Advertisement

Nutrition in a Changing World: How Economic Growth Drives Chronic Diseases

  • Jonathan C. K. WellsEmail author
Chapter
Part of the Advances in the Evolutionary Analysis of Human Behaviour book series (AEAHB, volume 1)

Abstract

Many modernizing countries are characterized by a dual nutritional burden—the simultaneous presence of undernutrition and obesity within populations, households, or even individuals. The dual burden is a primary risk factor for the epidemic of chronic degenerative diseases affecting such populations, and may benefit from an evolutionary perspective. Evolving in environments of ecological instability, the genus Homo developed a complex life history profile with multiple “nodes of flexibility” whereby the magnitude and rate of growth are sensitive to diverse ecological stresses. Through such plasticity, preagricultural populations could tolerate ecological instability, through time-lagged physiological sensitivity to fluctuating energy availability. This plasticity now renders contemporary populations vulnerable to new sources of nutritional instability, emerging from the role played by capitalist economics in the global supply and distribution of food. Chronic diseases emerge when rapid economic growth elevates metabolic load (adiposity, high-energy diet, sedentary behavior) over short-time scales in the absence of complementary effects on homeostatic capacity. An evolutionary perspective emphasizes the sensitivity of human metabolism to politico-economic factors driving nutritional trends. Successful prevention of chronic diseases is unlikely to occur without efforts to alter the power structures that characterize the contemporary food-industrial complex, restoring individual agency over diet and activity behavior.

Keywords

Growth Nutrition Dual burden Malnutrition Obesity Chronic disease Plasticity Economic development Capitalism 

References

  1. Adair, L. S., & Cole, T. J. (2003). Rapid child growth raises blood pressure in adolescent boys who were thin at birth. Hypertension, 41(3), 451–456.Google Scholar
  2. Barker, D. J. (1998). Mothers, babies and health in later life. Edinburgh: Churchill.Google Scholar
  3. Barker, D. J., Bull, A. R., Osmond, C., & Simmonds, S. J. (1990). Fetal and placental size and risk of hypertension in adult life. British Medical Journal, 301(6746), 259–262.Google Scholar
  4. Barker, D. J., Hales, C. N., Fall, C. H., Osmond, C., Phipps, K., & Clark, P. M. (1993a). Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemias (syndrome X): Relation to reduced fetal growth. Diabetologia, 36(1), 62–67.Google Scholar
  5. Barker, D. J., Martyn, C. N., Osmond, C., Hales, C. N., & Fall, C. H. (1993b). Growth in utero and serum cholesterol concentrations in adult life. British Medical Journal, 307(6918), 1524–1527.Google Scholar
  6. Barker, D. J., Osmond, C., Golding, J., Kuh, D., & Wadsworth, M. E. (1989). Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. British Medical Journal, 298(6673), 564–567.Google Scholar
  7. Barker, D. J., Osmond, C., Forsen, T. J., Kajantie, E., & Eriksson, J. G. (2005). Trajectories of growth among children who have coronary events as adults. New England Journal Medical, 353(17), 1802–1809.Google Scholar
  8. Basu, S., Stuckler, D., McKee, M., & Galea, G. (2013). Nutritional determinants of worldwide diabetes: An econometric study of food markets and diabetes prevalence in 173 countries. Public Health Nutrition, 16(1), 179–186.Google Scholar
  9. Bateson, P. (2001). Fetal experience and good adult design. International Journal Epidemiology, 30(5), 928–934.Google Scholar
  10. Bavdekar, A., Yajnik, C. S., Fall, C. H. D., Bapat, S., Pandit, A. N., Deshpande, V., Bhave, S., Kellingray, S. D., & Joglekar, C. (1999). Insulin resistance syndrome in 8-year-old Indian children - Small at birth, big at 8 years, or both? Diabetes, 48(12), 2422–2429.Google Scholar
  11. Berg, A. H., & Scherer, P. E. (2005). Adipose tissue, inflammation, and cardiovascular disease. Circulation Research, 96(9), 939–949.Google Scholar
  12. Bhargava, S. K., Sachdev, H. S., Fall, C. H., Osmond, C., Lakshmy, R., Barker, D. J., Biswas, S. K., Ramji, S., Prabhakaran, D., & Reddy, K. S. (2004). Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. New England Journal Medical, 350(9), 865–875.Google Scholar
  13. Bourne, L. T., Langenhoven, M. L., Steyn, K., Jooste, P. L., Laubscher, J. A., & Bourne, D. E. (1994). Nutritional status of 3-6 year-old African children in the Cape Peninsula. East African Medical Journal, 71(11), 695–702.Google Scholar
  14. Bremer, A. A., Mietus-Snyder, M., & Lustig, R. H. (2012). Toward a unifying hypothesis of metabolic syndrome. Pediatrics, 129(3), 557–570.Google Scholar
  15. Ceesay, S. M., Prentice, A. M., Cole, T. J., Foord, F., Weaver, L. T., Poskitt, E. M., & Whitehead, R. G. (1997). Effects on birth weight and perinatal mortality of maternal dietary supplements in rural Gambia: 5 year randomised controlled trial. British Medical Journal, 315(7111), 786–790.Google Scholar
  16. Cohen, M. N., & Armelagos, G. J. (1984). Palaeopathology and the origins of agriculture. Orlando: Fl: Academic Press.Google Scholar
  17. Cole, T. J. (2000). Secular trends in growth. Proceedings of the Nutrition Society, 59(2), 317–324.Google Scholar
  18. Cole, T. J. (2003). The secular trend in human physical growth: A biological view. Economics and Human Biology, 1(2), 161–168.Google Scholar
  19. Corpeleijn, E., Saris, W. H., & Blaak, E. E. (2009). Metabolic flexibility in the development of insulin resistance and type 2 diabetes: Effects of lifestyle. Obesity Reviews, 10(2), 178–193.Google Scholar
  20. Coupe, B., Amarger, V., Grit, I., Benani, A., & Parnet, P. (2010). Nutritional programming affects hypothalamic organization and early response to leptin. Endocrinology, 151(2), 702–713.Google Scholar
  21. Couper-Johnston, R. (2000). El Nino: The weather phenomenon that changed the world. London: Hodder & Stoughton.Google Scholar
  22. Criscuolo, F., Monaghan, P., Nasir, L., & Metcalfe, N. B. (2008). Early nutrition and phenotypic development: ‘catch-up’ growth leads to elevated metabolic rate in adulthood. Proceedings of the Royal Society Biological Sciences, 275(1642), 1565–1570.Google Scholar
  23. Davis, M. (2002). Late Victorian holocausts: El Nino and the making of the third world. London: Verso.Google Scholar
  24. Despres, J. P. (2001). Health consequences of visceral obesity. Annals of Medicine, 33(8), 534–541.Google Scholar
  25. Doak, C. M., Adair, L. S., Monteiro, C., & Popkin, B. M. (2000). Overweight and underweight coexist within households in Brazil, China and Russia. Journal of Nutrition, 130(12), 2965–2971.Google Scholar
  26. Ehtisham, S., Crabtree, N., Clark, P., Shaw, N., & Barrett, T. (2005). Ethnic differences in insulin resistance and body composition in United Kingdom adolescents. Journal of Clinical Endocrinology and Metabolism, 90(7), 3963–3969.Google Scholar
  27. Eriksson, J. G., Forsen, T., Tuomilehto, J., Osmond, C., & Barker, D. J. (2001). Early growth and coronary heart disease in later life: Longitudinal study. British Medical Journal, 322(7292), 949–953.Google Scholar
  28. Ezzati, M., Lopez, A. D., Rodgers, A., Vander Hoorn, S., & Murray, C. J. (2002). Selected major risk factors and global and regional burden of disease. Lancet, 360(9343), 1347–1360.Google Scholar
  29. Fagerberg, B., Bondjers, L., & Nilsson, P. (2004). Low birth weight in combination with catch-up growth predicts the occurrence of the metabolic syndrome in men at late middle age: The Atherosclerosis and Insulin Resistance study. Journal of Internal Medicine, 256(3), 254–259.Google Scholar
  30. Fernald, L. C., & Neufeld, L. M. (2007). Overweight with concurrent stunting in very young children from rural Mexico: Prevalence and associated factors. European Journal of Clinical Nutrition, 61(5), 623–632.Google Scholar
  31. Florencio, T. M., Ferreira, H. S., de Franca, A. P., Cavalcante, J. C., & Sawaya, A. L. (2001). Obesity and undernutrition in a very-low-income population in the city of Maceio, northeastern Brazil. British Journal of Nutrition, 86(2), 277–284.Google Scholar
  32. Forsen, T., Eriksson, J., Tuomilehto, J., Reunanen, A., Osmond, C., & Barker, D. (2000). The fetal and childhood growth of persons who develop type 2 diabetes. Annals of Internal Medicine, 133(3), 176–182.Google Scholar
  33. Galdikas, B. M., & Wood, J. W. (1990). Birth spacing patterns in humans and apes. American Journal of Physical Anthropology, 83(2), 185–191.Google Scholar
  34. Ganguly, P. (1979). A study of sixty population groups. The Hague: Mouton Publishers.Google Scholar
  35. Glantz, M. (2001). Currents of change: Impacts of El Nino and La Nina on climate and society (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  36. Griffiths, P. L., & Bentley, M. E. (2001). The nutrition transition is underway in India. Journal of Nutrition, 131(10), 2692–2700.Google Scholar
  37. Grijalva-Eternod, C. S., Wells, J. C., Cortina-Borja, M., Salse-Ubach, N., Tondeur, M. C., Dolan, C., Meziani, C., Wilkinson, C., Spiegel, P., & Seal, A. J. (2012). The double burden of obesity and malnutrition in a protracted emergency setting: A cross-sectional study of Western Sahara refugees. Public Library of Science Medicine, 9(10), e1001320.Google Scholar
  38. Gurven, M., & Walker, R. (2006). Energetic demand of multiple dependents and the evolution of slow human growth. Proceedings of the Royal Society B: Biological Sciences, 273(1588), 835–841.Google Scholar
  39. Hales, C. N., & Barker, D. J. (1992). Type 2 (non-insulin-dependent) diabetes mellitus: The thrifty phenotype hypothesis. Diabetologia, 35(7), 595–601.Google Scholar
  40. Hawkes, K. (2006). Life history theory and human evolution. Oxford: James Currey.Google Scholar
  41. Hobsbawm, E. (1968). Industry and empire. Harmondsworth: Penguin Books.Google Scholar
  42. Hoehn, K. L., Salmon, A. B., Hohnen-Behrens, C., Turner, N., Hoy, A. J., Maghzal, G. J., Stocker, R., Van Remmen, H., Kraegen, E. W., Cooney, G. J., Richardson, A. R., & James, D. E. (2009) Insulin resistance is a cellular antioxidant defense mechanism. Proceedings of the National Academy of Sciences of the USA, 106(42), 17787–17792.Google Scholar
  43. Hrdy, S. B. (2005). Cooperative breeders with an ace in the hole. New Brunswick: Rutgers University Press.Google Scholar
  44. Hrdy, S. B. (2009). Mothers and others: The evolutionary origins of mutual understanding. Cambridge: Belknap Press.Google Scholar
  45. Huxley, R. R., Shiell, A. W., & Law, C. M. (2000). The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: A systematic review of the literature. Journal of Hypertension, 18(7), 815–831.Google Scholar
  46. International Institute for Population Sciences. (1995). National family health survey (MCH and family planing), India 1992-93. Bombay: International Institute for Population Sciences.Google Scholar
  47. International Institute for Population Sciences and Macrointernational. (2007). National family health survey (NFHS-3), 2005–6: India. Mumbai: International Institute for Population Sciences.Google Scholar
  48. International Institute for Population Sciences and ORC Macro. (2000). National family health survey (NFHS-2), 1988-99: India. Mumbai: International Institute for Population Sciences.Google Scholar
  49. Joglekar, C. V., Fall, C. H., Deshpande, V. U., Joshi, N., Bhalerao, A., Solat, V., Deokar, T. M., Chougule, S. D., Leary, S. D., Osmond, C., & Yajnik, C. S. (2007). Newborn size, infant and childhood growth, and body composition and cardiovascular disease risk factors at the age of 6 years: The Pune Maternal Nutrition Study. International Journal of Obesity, 31(10), 1534–1544.Google Scholar
  50. Kaessmann, H., Wiebe, V., Weiss, G., & Paabo, S. (2001). Great ape DNA sequences reveal a reduced diversity and an expansion in humans. Nature Genetics, 27(2), 155–156.Google Scholar
  51. Kelly, R. L. (1995). The foraging spectrum. Washington: Smithsonian Institution Press.Google Scholar
  52. Khanna, G., & Kapoor, S. (2004). Secular trend in stature and age at menarche among Punjabi Aroras residing in New Delhi, India. Collegium Antropologicum, 28(2), 571–575.Google Scholar
  53. Khorshid, A., & Galal, O. M. (1995). Development of food consumption monitoring system for Egypt National Agricultural Research Project. Final report. Submitted to the US Department of Agriculture and Egyptian Ministry of Agriculture.Google Scholar
  54. Kuriyan, R., Thomas, T., Sumithra, S., Lokesh, D. P., Sheth, N. R., Joy, R., Bhat, S., & Kurpad, A. V. (2012). Potential factors related to waist circumference in urban South Indian children. Indian Pediatrics, 49(2), 124–128.Google Scholar
  55. Kuzawa, C. W. (2005). Fetal origins of developmental plasticity: Are fetal cues reliable predictors of future nutritional environments? American Journal of Human Biology, 17(1), 5–21.Google Scholar
  56. Le, K. A., Ith, M., Kreis, R., Faeh, D., Bortolotti, M., Tran, C., Boesch, C., & Tappy, L. (2009). Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes. American Journal of Clinical Nutrition, 89(6), 1760–1765.Google Scholar
  57. Leon, D. A., Koupilova, I., Lithell, H. O., Berglund, L., Mohsen, R., Vagero, D., Lithell, U. B., & McKeigue, P. M. (1996). Failure to realise growth potential in utero and adult obesity in relation to blood pressure in 50 year old Swedish men. British Medical Journal, 312(7028), 401–406.Google Scholar
  58. Leon, D. A., Lithell, H. O., Vagero, D., Koupilova, I., Mohsen, R., Berglund, L., Lithell, U. B., & McKeigue, P. M. (1998). Reduced fetal growth rate and increased risk of death from ischaemic heart disease: Cohort study of 15 000 Swedish men and women born 1915–29. British Medical Journal, 317(7153), 241–245.Google Scholar
  59. Lisiecki, L. E., & Raymo, M. E. (2005). A Plio-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, 17 pp.Google Scholar
  60. Lopez, A. D., Mathers, C. D., Ezzati, M., Jamison, D. T., & Murray, C. J. (2006). Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data. Lancet, 367(9524), 1747–1757.Google Scholar
  61. Lucas, A., Fewtrell, M. S., & Cole, T. J. (1999). Fetal origins of adult disease-the hypothesis revisited. British Medical Journal, 319(7204), 245–249.Google Scholar
  62. Lukacs, J. R. (2007). Human biological diversity in ancient India: Dr Irawati Karve and contemporary issues in biological anthropology. In S. R. Walimbe, P. P. Joglekar & K. K. Basa (Eds.), Anthropology for Archaeology: Proceedings of the Professor Irawati Karve Birth Centenary Seminar (pp. 193–206). Pune: Deccan College Post-Graduate and Research Institute.Google Scholar
  63. Lurbe, E., Carvajal, E., Torro, I., Aguilar, F., Alvarez, J., & Redon, J. (2009). Influence of concurrent obesity and low birth weight on blood pressure phenotype in youth. Hypertension, 53(6), 912–917.Google Scholar
  64. Lustig, R. H. (2006). Childhood obesity: Behavioral aberration or biochemical drive? Reinterpreting the First Law of Thermodynamics. Nature Clinical Practice Endocrinology and Metabolism, 2(8), 447–458.Google Scholar
  65. Maersk, M., Belza, A., Stodkilde-Jorgensen, H., Ringgaard, S., Chabanova, E., Thomsen, H., Pedersen, S. B., Astrup, A., & Richelsen, B. (2012). Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: A 6-mo randomized intervention study. American Journal of Clinical Nutrition, 95(2), 283–289. doi: 10.3945/ajcn.111.022533.Google Scholar
  66. Mamidi, R. S., Kulkarni, B., & Singh, A. (2011). Secular trends in height in different states of India in relation to socioeconomic characteristics and dietary intakes. Food and Nutrition Bulletin, 32(1), 23–34.Google Scholar
  67. Mayewski, P. A., & White, F. (2002). The Ice Chronicles: The quest to understand global climate change. Hanover: University Press of New England.Google Scholar
  68. McKeigue, P. M. (1996). Metabolic consequences of obesity and body fat pattern: Lessons from migrant studies. Ciba Foundation Symposia, 201, 54–64.Google Scholar
  69. McMillen, I. C., & Robinson, J. S. (2005). Developmental origins of the metabolic syndrome: Prediction, plasticity, and programming. Physiological Reviews, 85(2), 571–633.Google Scholar
  70. Menken, J., & Cambpell, C. (1992). Age-patterns of famine-related mortality increase: Implications for long-term population growth. Health Transitions Reviews, 2, 91–101.Google Scholar
  71. Misra, A., & Khurana, L. (2008). Obesity and the metabolic syndrome in developing countries. Journal of Clinical Endocrinology and Metabolism, 93(11 Suppl 1), S9–30.Google Scholar
  72. Misra, A., & Vikram, N. K. (2004). Insulin resistance syndrome (metabolic syndrome) and obesity in Asian Indians: Evidence and implications. Nutrition (Burbank, Los Angeles County, Calif. ), 20(5), 482–491.Google Scholar
  73. Muhlhausler, B. S., Duffield, J. A., Ozanne, S. E., Pilgrim, C., Turner, N., Morrison, J. L., & McMillen, I. C. (2009). The transition from fetal growth restriction to accelerated postnatal growth: a potential role for insulin signalling in skeletal muscle. Journal of Physiology, 587(Pt 17), 4199–4211.Google Scholar
  74. Odling-Smee, F. J., Laland, K., & Feldman, M. W. (2003). Niche construction. Princeton: Princeton University Press.Google Scholar
  75. Ong, K. K., Ahmed, M. L., Emmett, P. M., Preece, M. A., & Dunger, D. B. (2000). Association between postnatal catch-up growth and obesity in childhood: Prospective cohort study. British Medical Journal, 320(7240), 967–971.Google Scholar
  76. Popkin, B. M. (2002). An overview on the nutrition transition and its health implications: The Bellagio meeting. Public Health Nutrition, 5(1A), 93–103.Google Scholar
  77. Popkin, B. M., & Gordon-Larsen, P. (2004). The nutrition transition: worldwide obesity dynamics and their determinants. International Journal of Obesity, 28(Suppl. 3), S2–S9.Google Scholar
  78. Popkin, B. M., Richards, M. K., & Montiero, C. A. (1996). Stunting is associated with overweight in children of four nations that are undergoing the nutrition transition. Journal of Nutrition, 126(12), 3009–3016.Google Scholar
  79. Potts, R. (1996). Humanity’s descent: The consequences of ecological instability. New York: William Morrow & Co.Google Scholar
  80. Potts, R. (1998). Environmental hypotheses of hominin evolution. American Journal of Physical Anthropology, Suppl, 27, 93–136.Google Scholar
  81. Potts, R. (2012). Evolution and environmental change in early human prehistory. Annual Review of Anthropology, 41, 151–167.Google Scholar
  82. Prentice, A. M., & Jebb, S. A. (1995). Obesity in Britain: Gluttony or sloth? British Medical Journal, 311(7002), 437–439.Google Scholar
  83. Price, K. C., Hyde, J. S., & Coe, C. L. (1999). Matrilineal transmission of birth weight in the rhesus monkey (Macaca mulatta) across several generations. Obstetrics and Gynecology, 94(1), 128–134.Google Scholar
  84. Qasem, R. J., Yablonski, E., Li, J., Tang, H. M., Pontiggia, L., & D’Mello A, P. (2012). Elucidation of thrifty features in adult rats exposed to protein restriction during gestation and lactation. Physiology and Behavior, 105(5), 1182–1193.Google Scholar
  85. Reilly, J. J., Methven, E., McDowell, Z. C., Hacking, B., Alexander, D., Stewart, L., & Kelnar, C. J. (2003). Health consequences of obesity. Archives of Disease in Childhood, 88(9), 748–752.Google Scholar
  86. Satpathy, R., Das, D. B., Bhuyan, B. K., Pant, K. C., & Santhanam, S. (1990). Secular trend in birthweight in an industrial hospital in India. Annals of Tropical Paediatrics, 10(1), 21–25.Google Scholar
  87. Shine, R. (1978). Propagule size and parental care: The "safe harbor" hypothesis. Journal of Theoretical Biology, 75(4), 417–424.Google Scholar
  88. Siervo, M., Stephan, B. C., Colantuoni, A., & Wells, J. C. (2011). First-borns have a higher metabolic rate and carry a higher metabolic risk in young women attending a weight loss clinic. Eating and Weight Disorders, 16(3), e171–176.Google Scholar
  89. Siervo, M., Montagnese, C., Mathers, J. C., Soroka, K. R., Stephan, B. C., & Wells, J. C. (2014). Sugar consumption and global prevalence of obesity and hypertension: An ecological analysis. Public Health Nutrition, Feb 18:1–10. [Epub ahead of print].Google Scholar
  90. Stanner, S. A., & Yudkin, J. S. (2001). Fetal programming and the Leningrad Siege study. Twin Research, 4(5), 287–292.Google Scholar
  91. Stein, A. D., Zybert, P. A., van de Bor, M., & Lumey, L. H. (2004). Intrauterine famine exposure and body proportions at birth: The Dutch Hunger Winter. International Journal of Epidemiology, 33(4), 831–836.Google Scholar
  92. Stein, C. E., Fall, C. H., Kumaran, K., Osmond, C., Cox, V., & Barker, D. J. (1996). Fetal growth and coronary heart disease in south India. Lancet, 348(9037), 1269–1273.Google Scholar
  93. Steyn, K., Bourne, L., Jooste, P., Fourie, J. M., Rossouw, K., & Lombard, C. (1998). Anthropometric profile of a black population of the Cape Peninsula in South Africa. East African Medical Journal, 75(1), 35–40.Google Scholar
  94. Storlien, L., Oakes, N. D., & Kelley, D. E. (2004). Metabolic flexibility. Proceedings of the Nutrition Society, 63(2), 363–368.Google Scholar
  95. Taubes, G. (2008). The diet delusion. London: Vermillion.Google Scholar
  96. Tzoulaki, I., Jarvelin, M. R., Hartikainen, A. L., Leinonen, M., Pouta, A., Paldanius, M., Ruokonen, A., Canoy, D., Sovio, U., Saikku, P., & Elliott, P. (2008). Size at birth, weight gain over the life course, and low-grade inflammation in young adulthood: Northern Finland 1966 Birth Cohort study. European Heart Journal, 29(8), 1049–1056.Google Scholar
  97. Victora, C. G., Barros, F. C., Horta, B. L., & Martorell, R. (2001). Short-term benefits of catch-up growth for small-for-gestational-age infants. International Journal of Epidemiology, 30(6), 1325–1330.Google Scholar
  98. Virani, N. (2005). Growth patterns and secular trends over four decades in the dynamics of height growth of Indian boys and girls in Sri Aurobindo Ashram: A cohort study. Annals of Human Biology, 32(3), 259–282.Google Scholar
  99. Wells, J. C. (2003). The thrifty phenotype hypothesis: Thrifty offspring or thrifty mother? Journal of Theoretical Biology, 221(1), 143–161.Google Scholar
  100. Wells, J. C. (2009). Historical cohort studies and the early origins of disease hypothesis: making sense of the evidence. Proceedings of the Nutrition Society, 68, 179–188.Google Scholar
  101. Wells, J. C. (2010a). The evolutionary biology of human body fat: Thrift and control. Cambridge: Cambridge University Press.Google Scholar
  102. Wells, J. C. (2010b). Maternal capital and the metabolic ghetto: An evolutionary perspective on the transgenerational basis of health inequalities. American Journal of Human Biology, 22(1), 1–17.Google Scholar
  103. Wells, J. C. (2011). The thrifty phenotype: An adaptation in growth or metabolism? American Journal of Human Biology, 23(1), 65–75.Google Scholar
  104. Wells, J. C. (2012a). Ecological volatility and human evolution: A novel perspective on life history and reproductive strategy. Evolutionary Anthropology, 21(6), 277–288.Google Scholar
  105. Wells, J. C. (2012b). Obesity as malnutrition: The role of capitalism in the obesity global epidemic. American Journal of Human Biology, 24(3), 261–276.Google Scholar
  106. Wells, J. C. (2013). Obesity as malnutrition: The dimensions beyond energy balance. European Journal of Clinical Nutrition, 67(5), 507–512.Google Scholar
  107. Wells, J. C., & Cole, T. J. (2002). Birth weight and environmental heat load: A between-population analysis. American Journal of Physical Anthropology, 119(3), 276–282.Google Scholar
  108. Wells, J. C., & Siervo, M. (2011). Obesity and energy balance: Is the tail wagging the dog? European Journal of Clinical Nutrition, 65(11), 1173–1189.Google Scholar
  109. Wells, J. C., & Stock, J. T. (2007). The biology of the colonizing ape. American Journal of Physical Anthropology, Suppl, 45, 191–222.Google Scholar
  110. Wells, J. C., & Stock, J. T. (2011). Re-examining heritability: Genetics, life history and plasticity. Trends in Endocrinology and Metabolism, 22(10), 421–428.Google Scholar
  111. Wells, J. C. K. (2012c). The evolution of human adiposity and obesity: Where did it all go wrong? Disease Models and Mechanism, 5(5), 595–607.Google Scholar
  112. Wisse, B. E. (2004). The inflammatory syndrome: The role of adipose tissue cytokines in metabolic disorders linked to obesity. Journal. of the American Society of Nephrologists, 15(11), 2792–2800.Google Scholar
  113. Yajnik, C. S., & Yudkin, J. S. (2004). The Y-Y paradox. Lancet, 363(9403), 163.Google Scholar
  114. Yajnik, C. S., Fall, C. H., Coyaji, K. J., Hirve, S. S., Rao, S., Barker, D. J., Joglekar, C., & Kellingray, S. (2003). Neonatal anthropometry: The thin-fat Indian baby. The Pune Maternal Nutrition Study. International Journal of Obesity, 27(2), 173–180.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Childhood Nutrition Research CentreUCL Institute of Child HealthLondonUK

Personalised recommendations