Advertisement

Elements of Nonsmooth Analysis

  • Yury V. Orlov
  • Luis T. Aguilar
Chapter
Part of the Systems & Control: Foundations & Applications book series (SCFA)

Abstract

A differential construct that applies to nonsmooth functions is useful in general. The proximal supergradient admits a very complete calculus for upper semicontinuous functions and perfectly suits the nonsmooth \(\mathcal{L}_{2}\)-gain analysis to be developed in this chapter.

Keywords

Nonsmooth analysis Proximal sub(super)-gradient First-order PDE Viscosity solution Hamilton–Jacobi inequality 

References

  1. 5.
    Anderson, B., Vreugdenhil, R.: Network Analysis and Synthesis. Prentice Hall, Englewood Cliffs (1973)Google Scholar
  2. 14.
    Basar, T., Bernhard, P.: \(\mathcal{H}_{\infty }\)-Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach, 2nd edn. Birkhauser, Boston (1995)Google Scholar
  3. 31.
    Clarke, F.: Optimization and Non-smooth Analysis. Wiley Interscience, New York (1983)Google Scholar
  4. 34.
    Crandall, M., Lions, P.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277, 1–42 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 67.
    Isidori, A., Astolfi, A.: Disturbance attenuation and \(\mathcal{H}_{\infty }\)-control via measurement feedback in nonlinear systems. IEEE Trans. Automat. Contr. 37(9), 1283–1293 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 71.
    Khalil, H.: Nonlinear Systems, 3rd edn. Prentice Hall, Englewood Cliffs (2002)zbMATHGoogle Scholar
  7. 80.
    McEneaney, W.M.: Max-Plus Methods for Nonlinear Control and Estimation. Birkhauser, Boston (2008)Google Scholar
  8. 104.
    Rouche, N., Habets, P., Laloy, M.: Stability Theory by Liapunov’s Direct Method. Applied Mathematical Sciences, vol. 22. Springer, New York (1977)Google Scholar
  9. 117.
    Subbotin, A.: Generalized Solutions of First-Order PDE’s. Birkhauser, Boston (1995)CrossRefGoogle Scholar
  10. 122.
    Van der Shaft, A.: \(\mathcal{L}_{2}\)-Gain analysis of nonlinear systems and nonlinear state feedback control. IEEE Trans. Automat. Contr. 37(6), 770–784 (1992)Google Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Yury V. Orlov
    • 1
  • Luis T. Aguilar
    • 2
  1. 1.Electronics and TelecommunicationCICESE Research CenterEnsenadaMexico
  2. 2.Centro de Investigación y Desarrollo de Tecnología DigitalInstituto Politécnico NacionalTijuanaMexico

Personalised recommendations