Skip to main content

The Role of the Quantitative EEG in the Diagnosis and Rehabilitation of the Traumatic Brain Injured Patients

  • Chapter
  • First Online:
Concussions in Athletics

Abstract

The quantitative EEG (QEEG) has proven to be useful in the diagnosis and rehabilitation of the cognitive problems of the traumatic brain injured (TBI) subject. This chapter reviews the evidence on the use of the QEEG in discriminant analysis of TBI vs. normal individuals and the cognitive rehabilitation of the cognitive problems of the TBI patient. The research documents two cognitive activation approaches to QEEG analysis which have obtained 100 % accuracy in their diagnostic decision. Previous cognitive rehabilitation efforts have not been particularly effective in improving cognitive performance. The coordinated allocation of resource model of brain functioning was proposed as a conceptual framework to understand the brain’s electrophysiological functioning. The model employs a cognitive activation evaluation and comparison to a normative activation database approach to determine the EEG biofeedback protocols. The approach has produced an average of 2.31 standard deviation improvements in auditory and reading memory in the TBI patient. Thus, the evidence supports the use of the activation database-guided QEEG in the diagnosis and rehabilitation of the TBI patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hagen B. Attorney at law. NFL concussions in 2010. http://www.hagen-law.com/nfl-concussion-statistics/. Accessed 6 Jan 2013.

  2. Hagen B. Attorney at law. NFL concussions in 2011. http://www.hagen-law.com/nfl-concussion-statistics/. Accessed 6 Jan 2013.

  3. USA Today Sports. Concussion policies by league. 2012. http://www.usatoday.com/story/sports/2012/10/11/concussions-nascar-nfl-mlb-nhl-nba/1628129/. Accessed 6 Jan 2013.

  4. NCAA Football Teams. By Howie Long and John Czarnecki from football for dummies. 4th US ed. http://www.dummies.com/how-to/content/ncaa-football-teams.html. Accessed 6 Jan 2013.

  5. Miller JR. Football continues to dominate high school sports despite concussion risk. 2012. http://www.foxnews.com/sports/2012/09/08/football-continues-to-dominate-high-school-sports-despite-concussion-risk/#ixzz2f3otab70. Accessed 6 Jan 2013.

  6. McCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high school football players: implications for prevention. Clin J Sport Med. 2004;14(1):13–7.

    Article  PubMed  Google Scholar 

  7. Talavage TM, Nauman E, Breedlove EL, et al. Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. J Neurotrauma. 2010;765:1–46. doi:10.1089/neu.2010.1512.

    Google Scholar 

  8. Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil. 2006;21(5):375–8.

    Article  PubMed  Google Scholar 

  9. Asken MJ, Schwartz RC. Heading the ball in soccer: what’s the risk of brain injury? Phys Sportsmed. 1998;26(11):11.

    Article  Google Scholar 

  10. Brewer TL, Metzger BL, Therrien B. Trajectories of cognitive recovery following a minor brain injury. Res Nurs Health. 2002;25:269–81.

    Article  PubMed  Google Scholar 

  11. Powell JM, Ferraro JV, Dikmen SS, Temkin NR, Bell KR. Accuracy of mild traumatic brain injury diagnosis. Arch Phys Med Rehabil. 2008;89(8):1550–5.

    Article  PubMed  Google Scholar 

  12. Injury Prevention & Control: Traumatic Brain Injury. http://www.cdc.gov/traumaticbraininjury/statistics.html. Accessed 6 Jan 2013.

  13. Burleigh N. Would football without concussions still be football? 2012. http://observer.com/2012/11/would-football-without-concussions-still-be-football/. Accessed 6 Jan 2013.

  14. Amen D. J Neuropsychiatry Clin Neurosci. 2011. http://www.dignityafterfootball.org/Families.htm. Accessed 6 Jan 2013.

  15. Holbourn AHS. The mechanics of head injuries. Lancet. 1943;2:438–41.

    Article  Google Scholar 

  16. Ommaya AK, Goldsmith W, Thibault L. Biomechanics and neuropathology of adult and paediatric head injury. Br J Neurosurg. 2002;16(3):220–42.

    Article  CAS  PubMed  Google Scholar 

  17. Holbourn AHS. The mechanics of brain injuries. Br Med Bull. 1945;622:147–9.

    Google Scholar 

  18. Advani SH, Ommaya AK, Yang WJ. Head injury mechanisms, characteristics and clinical evaluation. In: Chista D, editor. Human body dynamics. Oxford: Clarendon; 1982. p. 3–37.

    Google Scholar 

  19. Ommaya AK, Thibault LE, Bandak FA. Mechanisms of impact head injury. Int J Impact Eng. 1994;15(4):535–60.

    Article  Google Scholar 

  20. Ommaya AK. Head injury mechanisms and the concept of preventive management: a review and critical synthesis. J Neurotrauma. 1995;12(4):527–46.

    Article  CAS  PubMed  Google Scholar 

  21. Sano K, Nakamura N, Hirakaws K. Mechanism of and dynamics of closed head injuries. Neurol Med Chir. 1967;9:21–3.

    Article  CAS  Google Scholar 

  22. Mendez DR, Corbett R, Macias C, Laptook A. Total and ionized plasma magnesium concentrations in children after traumatic brain injury. Pediatr Res. 2005;57(3):347–52.

    Article  CAS  PubMed  Google Scholar 

  23. Povlishock JT, Katz DI. Update of neuropathology and neurological recovery after traumatic brain injury. J Head Trauma Rehabil. 2005;20(1):76–94.

    Article  PubMed  Google Scholar 

  24. Taber KH, Warden DL, Hurley RA. Blast-related traumatic brain injury: what is known? J Neuropsychiatry Clin Neurosci. 2006;18(2):141–5.

    Article  PubMed  Google Scholar 

  25. Dikmen S, McLean Jr A, Temkin NR, Wyler AR. Neuropsychologic outcome at one-month postinjury. Arch Phys Med Rehabil. 1986;67(8):507–613.

    CAS  PubMed  Google Scholar 

  26. Ingebrigtsen T, Waterloo K, Marup-Jensen S, Attner E, Romner B. Quantification of post-concussion symptoms 3 months after minor head injury in 100 consecutive patients. J Neurol. 1998;245(9):609–12.

    Article  CAS  PubMed  Google Scholar 

  27. McCullagh S, Oucherlony D, Protzner A, Blair N, Feinstein A. Prediction of neuropsychiatric outcome following mild trauma brain injury: an examination of the Glasgow Coma Scale. Brain Inj. 2001;15(6):489–97.

    Article  CAS  PubMed  Google Scholar 

  28. Dean PJA, Sterr A. Long-term effects of mild traumatic brain injury on cognitive performance. Front Hum Neurosci. 2013;7:30.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Thornton K, Carmody D. Traumatic brain injury and the role of the quantitative EEG in the assessment and remediation of cognitive sequelae. In: Carlstedt RA, editor. Integrative clinical psychology, psychiatry and behavioral medicine: perspectives, practices and research. New York, NY: Springer; 2009. p. 463–508.

    Google Scholar 

  30. Wong CH, Rooney SJ, Bonser RS. S-100beta release in hypothermic circulatory arrest and coronary artery surgery. Ann Thorac Surg. 1999;67(6):1911–4.

    Article  CAS  PubMed  Google Scholar 

  31. De Kruijk JR, Leffers P, Menheere PP, Meerhoff S, Rutten J, Twijnstra A. Prediction of post-traumatic complaints after mild traumatic brain injury: early symptoms and biochemical markers. J Neurol Neurosurg Psychiatry. 2002;73(6):727–32.

    Article  PubMed  Google Scholar 

  32. Thornton K. Exploratory analysis: mild head injury, discriminant analysis with high frequency bands (32–64 Hz) under attentional activation conditions & does time heal? J Neurother. 2002;3(3/4):1–10.

    Google Scholar 

  33. Thatcher RW, Biver C, McAlaster R, Salazar A. Biophysical linkage between MRI and EEG coherence in closed head injury. Neuroimage. 1998;8(4):307–26.

    Article  CAS  PubMed  Google Scholar 

  34. Lavoie ME, Dupuis F, Johnston KM, Leclerc S, Lassonde M. Visual p300 effects beyond symptoms in concussed college athletes. J Clin Exp Neuropsychol. 2004;26(1):55–73.

    Article  PubMed  Google Scholar 

  35. Rutgers DR, Toulgoat F, Cazejust J, Fillard P, Lasjaunias P, Ducreux D. White matter abnormalities in mild traumatic brain injury: a diffusion tensor imaging study. Am J Neuroradiol. 2008;29(3):514–9.

    Article  CAS  PubMed  Google Scholar 

  36. Bendlin BB, Ries ML, Lazar M, et al. Longitudinal changes in patients with traumatic brain injury assessed with diffusion-tensor and volumetric imaging. Neuroimage. 2008;2(2):503–14.

    Article  Google Scholar 

  37. Thornton K. Electrophysiology of the reasons the brain damaged subject can’t recall what they hear. Arch Clin Neuropsychol. 2003;17:1–17.

    Article  Google Scholar 

  38. Lew HL, Lee EH, Pan SS, Elaine S. Electrophysiologic abnormalities of auditory and visual information processing in patients with traumatic brain injury. Am J Phys Med Rehabil. 2004;83(6):428–33.

    Article  PubMed  Google Scholar 

  39. Leon-Carrion J, Martin-Rodriguez JF, Damas-Lopez J, Martin JM, Dominguez-Morales Mdel R. A QEEG index of level of functional dependence for people sustaining acquired brain injury: the Seville Independence Index (SINDI). Brain Inj. 2008;22(1):61–74.

    Article  PubMed  Google Scholar 

  40. Thatcher RW, Walker RA, Gerson I, Geisler FH. EEG discriminant analyses of mild head trauma. Electroencephalogr Clin Neurophysiol. 1998;73(2):94–106.

    Article  Google Scholar 

  41. Hughes JR, John ER. Conventional and quantitative electroencephalography in psychiatry. J Neuropsychiatry Clin Neurosci. 1999;11(2):190–208.

    CAS  PubMed  Google Scholar 

  42. Barr WB, Prichep LS, Chabot R, Powell MR, McCrea M. Measuring brain electrical activity to track recovery from sport-related concussion. Brain Inj. 2012;26(1):58–66.

    Article  PubMed  Google Scholar 

  43. Zhou Y, Milham MP, Lui YW, et al. Default-mode network disruption in mild traumatic brain injury. Radiology. 2012;265:882–92.

    Article  PubMed  Google Scholar 

  44. Jasper HH. Report of the committee on methods of clinical examination in electroencephalography. Electroencephalogr Clin Neurophysiol. 1958;10:370–1.

    Article  Google Scholar 

  45. Thornton K, Carmody D. Efficacy of traumatic brain injury rehabilitation: interventions of QEEG-guided biofeedback, computers, strategies, and medications. Appl Psychophysiol Biofeedback. 2008;33(2):101–24.

    Article  PubMed  Google Scholar 

  46. Lundqvist A, Grundström K, Samuelsson K, Rönnberg J. Computerized training of working memory in a group of patients suffering from acquired brain injury. Brain Inj. 2010;24(10):1173–83.

    Article  PubMed  Google Scholar 

  47. Rohling ML, Faust ME, Beverly B, Demakis G. Effectiveness of cognitive rehabilitation following acquired brain injury: a meta-analytic re-examination of Cicerone et al.’s (2000, 2005) systematic reviews. Neuropsychology. 2009;23(1):20–39.

    Article  PubMed  Google Scholar 

  48. Maas AIR, Menon DK, Lingsma HF, Pineda JAM, Sandel E, Manley GT. Re-orientation of clinical research in traumatic brain injury: report of an international workshop on comparative effectiveness research. J Neurotrauma. 2012;29:32–46.

    Article  PubMed  Google Scholar 

  49. Lingsma HF, Roozenbeek B, Li B, Marmarou A, Murray GD, Maas AI, Steyerberg EW. Large between center differences in outcome after moderate and severe traumatic brain injury in the IMPACT study. Neurosurgery. 2011;68:601–7.

    Article  PubMed  Google Scholar 

  50. Shoulson I, et al. Cognitive rehabilitation therapy for traumatic brain injury. Evaluating the evidence. Institute of Medicine of the National Academies. 2011. http://www.iom.edu/CRTforTBI

  51. Leon-Carrion J, Martin-Rodriguez JF, Damas-Lopez J, Barroso y Martin JM, Dominguez-Morales MR. Delta-alpha ratio correlates with level of recovery after neurorehabilitation in patients with acquired brain injury. Clin Neurophysiol. 2009;120(6):1039–45.

    Article  PubMed  Google Scholar 

  52. Stathopoulou S, Lubar JF. EEG changes in traumatic brain injured patients after cognitive rehabilitation. J Neurother. 2004;2:21–51.

    Article  Google Scholar 

  53. Vespa PM, Boscardin WJ, Hovda DA, et al. Early and persistent impaired percent alpha variability on continuous electroencephalography monitoring as predictive of poor outcome after traumatic brain injury. J Neurosurg. 2002;97(1):84–92.

    Article  PubMed  Google Scholar 

  54. Thornton K, Carmody D. Eyes-closed and activation QEEG databases in predicting cognitive effectiveness and the inefficiency hypothesis. J Neurother. 2009;13(1):1–22.

    Article  Google Scholar 

  55. Thornton K. NCLB goals (and more) are attainable with neurocognitive interventions, vol. 1. Charleston, SC: BookSurge Press; 2006.

    Google Scholar 

  56. Schreckenberger M, Lange-Asschenfeldt C, Lochmann M, et al. The thalamus as the generator and modulator of EEG alpha rhythm: a combined PET/EEG study with lorazepam challenge in humans. Neuroimage. 2004;22(2):637–44.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirtley E. Thornton Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thornton, K.E. (2014). The Role of the Quantitative EEG in the Diagnosis and Rehabilitation of the Traumatic Brain Injured Patients. In: Slobounov, S., Sebastianelli, W. (eds) Concussions in Athletics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0295-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0295-8_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0294-1

  • Online ISBN: 978-1-4939-0295-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics