The Evo–Eco Approach to Behaviour Change

  • Robert AungerEmail author
  • Valerie Curtis
Part of the Advances in the Evolutionary Analysis of Human Behaviour book series (AEAHB, volume 1)


We introduce a new approach to behaviour change called ‘Evo–Eco’ because of its intellectual roots in evolutionary biology and ecological psychology. This approach is based on the inference that brains evolved to provide adaptive behavioural responses to rapidly changing or complex environmental conditions. From this foundation, we develop a model with three basic components: the environment, which presents some challenge or opportunity to the individual; the brain, which produces potential responses to that challenge; and the body, which engages in interactions with the environment (i.e. produces behaviour) that changes that environment. The behaviours of interest to behaviour-change professionals typically occur in particular settings, which can be seen as a context within which these basic components interact. We report how the approach has been used to develop public health programmes, as well as to make novel predictions about behavioural causes (i.e. placement of new target behaviours within a routine) which have proved to impact on the ability to change a behaviour. The Evo–Eco approach thus deserves to be used by public health workers and others to change behaviour.


Behaviour change Evolutionary psychology Health psychology Behavioural economics Behaviour settings Motives Formative research 



Thanks to Adam Biran, Micheal de Barra, Katie Greenland, Sharon Guten, Gaby Judah, Hans-Joachim Mosler, Helen Trevaskis, Robert West, Allan Wicker, two anonymous referees and the editors for contributing to earlier versions of this work.


  1. Abramson, C. (1994). A primer of invertebrate learning: The behavioral perspective. Washington, DC: American Psychological Association.Google Scholar
  2. Armitage, C. J., & Conner, M. (2001). Efficacy of the theory of planned behaviour: A meta-analytic review. British Journal of Social Psychology, 40, 471–499.Google Scholar
  3. Atran, S. (1998). Folk biology and the anthropology of science: Cognitive universals and cultural particulars. Behavioral and Brain Sciences, 21(4), 547–569.Google Scholar
  4. Aunger, R., & Valerie, C. (accepted). Gaining control: The Evolution of Complex Behaviour in Humans. Oxford:Oxford University Press.Google Scholar
  5. Aunger, R. (2007). Toothbrushing as routine behaviour. International Dental Journal, 57, 364–376.Google Scholar
  6. Aunger, R. (2010b). Types of technology. Technological Forecasting and Social Change, 77, 762–782.Google Scholar
  7. Aunger, R., & Curtis, V. (2008). Kinds of behaviour. Biology and Philosophy, 23(3), 317–345.Google Scholar
  8. Aunger, R., & Curtis, V. (2013). The anatomy of motivation: An evolutionary ecological approach. Biological Theory, 8, 49–63.Google Scholar
  9. Aunger, R., & Curtis, V. (in press). Gaining control: Major transitions in the evolution of human behaviour. Oxford: Oxford University Press.Google Scholar
  10. Baars, B. (1997). In the theater of consciousness: The workspace of the mind. New York: Oxford University Press.Google Scholar
  11. Balleine, B. W., & O’Dohety, J. P. (2010). Human and rodent homologies in action control: Corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 35, 48–69.Google Scholar
  12. Bandura, A. (1965). Vicarious processes: A case of no-trial learning. Advances in Experimental Social Psychology, 2, 1–55.Google Scholar
  13. Barker, R. G. (1968). Ecological Psychology: Concepts and methods for studying the environment of human behavior. Palo Alto, CA: Stanford University Press.Google Scholar
  14. Barker, R. G., & Schoggen, P. (1973). Qualities of community life: Methods of measuring environment and behavior applied to an American and an English town. San Francisco: Jossey-Bass.Google Scholar
  15. Barlow, G. (1977). Modal action patterns. In G. Barlow & T. Sebeok (Eds.), How animals communicate (pp. 98–134). Bloomington: Indiana University Press.Google Scholar
  16. Barrett, L. (2011). Beyond the brain: How body and environment shape animal and human minds. Princeton: Princeton University Press.Google Scholar
  17. Baumeister, R. F., & Tierney, J. (2012). Willpower: Rediscovering the Greatest Human Strength. London: Penguin Press.Google Scholar
  18. Baumeister, R. F., Vohs, K. D., & Funder, D. C. (2007). Psychology as the science of self-reports and finger movements: Whatever happened to actual behavior? Perspectives on Psychological Science, 2(4), 396–403.Google Scholar
  19. Biran, A., Schmidt, W.-P., Divya, R., Sanker, K. G., Aunger, R., Mario V., & Curtis, V. (accepted). A randomized, controlled intervention trial of a village-level intervention to promote handwashing with soap in rural Indian households. Lancet Global Health.Google Scholar
  20. Boehm, C. (1999). Hierarchy in the forest: The evolution of egalitarian behavior. Cambridge, MA: Harvard University Press.Google Scholar
  21. Boyer, P., & Lienard, P. (2006). Why ritualized behavior? Precaution systems and action-parsing in developmental, pathological and cultural rituals. Behavioral and Brain Sciences, 29, 1–56.Google Scholar
  22. Burghardt, G. M. (2005). The genesis of animal play. Cambridge, MA: MIT Press.Google Scholar
  23. Butler, A. B. (2001). Brain evolution and comparative neuroanatomy. Encyclopedia of the life sciences (pp. 1–8). London: Macmillan Publishers.Google Scholar
  24. Cairncross, S., Bartram, J., Cumming, O., & Brocklehurst, C. (2010). Hygiene, sanitation, and water: What needs to be done? PLoS Medicine, 7(11), e1000365.Google Scholar
  25. Chamberlin, J. (2011). Cease fire. Monitor on Psychology, 42(6), 84.Google Scholar
  26. Cherry, M. G., Brown, J. M., Bethell, G. S., Neal, T., & Shaw, N. J. (2012). Features of educational interventions that lead to compliance with hand hygiene in healthcare professionals within a hospital care setting. A BEME systematic review: BEME Guide No. 22. Medical Teacher, 34(6), 406–420.Google Scholar
  27. Clark, A. (1997). Being there: Putting brain body and world together again. Cambridge, MA: MIT Press.Google Scholar
  28. Coleman, J. (1990). Foundations of social theory. Cambridge, MA: Belknap Press.Google Scholar
  29. Cunningham, R. (2009). Gruesome photos on cigarette packages reduce tobacco use. Bulletin of the World Health Organization, 87(8), 569–569.Google Scholar
  30. Curtis, V. (2013). Don’t look, don’t touch, don’t eat: The science behind revulsion. Chicago: University of Chicago Press.Google Scholar
  31. Curtis, V., Cousens, S., Mertens, T., Traoré, E., Kanki, B., & Diallo, I. (1993). Structured observations of hygiene in Burkina Faso, validity, variability and utility. Bulletin of the World Health Organisation, 71(1), 23–32.Google Scholar
  32. Curtis, V., Kanki, B., Cousens, S., Diallo, I., Kpozehouen, A., Sangaré, M., & Nikiema, M. (2001). Evidence for behaviour change following a hygiene promotion programme in West Africa. Bulletin of the World Health Organisation, 79(6), 518–526.Google Scholar
  33. Curtis, V., Danquah, L. & Aunger, R. (2009). Planned, motivated and habitual hygiene behaviour: An eleven country review. Health Education Research 24 (4): 655–673.Google Scholar
  34. Curtis, V., Schmidt, W., Luby, S., Florez, R., ToureÌ, O., & Biran, A. (2011). Hygiene: New hopes, new horizons. Lancet Infectious Diseases, 11, 312–321.Google Scholar
  35. Daw, N. D., & Shohamy, D. (2008). The cognitive neuroscience of motivation and learning. Social Cognition, 26(5), 593–620.Google Scholar
  36. Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8, 1704–1711.Google Scholar
  37. Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011). Model-based influences on humans’ choices and striatal prediction errors. Neuron, 69(6), 1204–1215.Google Scholar
  38. Dayan, P., Niv, Y., Seymour, B., & Daw, D. N. (2006). The misbehavior of value and the discipline of the will. Neural Networks, 19(8), 1153–1160.Google Scholar
  39. Dickinson, A. (1985). Actions and habits: The development of behavioral autonomy. Philosophical Transactions of the Royal Society B, 308, 67–78.Google Scholar
  40. Dickinson, A., & Balleine, B. (2002). The role of learning in the operation of motivational systems. In H. Pashler & R. Gallistel (Eds.), Stevens’ handbook of experimental psychology. (Third Edition) Vol. 3. Learning, motivation, and emotion (pp. 497–534). New York: John Wiley & Sons.Google Scholar
  41. Eichenbaum, H. (2000). Declarative memory. Nature Reviews Neuroscience, 1, 41–50.Google Scholar
  42. Eilam, D., Zor, R., Szechtman, H., & Hermesh, H. (2006). Ritual, stereotypy and compulsive behavior in animals and humans. Neuroscience and Biobehavioral Reviews, 30, 456–471.Google Scholar
  43. Engle, P. L., Black, M. M., Behrman, J. R., Cabral de Mello, M., Gertler, P. J., Kapiriri, L., Young, & M., E. (2007). Strategies to avoid the loss of developmental potential in more than 200 million children in the developing world. Lancet, 369(9557), 229–242.Google Scholar
  44. Everitt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nature Neuroscience, 8, 1481–1489.Google Scholar
  45. Falomir, J. M., & Invernizzi, F. (1999). The role of social influence and smoker identity in resistance to smoking cessation. Swiss Journal of Psychology, 58, 73–84.Google Scholar
  46. Fishbein, M., & Ajzen, I. (2010). Predicting and changing behavior: The reasoned action approach. New York: Psychology Press.Google Scholar
  47. Fishbein, M., Triandis, H., & Kanfer, F. (2001). Factors influencing behaviour and behaviour change. In A. E. Baum, T. A. Revensen, & J. E. Singer (Eds.), Handbook of health psychology (pp. 3–17). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  48. Flay, B. R., Snyder, F., & Petraitis, J. (2009). The theory of triadic influence. In R. J. DiClemente, M. C. Kegler, & R. A. Crosby (Eds.), Emerging theories in health promotion practice and research (2nd ed., pp. 451–510). New York: Jossey-Bass.Google Scholar
  49. Fleischman, D. S., Webster, G. D., Judah, G., Barra, M., Aunger, R., & Curtis, V. (2011). Sensor recorded changes in rates of hand washing with soap in response to the media reports of the H1N1 pandemic in Britain. BMJ Open, 1(2), e000127.Google Scholar
  50. Freeman, W. J. (1999). How the brain makes up its mind. London: Weidenfeld and Nicholson.Google Scholar
  51. Galef, B. G. Jr, & Laland, K. N. (2005). Social learning in animals: Empirical studies and theoretical models. BioScience, 55(6), 489–499.Google Scholar
  52. Garcia, J., & Koelling, R. (1966). Relation of cue to consequence in avoidance learning. Psychonomic Science, 4, 123–124.Google Scholar
  53. Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton-Mifflin.Google Scholar
  54. Greif, M. L., Nelson, D. G. K., Keil, F. C., & Gutierrez, F. (2006). What do children want to know about animals and artifacts? Domain-specific requests for information. Psychological Science, 17(6), 455–459.Google Scholar
  55. Hargreaves, T. (2011). Practice-ing behaviour change: Applying social practice theory to pro-environmental behaviour change. Journal of Consumer Culture, 11(1), 79–99.Google Scholar
  56. Hebb, D. O. (1949). The organization of behavior. New York: John Wiley and Sons.Google Scholar
  57. Hirschfeld, L. (2001). On a folk theory of society: Children, evolution, and mental representations of social groups. Personality & Social Psychology Review, 5, 107–117.Google Scholar
  58. Huey, R., Hertz, P., & Sinervo, B. (2003). Behavioral drive versus behavioral inertia in evolution: A null model approach. American Naturalist, 161, 357–366.Google Scholar
  59. Hull, C. L. (1943). Principles of behavior: An introduction to behavior theory. New York: Appleton-Century Co.Google Scholar
  60. Hutchins, E. (1995). Cognition in the wild. Cambridge, MA: MIT Press.Google Scholar
  61. Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415–427.Google Scholar
  62. Inagaki, K., & Hatano, G. (2006). Young children’s conception of the biological world. Current Directions in Psychological Science, 15(4), 177–181.Google Scholar
  63. James, W. (1884). What is an emotion? Mind, 19, 188–204.Google Scholar
  64. Jenkins, M., & Curtis, V. (2005). Achieving the ‘good life’: Why some people want latrines in rural Benin. Social Science and Medicine, 61, 2446–2459.Google Scholar
  65. Judah, G., Aunger, R., Curtis, V., Schmidt, W.-P., & Michie, S. (2009). Experimental pre-testing of potential public health interventions: The case of handwashing with soap. American Journal of Pubic Health, 99, S405–S411.Google Scholar
  66. Judah, G., Gardner-Sood, B., & Aunger, R. (2012). Forming a flossing habit: An investigation into the psychological determinants of habit formation. British Journal of Health Psychology, 18, 338–353.Google Scholar
  67. Kotler, P., Roberto, N., & Lee, N. R. (2002). Social marketing: Improving the quality of life (2nd ed.). New York: Sage.Google Scholar
  68. Krasne, F. B., & Glanzman, D. L. (1995). What we can learn from invertebrate learning. Annual Review of Psychology, 46, 585–624.Google Scholar
  69. Krebs, J. R., & Dawkins, R. (1978). Animal signals: Mind reading and manipulation. In :J. R. Krebs & N. B. Davies (Eds.), Behaviour ecology: An evolutionary approach (pp. 380–402). Sunderland: Sinauer Associates.Google Scholar
  70. Lally, P., van J., C. H. M., Potts, Henry, W. W., & Wardle, J. (2009). How are habits formed: Modelling habit formation in the real world. European Journal of Social Psychology, 40(6), 998&1009.Google Scholar
  71. Lorenz, K. (1950). The comparative method in studying innate behaviour patterns. In J. F. Danielli & R. Brown (Eds.), Physiological mechanisms in animal behaviour. Cambridge: Cambridge University Press.Google Scholar
  72. Lyons, D. E., Young, A. G., & Keil, F. C. (2007). The hidden structure of overimitation. Proceedings of the National Academy of Sciences, 104(50), 19751–19756.Google Scholar
  73. Mackintosh, N. J. (1985). Conditioning and associative learning. Oxford: Oxford University Press.Google Scholar
  74. Maynard Smith, J., & Harper, D. (2003). Animal signals. Oxford: Oxford University Press.Google Scholar
  75. McKenzie-Mohr, D., & Smith, W. (2000). Fostering sustainable behaviour: An introduction to community-based social marketing. Gabriola Island: New Society Publishers.Google Scholar
  76. Medin, D., & Atran, S. (1998). Folk biology. Cambridge: MIT Press.Google Scholar
  77. Medin, D., & Atran, S. (2004). The native mind: Biological categorization and reasoning in development and across cultures. Psychological Review, 111 (4), 960–983.Google Scholar
  78. Millikan, R. G. (2000). On clear and confused ideas: An essay about substance concepts. Cambridge: Cambridge University Press.Google Scholar
  79. Mitani, J. C., Call, J., Kappeler, P. M., Palombit, R. A., & Silk, J. B. (2012). The evolution of primate societies. Chicago: University Of Chicago Press.Google Scholar
  80. Mittal, B. (1988). Achieving higher seat belt usage: The role of habit in bridging the attitude-behavior gap. Journal of Applied Social Psychology, 18, 993–1016.Google Scholar
  81. Moon, J. A. (2004). A handbook of reflective and experiential learning: Theory and practice. London: Routledge.Google Scholar
  82. Neal, D. T., Wood, W., Labrecque, J. S., & Lally, P. (2012). How do habits guide behavior? Perceived and actual triggers of habits in daily life. Journal of Experimental Social Psychology, 48, 492–498.Google Scholar
  83. Northcutt, R. G., & Kaas, J. H. (1995). The emergence and evolution of mammalian neocortex. Trends in the Neurosciences, 18, 373–379.Google Scholar
  84. Ostlund, S. B., Winterbauer, N. E., & Balleine, B. W. (2009). Evidence of action sequence chunking in goal-directed instrumental conditioning and its dependence on the dorsomedial prefrontal cortex. The Journal of Neuroscience, 29, 8280–8287.Google Scholar
  85. Ouellette, J., & Wood, W. (1998). Habit and intention in everyday life: The multiple processes by which past behavior predicts future behavior. Psychological Bulletin, 124, 54–74.Google Scholar
  86. Owen, N., Humpel, N., Leslie, E., Bauman, A., & Sallis, J. F. (2004). Understanding environmental influences on walking: Review and eesearch agenda. American Journal of Preventive Medicine, 27, 67–76.Google Scholar
  87. Pasupathy, A., & Miller, E. K. (2005). Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature, 433, 873–876.Google Scholar
  88. Pavlov, I. (1927). Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. London: Routledge and Kegan Paul.Google Scholar
  89. Perkins, H. W. (2003). The social norms approach to preventing school and college age substance abuse: A handbook for educators, counselors, and clinicians. San Francisco: Jossey Bass.Google Scholar
  90. Plotkin, H. (1988). Learning and evolution. In H. Plotkin (Ed.), The role of behavior in evolution. Cambridge, MA: MIT Press.Google Scholar
  91. Poldrack, R. A., Sabb, F. W., Foerde, K., Tom, S. M., Asarnow, R. F., Bookheimer, S. Y., & Knowlton, B. J. (2005). The neural correlates of motor skill automaticity. Journal of Neuroscience, 25, 5356–5364.Google Scholar
  92. Potts, R. (2012). Evolution and environmental change in early human prehistory. Annual Review of Anthropology, 41, 151–167.Google Scholar
  93. Povinelli, D. J. (2000). Folk physics for apes: The chimpanzee’s theory of how the world works. Oxford: Oxford University Press.Google Scholar
  94. Prochaska, J., & DiClemente, C. (1983). Stages and processes of self-change of smoking: Toward an integrative model of change. Journal of Consulting and Clinical Psychology, 51, 390–395.Google Scholar
  95. Quartz, S. (2001). Toward a developmental evolutionary psychology: Genes, development, and the evolution of human cognitive architecture. In S. Scher & M. Rauscher (Eds.), Evolutionary psychology: Alternative approaches. Norwell: Kluwer.Google Scholar
  96. Rabie, T., & Curtis, V. (2006). Evidence that handwashing prevents respiratory tract infection: A systematic review. Tropical Medicine and International Health, 11(3), 1–10.Google Scholar
  97. Ravenscroft, I. (2010). Folk psychology as a theory. The Stanford Encyclopedia of Philosophy (Fall 2010 Edition), Edward N. Zalta (Ed.).
  98. Richerson, P. J., & Boyd, R. (2005). Not by genes alone: How culture transformed human evolution. Chicago: University of Chicago Press.Google Scholar
  99. Riker, W. H., & Ordeshook, P. C. (1973). An introduction to positive political theory. Englewood Cliffs: Prentice-Hall.Google Scholar
  100. Rogers, E. (1995). Diffusion of innovations (4th ed.). New York: The Free Press.Google Scholar
  101. Rolls, E. T. (1999). The brain and emotion. Oxford: Oxford University Press.Google Scholar
  102. Sallis, J. F., Cervero, R. B., Ascher, W., Henderson, K. A., Kraft, M. K., & Kerr, J. (2006). An ecological approach to creating active living communities. Annual Review of Public Health, 27, 297–322.Google Scholar
  103. Schank, R., & Abelson, R. (1977). Scripts, plans goals and understanding: An inquiry into human knowledge structures. Hillsdale, NJ: Erlbaum.Google Scholar
  104. Schoggen, P. (1989). Behaviour settings: A revision and extension of Roger G. Barker’s ecological psychology. Stanford: Stanford University Press.Google Scholar
  105. Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1–27.Google Scholar
  106. Schwarzer, R. (2008). Modeling health behavior change: How to predict and modify the adoption and maintenance of health behaviors. Applied Psychology: An International Review, 57, 1–29.Google Scholar
  107. Scott, B. E., Lawson, D. W., & Curtis, V. (2007). Hard to handle: Understanding mothers' handwashing behaviour in Ghana. Health Policy and Planning, 22 (4), 216–224.Google Scholar
  108. Seger, C. A. (1994). Implicit learning. Psychological Bulletin, 115(2), 163.Google Scholar
  109. Serruya, D., & Eilam, D. (1996). Stereotypies, compulsions, and normal behavior in the context of motor routines in the rock hyrax (Procavia capensis). Psychobiology, 24, 235–246.Google Scholar
  110. Simon, H. (1974). How big is a chunk? Science, 183, 482–488.Google Scholar
  111. Sperber, D. (2000). Metarepresentations in evolutionary perspective. In D. Sperber (Ed.), Metarepresentations: A multidisciplinary perspective (pp. 117–137). Oxford: Oxford University Press.Google Scholar
  112. Staddon, J. E. R. (2003). Adapative behavior and learning (2nd electronic ed). from
  113. Sterelny, K. (2003). Mind in a hostile world. Oxford: Oxford University Press.Google Scholar
  114. Stokols, D. (1992). Establishing and maintaining healthy environments: Toward a social ecology of health promotion. American Psychologist, 47, 6–22.Google Scholar
  115. Stokols, D. (1995). The paradox of environmental psychology. American Psychologist, 50, 821–837.Google Scholar
  116. Streidter, G. F. (2005). The principles of brain evolution. Sunderland, MA: Sinauer Associates.Google Scholar
  117. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT Press.Google Scholar
  118. Terrace, H. S. (2001). Chunking and serially organized behavior in pigeons, monkeys and humans. In R. G. Cook (Ed.), Avian visual cognition. Medford: Comparative Cognition Press.Google Scholar
  119. Thorndike, E. L. (1901). Animal intelligence: An eperimental study of the associative processes in animals. Psychological Review Monograph Supplement, 2, 1–109.Google Scholar
  120. Tinbergen, N. (1963). On aims and methods of ethology. Zeitschrift für Tierpsychologie, 20, 410–433.Google Scholar
  121. Tolman, E. (1948). Cognitive maps in rats and men. Psychology Review, 55, 189–208.Google Scholar
  122. Tomasello, M., Kruger, A. C., & Ratner, H. H. (1993). Cultural learning. Behavioural and Brain Sciences, 16, 495–552.Google Scholar
  123. Tulving, E. (1985). How many memory systems are there? American Psychologist, 40, 385–398.Google Scholar
  124. von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton: Princeton University Press.Google Scholar
  125. Wcislo, W. (1989). Behavioral environments and evolutionary change. Annual Review of Ecology and Systematics, 20, 137–169.Google Scholar
  126. Weinstein, N. D. (1988). The precaution adoption process. Health Psychology, 7, 355–386.Google Scholar
  127. West, R., Walia, A., Hyder, N., Shahab, L., & Michie, S. (2010). Behavior change techniques used by the English Stop Smoking Services and their associations with short-term quit outcomes. Nicotine & Tobacco Research, 12(7), 742–747.Google Scholar
  128. Wilkinson, R. G. (2005). The impact of inequality: How to make sick societies healthier. London: Routledge.Google Scholar
  129. Willis, W. D. (1985). The pain system: The neural basis of nociceptive transmission in the mammalian nervous system. Basel: Kragel.Google Scholar
  130. Wilson, D. S., Hayes, S. C., Biglan, A., & Embry, D. D. (in press). Evolving the future: Toward a Science of Intentional Change. Behavioural and Brain Sciences.Google Scholar
  131. Witte, K., & Allen, M. (2000). A meta-analysis of fear appeals: Implications for effective public health campaigns. Health Education & Behavior, 27(5), 591–615.Google Scholar
  132. Wunderlich, K., Dayan, P., & Dolan, R. J. (2012). Mapping value based planning and extensively trained choice in the human brain. Nature Neuroscience, 15, 786–791.Google Scholar
  133. Wyles, J., Kunkel, J., & Wilson, A. (1983). Birds, behavior, and anatomical evolution. Proceedings of the National Academy of Sciences USA, 80, 4394–4397.Google Scholar
  134. Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology, 18, 459–482.Google Scholar
  135. Yin, H. H., & Knowlton, B. J. (2006). The role of the basal ganglia in habit formation. Nature Neuroscience, 7, 464–476.Google Scholar
  136. Young, M. (1988). The metronomic society: Natural rhythms and human timetables. Cambridge: Harvard University Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Hygiene Centre, Environmental Health GroupLondon School of Hygiene and Tropical MedicineLondonUK

Personalised recommendations