The LMI Approach in an Infinite-Dimensional Setting

  • Yury V. Orlov
  • Luis T. Aguilar
Chapter
Part of the Systems & Control: Foundations & Applications book series (SCFA)

Abstract

Extended via the Lyapunov–Krasovskii method to linear time-delay systems (LTDS), the linear matrix inequality (LMI) approach has long been recognized as a powerful analysis tool of such systems. In this chapter, this approach is extended to the stability analysis of LTDSs evolving in a Hilbert space. The operator acting on the delayed state is supposed to be bounded. The system delay is unknown and time-varying, with an a priori given upper bound on the delay. Sufficient exponential stability conditions are derived in the form of linear operator inequalities, where the decision variables are operators in the Hilbert space. When applied to a heat equation and to a wave equation, these conditions are reduced to standard LMIs.

Keywords

Infinite-dimensional system Time-delay system Distributed parameter system Exponential stability Lyapunov–Krasovskii functional LMI 

References

  1. 23.
    Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequality in Systems and Control Theory. Studies in Applied Mathematics. SIAM, Philadelphia (1994)CrossRefGoogle Scholar
  2. 35.
    Curtain, R., Zwart, H.: An Introduction to Infinite-Dimensional Linear Systems. Springer, New York (1995)CrossRefMATHGoogle Scholar
  3. 37.
    Datko, R.: Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks. SIAM J. Control Optim. 26, 697–713 (1988)CrossRefMATHMathSciNetGoogle Scholar
  4. 48.
    Fridman, E.: New Lyapunov–Krasovskii functionals for stability of linear retarded and neutral type systems. Syst. Control Lett. 43, 309–319 (2001)CrossRefMATHMathSciNetGoogle Scholar
  5. 50.
    Fridman, E., Orlov, Y.: Exponential stability of linear distributed parameter systems with time-varying delays. Automatica 45(1), 194–201 (2009)CrossRefMATHMathSciNetGoogle Scholar
  6. 52.
    Fridman, E., Shaked, U.: Delay-dependent stability and \(\mathcal{H}_{\infty }\) control: constant and time-varying delays. Int. J. Control 76(1), 48–60 (2001)CrossRefMathSciNetGoogle Scholar
  7. 55.
    Gouaisbaut, F., Peaucelle, D.: Delay-dependent stability of time delay systems. In: Proceedings of the 5th IFAC Symposium on Robust Control Design, Toulouse (2006)Google Scholar
  8. 58.
    Gu, K., Kharitonov, V., Chen, J.: Stability of Time-Delay Systems. Birkhauser, Boston (2003)CrossRefMATHGoogle Scholar
  9. 59.
    Hale, J., Verduyn Lunel, S.: An Introduction to Functional Differential Equations. Springer, New York (1993)CrossRefGoogle Scholar
  10. 60.
    He, Y., Wang, Q.G., Lin, C., Wu, M.: Delay-range-dependent stability for systems with time-varying delay. Automatica 43(2), 371–376 (2007)CrossRefMATHMathSciNetGoogle Scholar
  11. 64.
    Huang, C., Vanderwalle, S.: An analysis of delay-dependent stability for ordinary and partial differential equations with fixed and distributed delays. SIAM J. Sci. Comput. 25(5), 1602–1632 (2004)CrossRefGoogle Scholar
  12. 65.
    Ikeda, K., Azuma, T., Uchida, K.: Infinite-dimensional LMI approach to analysis and synthesis for linear time-delay systems. Kibenetika 37(4), 505–520 (2001)MATHMathSciNetGoogle Scholar
  13. 71.
    Khalil, H.: Nonlinear Systems, 3rd edn. Prentice Hall, Englewood Cliffs (2002)MATHGoogle Scholar
  14. 73.
    Kolmanovskii, V., Myshkis, A.: Applied Theory of Functional Differential Equations. Kluwer, Dordrecht (1999)Google Scholar
  15. 79.
    Logemann, H., Rebarber, R., Weiss, G.: Conditions for robustness and nonrobustness of the stability of feedback systems with respect to small delays in the feedback loop. SIAM J. Control Optim. 34(2), 572–600 (1996)CrossRefMATHMathSciNetGoogle Scholar
  16. 83.
    Mondie, S., Kharitonov, V.: Output regulation of nonlinear systems. IEEE Trans. Automat. Contr. 50(5), 263–273 (2005)MathSciNetGoogle Scholar
  17. 84.
    Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45(5), 1561–1585 (2006)CrossRefMATHMathSciNetGoogle Scholar
  18. 85.
    Nicaise, S., Pignotti, C.: Stabilization of the wave equations with variable coefficients and boundary condition of memory type. Asymptot. Anal. 50(1–2), 31–67 (2006)MATHMathSciNetGoogle Scholar
  19. 86.
    Niculescu, S.: Delay Effects on Stability: A Robust Control Approach. Lecture Notes in Control and Information Sciences, vol. 269. Springer, London (2001)Google Scholar
  20. 101.
    Rebarber, R., Townley, S.: Robustness with respect to delays for exponential stability of distributed parameter systems. SIAM J. Control Optim. 37(1), 230–244 (1998)CrossRefMathSciNetGoogle Scholar
  21. 102.
    Rebiai, S., Zinober, A.: Stabilization of uncertain distributed parameter systems. Int. J. Control 57(5), 1167–1175 (1993)CrossRefMATHMathSciNetGoogle Scholar
  22. 103.
    Richard, J.P.: Time-delay systems: an overview of some recent advances and open problems. Automatica 39, 1667–1694 (2003)CrossRefMATHMathSciNetGoogle Scholar
  23. 118.
    Sun, X.M., Zhao, J., Hill, D.: Stability and \(l_{2}\)-gain analysis for switched delay systems. Automatica 42, 1769–1774 (2003)CrossRefMathSciNetGoogle Scholar
  24. 126.
    Wang, T.: Stability in abstract functional-differential equations. I. General theorems. J. Math. Anal. Appl. 186(2), 534–558 (1994)CrossRefMATHGoogle Scholar
  25. 127.
    Wang, T.: Stability in abstract functional-differential equations. II. Applications. J. Math. Anal. Appl. 186(3), 835–861 (1994)CrossRefMATHGoogle Scholar
  26. 128.
    Wang, T.: Exponential stability and inequalities of solutions of abstract functional differential equations. J. Math. Anal. Appl. 324, 982–991 (2006)CrossRefMATHMathSciNetGoogle Scholar
  27. 135.
    Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Yury V. Orlov
    • 1
  • Luis T. Aguilar
    • 2
  1. 1.Electronics and TelecommunicationCICESE Research CenterEnsenadaMexico
  2. 2.Centro de Investigación y Desarrollo de Tecnología DigitalInstituto Politécnico NacionalTijuanaMexico

Personalised recommendations