Wang, K.: An adaptive hybrid dynamic power management method for handheld devices. In: IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy, Computing, 2006. p. 6 (2006)

    Google Scholar 

  10. Yue, W., Xia, Z., Xiangqun, C.: A task-specific approach to dynamic device power management for embedded system. In: Second International Conference on Embedded Software and Systems, 2005. p. 7 (2005)

    Google Scholar 

  11. Wang, Y., Triki, M., Lin, X., Ammari, A.C., Pedram, M.: Hierarchical dynamic power management using model-free reinforcement learning. In: 2013 14th International Symposium on Quality, Electronic Design (ISQED). pp. 170177 (2013)

    Google Scholar 

  12. Hwang, Y.-S., Chung, K.-S.: Dynamic power management technique for multicore based embedded mobile devices. IEEE Trans. Industr. Inf. 9, 16011612 (2013)

    Google Scholar 

  13. Liu, Y., Yang, H., Dick, R.P., Wang, H., Shang, L.: Thermal vs Energy optimization for DVFS-Enabled processors in embedded systems. In: 8th International Symposium on Quality Electronic Design, 2007. ISQED 07. pp. 204209 (2007)

    Google Scholar 

  14. Bao, M., Andrei, A., Eles, P., Peng, Z.: Temperature-Aware idle time distribution for leakage energy optimization. IEEE Trans. Very Large Scale Integr. VLSI Syst. 20, 11871200 (2012)

    Google Scholar 

  15. Kang, K., Kim, J., Yoo, S., Kyung, C.-M.: Temperature-aware integrated DVFS and power gating for executing tasks with runtime distribution. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29, 13811394 (2010)

    Google Scholar 

  16. Quan, G., Chaturvedi, V.: Feasibility analysis for temperature-constraint hard real-time periodic tasks. IEEE Trans. Industr. Inf. 6, 329339 (2010)

    Google Scholar 

  17. Diamantopoulos, D., Siozios, K., Xydis, S., Soudris, D.: Thermal optimization for micro-architectures through selective block replication. In: 2011 International Conference on Embedded Computer Systems (SAMOS). pp. 5966 (2011)

    Google Scholar 

  18. Bao, M., Andrei, A., Eles, P., Peng, Z.: Temperature-aware task mapping for energy optimization with dynamic voltage scaling. In: 11th IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems, 2008. DDECS 2008. pp. 16 (2008)

    Google Scholar 

  19. Wang, S., Chen, J.-J., Shi, Z., Thiele, L.: Energy-Efficient speed scheduling for real-time tasks under thermal constraints. In: 15th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, 2009. RTCSA 09. pp. 201209 (2009)

    Google Scholar 

  20. Zhang, S., Chatha, K.S.: System-level thermal aware design of applications with uncertain execution time. In: IEEE/ACM International Conference on Computer-Aided Design, 2008. ICCAD 2008. pp. 242249 (2008)

    Google Scholar 

  21. Qiu, M., Niu, J., Pan, F., Chen, Y., Zhu, Y.: Peak temperature minimization for embedded systems with DVS transition overhead consideration. In: 2012 IEEE 14th International Conference on High Performance Computing and Communication 2012 IEEE 9th International Conference on Embedded Software and Systems (HPCC-ICESS). pp. 477484 (2012)

    Google Scholar 

  22. Jayaseelan, R., Mitra, T.: Temperature aware task sequencing and voltage scaling. In: IEEE/ACM International Conference on Computer-Aided Design, 2008. ICCAD 2008. pp. 618623 (2008)

    Google Scholar 

  23. Bao, M., Andrei, A., Eles, P., Peng, Z.: Temperature-Aware Voltage Selection for Energy Optimization. In: Design, Automation and Test in Europe, 2008. DATE 08. pp. 10831086 (2008)

    Google Scholar 

  24. Bergamaschi, R., Han, G., Buyuktosunoglu, A., Patel, H., Nair, I., Dittmann, G., Janssen, G., Dhanwada, N., Hu, Z., Bose, P., Darringer, J.: Exploring power management in multi-core systems. In: Design Automation Conference, 2008. ASPDAC 2008. Asia and South Pacific. pp. 708713 (2008)

    Google Scholar 

  25. Marcu, M., Vladutiu, M., Moldovan, H.: Microprocessor thermal benchmark. In: Proceedings of the 10th WSEAS international conference on Computers. pp. 12731276. World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Benson .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Benson, M. (2014). Frontiers: The Future of Software Thermal Management. In: The Art of Software Thermal Management for Embedded Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0298-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0298-9_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0297-2

  • Online ISBN: 978-1-4939-0298-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics