Advertisement

Electrodeposition and Characterization of Alloys and Composite Materials

Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 57)

Abstract

It is general experience in materials science that alloy can exhibit qualities that are unobtainable with parent metals. This is particularly true for electrodeposited alloys. Some important properties of materials, such as hardness, ductility, tensile strength, Young’s modulus, corrosion resistance, solderability, wear resistance, and antifriction service, may be enhanced. At the same time some properties that are not characteristic for parent metals, such as high magnetic permeability, other magnetic and electrical properties, amorphous structure, etc., can also be obtained. In some cases alloy coatings may be more suitable for subsequent electroplate overlayers and conversion chemical treatments [1].

Keywords

Noble Metal Composite Coating Intermediate Layer Reversible Potential Alloy Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia through the Project No. 172054/2011.

The authors also wish to express their gratitude to the Department of Research and Development of De Nora Industries S.p.A. for providing equipment for electrodeposition of Ni–MoO2 coatings.

References

  1. 1.
    Despić AR, Jović VD (1995) Electrochemical Deposition and Dissolution of Alloys and Metal Composites – Fundamental Aspects. In: White RE, Bockris JO’M, Conway BE (eds) Modern Aspects of Electrochemistry. vol. 27, Plenum Press, New York, pp. 143–232Google Scholar
  2. 2.
    De Ruolz M (1842) C R Acad Sci 15:1140Google Scholar
  3. 3.
    Srivastava RD, Mukerjee RC (1976) J Appl Electrochem 6:321Google Scholar
  4. 4.
    Brenner A (1963) Electrodeposition of Alloys: Principle and practice. Academic Press, New YorkGoogle Scholar
  5. 5.
    Bondar VV, V. Grimina V, Pavlov VN (1980) Itogi nauki i tehniki, Elektrokhimiya. vol. 16, Izd. Viniti, MoscowGoogle Scholar
  6. 6.
    Spitzer F (1905) Z Electrochem 11:345Google Scholar
  7. 7.
    Schlötter M (1914) Die Elektrolytische darstellung von Legierungen aus wässserigen Lösungen (Sammlung Vieweg, Tagesfragen aus den Gebieten Naturwiss. U. der Technik, No. 19). In: Kremann R (ed), Vieweg, BraunschweigGoogle Scholar
  8. 8.
    Gorbunova KM, Polukarov YuM (1976) In: Tobias CW (ed) Advances in Electrochemistry and Electrochemical Engineering. vol. 5, John Willey and Sons Inc., New YorkGoogle Scholar
  9. 9.
    Fedoteev NP, Bibikor NN, Vyacheslavov PM, Grilihes CYa (1962) Elektroliticheskie Splavy, MASHGIZ, MoscowGoogle Scholar
  10. 10.
    Faust CL (1963) In: Lowenheim FA (ed) Modern Electroplating, Ch. 18, John Wiley and Sons Inc., New YorkGoogle Scholar
  11. 11.
    Reinders W (1902) Z Physik Chem 42:225Google Scholar
  12. 12.
    Pushin N (1907) Z Anorg Chem 56:1Google Scholar
  13. 13.
    Lačnjevac U, Jović BM, Jović VD (2012) J Electrochem Soc 159: D310Google Scholar
  14. 14.
    Handbook of Chemistry and Physics (1976–1977) 57th edition, Weast RC (ed), CRC Press Inc., Cleveland, pp. D141–146Google Scholar
  15. 15.
    Jović VD, Tošić N (1998) J Electroanal Chem 441:69Google Scholar
  16. 16.
    Daen JA (1999) Lange’s Handbook of Chemistry 15th Edition, McGraw-Hill Inc., New YorkGoogle Scholar
  17. 17.
    Duffield JR, Williams DR, Kron I (1991) Polyhedron 10:377Google Scholar
  18. 18.
    Turyan IYa, Kravtsov VI, Kondratev VV (1986) Elektrokhimiya 22:1388; 1618Google Scholar
  19. 19.
    Orekhova VV, Andryuschenko FK, Sakhnenko ND (1980) Elektrokhimiya 16:1304Google Scholar
  20. 20.
    Han C, Liu Q, Ivey DG (2008) Electrochim Acta 53:8332Google Scholar
  21. 21.
    Jović VD, Lačnjevac U, Jović BM, Karanović Lj, Krstajić NV (2012) Int J Hydrogen Energy 37:17882Google Scholar
  22. 22.
    Delahay P (1954) New Instrumental Methods in Electrochemistry, Interscience, New YorkGoogle Scholar
  23. 23.
    Jović VD, Stojanović MV, Jović BM, Gajić-Krstajić Lj (1992) J Serb Chem Soc 57:951Google Scholar
  24. 24.
    Jović VD, Tošić N, Stojanović M (1997) J Electroanal Chem 420:43Google Scholar
  25. 25.
    Dahms H, Croll J (1965) J Electrochem Soc 112:771Google Scholar
  26. 26.
    Higashi K, Fukushima H, Urakawa T, Adaniya T, Matsuko K (1981) J Electrochem Soc 128:2081Google Scholar
  27. 27.
    Horkans T (1979) J Electrochem Soc 126:1861Google Scholar
  28. 28.
    Horkans T (1981) J Electrochem Soc 128:45Google Scholar
  29. 29.
    Podlaha EJ, Landolt D (1996) J Electrochem Soc 143:885Google Scholar
  30. 30.
    Podlaha EJ, Landolt D (1996) J Electrochem Soc 143:893Google Scholar
  31. 31.
    Podlaha EJ, Landolt D (1997) J Electrochem Soc 144:1672Google Scholar
  32. 32.
    Marlot A, Kern P, Landolt D (2002) Electrochim Acta 48:29Google Scholar
  33. 33.
    Zeng Y, Li Z, Ma M, Zhou S (2000) Electrochem Comm 2:36Google Scholar
  34. 34.
    Sanches LS, Domingues SH, Carubelli A, Mascaro LH, J Braz Chem Soc 14: 556Google Scholar
  35. 35.
    Jović VD, Jović BM, Lačnjevac U, Branković G, Bernik S, Rečnik A (2010) Electrochim Acta 55:4188Google Scholar
  36. 36.
    Grgur BN, Krstajić NV, Elezović N, Jović VD (2005) J Serb Chrem Soc 70:879Google Scholar
  37. 37.
    Evans UR (1928) J Inst Metals 40:99Google Scholar
  38. 38.
    Glazunov A (1953) Metallic Protective Coatings 21:1262Google Scholar
  39. 39.
    Steigerwald RF, Greene ND (1962) J Electrochem Soc 109:1026Google Scholar
  40. 40.
    Pickering HW, Wagner C (1967) J Electrochem Soc 114:698Google Scholar
  41. 41.
    Pickering HW (1968) J Electrochem Soc 115:690Google Scholar
  42. 42.
    Pickering HW, Byrne PJ (1971) J Electrochem Soc 118:209Google Scholar
  43. 43.
    Holliday JE, Pickering HW (1973) J Electrochem Soc 120:470Google Scholar
  44. 44.
    Bockris JO’M, Rubin BT, Despić A, Lovreček B (1972) Electrochim Acta 17:973Google Scholar
  45. 45.
    Mance A, Mihajlović A (1980) J Appl Electrochem 10:967Google Scholar
  46. 46.
    Lee HP, Nobe K (1984) J Electrochem Soc 131:1236Google Scholar
  47. 47.
    Petro I, Mallat T, Syabo A, Hange F (1984) J Electroanal Chem 160:289Google Scholar
  48. 48.
    Shapovalov ET, Baranova LI, Yektser O (1988) Elektrokhimicheskie metody v metallovodenii i fazovom analize, Izd. Metallurgya, MoscowGoogle Scholar
  49. 49.
    Stevanović J, Skibina L, Stefanović M, Despić A, Jović VD (1992) J Appl Electrochem 22:172Google Scholar
  50. 50.
    Swathirajan S (1986) J Electrochem Soc 133:671Google Scholar
  51. 51.
    Jović VD, Zejnilović RM, Despić AR, Stevanović JS (1988) J Appl Electrochem 18:511Google Scholar
  52. 52.
    Swathirajan S (1987) J Electroanal Chem 221:211Google Scholar
  53. 53.
    Andricacos PC, Tabib J, Romankiw LT (1988) J Electrochem Soc 135:1172Google Scholar
  54. 54.
    Andricacos PC, Avana C, Tabib J, Duković J, Romankiw LT (1989) J Electrochem Soc 136:1336Google Scholar
  55. 55.
    Wong KH, Andricacos PC (1990) J Electrochem Soc 137:1087Google Scholar
  56. 56.
    Horkans J, I-Chia Hsu Chang, Andricacos PC, Podlaha EJ (1991) J Electrochem Soc 138:411Google Scholar
  57. 57.
    Jović VD, Despić AR, Stevanović JS, Spaić S (1989) Electrochim Acta 34:1093Google Scholar
  58. 58.
    Jović VD, Spaić S, Despić AR, Stevanović JS, Pristavec M (1991) Mater Sci Technol 7:1021Google Scholar
  59. 59.
    Skibina L, Stevanović J, Despić AR (1991) J Electroanal Chem 310:391Google Scholar
  60. 60.
    Stevanović R, Kovrigina I, Despić AR (1991) J SerbChem Soc 56:217Google Scholar
  61. 61.
    Despić AR, Electrochemistry in Transition from the 20th to the 21st Century. In: Murphy OJ, Srinivasan S, Conway BE (1992) Plenum Press, New York, p.453.Google Scholar
  62. 62.
    Jović VD, Jović BM, Despić AR (1993) J Electroanal Chem 357:357Google Scholar
  63. 63.
    Raub E, Engel A (1950) Z Metallk 41:485Google Scholar
  64. 64.
    Jović VD, Jevtić V (1996) J Serb Chem Soc 61:479Google Scholar
  65. 65.
    Jović VD, Jevtić V (1998) Electrochim Acta 43:63Google Scholar
  66. 66.
    Fedotev NP, Vyacheslavov PM (1970) Plating 3:700Google Scholar
  67. 67.
    Hansen M, Andrenko K (1958) Constitution of binary alloys. Mc Graw-Hill Book Company, Inc., New York, Toronto, LondonGoogle Scholar
  68. 68.
    Köster W, Hern E (1952) Z Metallk 43:333Google Scholar
  69. 69.
    Lewkonja K (1980) Z Anorg Chem 59:322Google Scholar
  70. 70.
    Westgren A, Ekman W (1930) Arkiv kemi, Mineral Geol B10:1Google Scholar
  71. 71.
    Lihl F, Buhl E (1955) Z. Metallkunde 46:787Google Scholar
  72. 72.
    Jović BM, Dobrovolska Ts, Lačnjevac U, Krastev I, Jović VD (2009) Electrochim Acta 54:7565Google Scholar
  73. 73.
    Porter D, Easterling KA (1980) Phase Transformations in Metals and Alloys, Van Nostrand Reinhold, WokinghamGoogle Scholar
  74. 74.
    Spitzer F (1905) Z Electrochem Angew Physik Chem 23:345Google Scholar
  75. 75.
    Rotinyan AL, Molotkova EN (1959) Zh Prikl Khim 11:2502Google Scholar
  76. 76.
    Thierer Ch, (1951) Gmelin Handbuch der anorganischen Chemie, System 65A(5), Weinheim/Bergstrasse, Verlag Chemie, p.653Google Scholar
  77. 77.
    Savitski EM, Pravoverov NL (1961) Zh Neorg Khim 76:499Google Scholar
  78. 78.
    Sturzenegger B, Puippe JC (1984) Platinum Met Rev 28:117Google Scholar
  79. 79.
    Dobrovolska Ts, Jović VD, Jović BM, Krastev I (2007) J Electroanal Chem 611:232Google Scholar
  80. 80.
    Dobrovolska Ts, Krastev I, Jović BM, Jović VD, Beck G, Lačnjevac U, Zielonka A (2011) Electrochim Acta 56:4344Google Scholar
  81. 81.
    Weibke F, Eggers H (1935) Z Anorg Chem 222:145Google Scholar
  82. 82.
    Campbell AN, Wagemann R, Ferguson RB (1970) Can J Chem 48:1703Google Scholar
  83. 83.
    Dobrovolska Ts, Krastev I, Zielonka A (2005) J Appl Electrochem 35:1245Google Scholar
  84. 84.
    Dobrovolska Ts, Veleva L, Krastev I, Zielonka A (2005) J Electrochem Soc 152 :C137Google Scholar
  85. 85.
    Stevanović JS, Jović VD, Despić AR (1993) 349:365Google Scholar
  86. 86.
    Dobrovolska Ts, Krastev I, Zielonka A (2010) ECS Trans 25:1Google Scholar
  87. 87.
    Petrauskas A, Grincevičiene L, Češuniene A, Juškenas R (2005) Electrochim Acta 50:1189Google Scholar
  88. 88.
    Elkhatabi F, Benballa M, Sarret M, Müler C (1999) Electrochim Acta 44:1645Google Scholar
  89. 89.
    Stevanović J, Gojković S, Despić A, Obradović M, Nakić V (1998) Electrochim Acta 43:705Google Scholar
  90. 90.
    Stevanović J, Despić A, Poleti D (1995) J Serb Chem Soc 60:285Google Scholar
  91. 91.
    Bajat JB, Stanković S, Jokić BM, Stevanović SI (2010) Surf Coat Techn 204:2745Google Scholar
  92. 92.
    Low CTJ, Wills RGA, Walsh FC (2006) Surf Coat Techn 201:371Google Scholar
  93. 93.
    Metcalfe AG (1974) Interfaces in Metal Composites. Academic Press, New York, p. 65Google Scholar
  94. 94.
    Meyer WR, Phillips A (1938) Trans Electrochem Soc 73:377Google Scholar
  95. 95.
    Aotani K (1953) J Electrochem Soc Jpn 21:180Google Scholar
  96. 96.
    Mikhalev PF (1939) C R Acad Sci URSS 24:899Google Scholar
  97. 97.
    Cohen U, Koch FB, Sard R (1983) J Electrochem Soc 130:1987Google Scholar
  98. 98.
    Tench D, White J (1984) Metall Trans 15A:2039Google Scholar
  99. 99.
    Ogden C (1986) Plating Surf Finish 73:130Google Scholar
  100. 100.
    Verbruge MW, Tobias CW (1985) J Electrochem Soc 132:1298Google Scholar
  101. 101.
    Despić AR, Jović VD (1987) J Electrochem Soc 134:3004Google Scholar
  102. 102.
    Despić AR, Jović VD, Spaić S (1989) J Electrochem Soc 136:1651Google Scholar
  103. 103.
    Despić AR, Trišović T (1993) J Appl Electrochem 23:662Google Scholar
  104. 104.
    Power CP, Ritchie IM (1975). In: Conway BE, Bockris JO’M (eds) Modern Aspects of Electrochemistry vol. 11, Plenum Press, New YorkGoogle Scholar
  105. 105.
    Yahalom J, Zadok O (1987) J Mater Sci 22:499Google Scholar
  106. 106.
    Lashmore DS, Dariel MP (1988) J Electrochem Soc 135:1218Google Scholar
  107. 107.
    Tench DM, White JD (1990) J Electrochem Soc 137:3061Google Scholar
  108. 108.
    Tench M, White J (1991) J Electrochem Soc 138:375Google Scholar
  109. 109.
    Ebrahimi F, Liscano AJ (2001) Mat Sci Eng A301:23Google Scholar
  110. 110.
    Yang C–C, Cheh HY (1995) J Electrochem Soc 142:3034Google Scholar
  111. 111.
    Yang C–C, Cheh HY (1995) J Electrochem Soc 142:3040Google Scholar
  112. 112.
    Roy S, Landolt D (1995) J Electrochem Soc 142:3021Google Scholar
  113. 113.
    Bradley PE, Landolt D (1997) Electrochim Acta 42:993Google Scholar
  114. 114.
    Despić AR, Jović VD, Tošić N (1998) Surf Coat Techn 105:206Google Scholar
  115. 115.
    Oberle RR, Cammarata RC (1995) Scr Metall Et Mater 32:583Google Scholar
  116. 116.
    Cammarata RC, Schleisinger TE, Kim C, Qadri SB, Edelstein AS (1990) Appl Phys Lett 56:1862Google Scholar
  117. 117.
    Meneyes S, Anderson DP (1990) J Electrochem Soc 137:440Google Scholar
  118. 118.
    Simunovich D, Schleisinger M, Snyder DD (1994) J Electrochem Soc 141:L10Google Scholar
  119. 119.
    Cziraki A, Pierron–Bohnes V, Ulhaq–Bouillet C, Toth–Kadar E, Bakonyi I (1998) Thin Solid Films 318:239Google Scholar
  120. 120.
    Bakonyi I, Toth–Kadar E, Becsei T, Toth J, Tarnoczi T, Cziraki A, Geröcs I, Nabiyouni G, Schwarzacher W (1996) J Magn Magn Mater 156:347Google Scholar
  121. 121.
    Bird KD, Schleisinger M (1995) J Electrochem Soc 142:L65Google Scholar
  122. 122.
    Hart R, Alper M, Attenborough K, Schwarzacher W (1994). In: Romankiw LT, Herman DAJr (eds) Proc. 3rd Int. Symp. on Magnetic Mater. Processes and Devices, Electrodeposition Division of the Electrochem. Soc., vol. 94-96, Pennington, p. 215.Google Scholar
  123. 123.
    Hua SZ, Lashmore DS, Salamanca–Riba L, Schwarzacher W, Swartzendruber LJ, McMichael RD, Bennett LH, Hart R (1994) J Appl Phys 76:6519Google Scholar
  124. 124.
    Cattarin S, Musiani M (2007) Electrochim Acta 52:2796Google Scholar
  125. 125.
    Anani A, Mao , Srinivasan S, Appleby AJ (1991) J Appl Electrochem 21:683Google Scholar
  126. 126.
    Iwakura C, Furukawa N, Tanaka M (1992) Electrochim Acta 37:757Google Scholar
  127. 127.
    Miao HJ, Piron DL (1993) Electrochim Acta 38:1079Google Scholar
  128. 128.
    Iwakura C, Tanaka M, Nakamatsu S, Noue H, Matsuoka M, Furukawa N (1995) Electrochim Acta 40:977Google Scholar
  129. 129.
    Gierlotka G, Rowinski E, Budniok A, Lagiewka E (1997) J Appl Electrochem 27:1349Google Scholar
  130. 130.
    Assuncao NA, De Giz MJ, Tremiliosi–Filho G, Gonzalez ER (1997) J Electrochem Soc 144:2794Google Scholar
  131. 131.
    Tavares AC, Trasatti S (1998). In: S.A. Sealey SA (ed.) Modern Chlor-Alkali Technology, vol. 7, SCI, London, p. 65Google Scholar
  132. 132.
    Baruffaldi C, Cattarin S, Musiani M (2003) Electrochim Acta 48:3921Google Scholar
  133. 133.
    Panek J, Serek A, Budniok A, Rowinski E, Lagiewka E (2003) Int J Hydrogen Energy 28:169Google Scholar
  134. 134.
    Losiewicz B, Budniok A, Rowinski E, Lagiewka E, Lasia A (2003) J Appl Electrochem 34:507Google Scholar
  135. 135.
    Olesky M, Budniok A, Niedbala J, Matyja P (1994) Electrochim Acta 39:2439Google Scholar
  136. 136.
    Musiani M (1996) Chem Commun 2403Google Scholar
  137. 137.
    Musiani M, Furlanetto F, Guerriero P (1997) J Electroanal Chem 437:131Google Scholar
  138. 138.
    Musiani M, Guerriero P (1998) J Electrochem Soc 145:549Google Scholar
  139. 139.
    Musiani M, Furlanetto F, Guerriero P (1998) J Electrochem Soc 145:555Google Scholar
  140. 140.
    Musiani M, Guerriero P (1998) Electrochim Acta 44:1499Google Scholar
  141. 141.
    Bertoncello R, Furlanetto F, Guerriero P, Musiani M (1999) Electrochim Acta 44:4061Google Scholar
  142. 142.
    Musiani M, Furlanetto F, Bertoncello R (1999) J Electroanal Chem 465:160Google Scholar
  143. 143.
    Bertoncello R, Cattarin S, Frateur I, Musiani M (2000) J Electroanal Chem.492:145Google Scholar
  144. 144.
    S. Cattarin, P. Guerriero, M. Musiani, Electrochim. Acta 46 (2001)4229.Google Scholar
  145. 145.
    Huet F, Musiani M, Nogueira RP (2003) Electrochim Acta 48:3981Google Scholar
  146. 146.
    Vazquez–Gomez L, Cattarin S, Guerriero P, Musiani M (2007) Electrochim Acta 52:8055Google Scholar
  147. 147.
    Vazquez–Gomez L, Cattarin S, Guerriero P, Musiani M (2009) J Electroanal Chem 634:42Google Scholar
  148. 148.
    Antozzi AL, Bargioni C, Iacopeti L, Musiani M, Vazquez–Gomez L (2008) Electrochim Acta 53:7410Google Scholar
  149. 149.
    Jović VD, Lačnjevac U, Jović BM, Gajić-Krstajić Lj, Krstajić NV, (2013) J Serb Chem Soc 78:689Google Scholar
  150. 150.
    Krstajić NV, Lačnjevac U, Jović BM, Mora S, Jović VD (2011) Int J Hydrogen Energy 36:6450Google Scholar
  151. 151.
    Jović VD, Lačnjevac U, Jović BM, Krstajić NV (2012) Electrochim Acta 63:124Google Scholar
  152. 152.
    Lačnjevac UČ, Jović BM, Jović VD, Krstajić NV (1012) J Electroanal Chem 677: 31Google Scholar
  153. 153.
    Jović BM, Lačnjevac U, Jović VD, Gajić-Krstajić Lj, Krstajić NV (2012) J Serb Chem Soc 77:211Google Scholar
  154. 154.
    Nagamura M, Ukihashi H, Shiragami O (1983). In: Jackson C (ed) Modern Chlor-Alkali Technology, vol. 2, Ellis Horwood, Chichester, p. 61Google Scholar
  155. 155.
    Grove DE (1986) In: Wall K (ed) Modern Chlor-Alkali Technology, vol. 3, Ellis Horwood, Chichester, p. 250Google Scholar
  156. 156.
    Trasatti S (1992). Electrocatalysis of hydrogen evolution: Progress in cathode activation. In: Gerischer H, Tobias CW (eds), Advances in Electrochemical Science and Engineering, Weinheim, Wiley-VCH Verlag GmbH, p. 1Google Scholar
  157. 157.
    Iwakura C, Tanaka M, Nakamatsu S, Noue H, Matsuoka M, Furukawa N (1995) Electrochim Acta 40:977Google Scholar
  158. 158.
    Rausch S, Wendt H (1995) J Appl Electrochem 22:1025Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • V. D. Jović
    • 1
  • U. Č. Lačnjevac
    • 1
  • B. M. Jović
    • 1
  1. 1.Department of Materials ScienceInstitute for Multidisciplinary ResearchBelgradeSerbia

Personalised recommendations