Skip to main content

Multiple Gamma Functions and Their Applications

Abstract

The double Gamma function Γ 2 and the multiple Gamma functions Γ n were defined and studied systematically by Barnes in about 1900. Before their investigation by Barnes, these functions had been introduced in a different form by, for example, Hölder, Alexeiewsky, and Kinkelin. Although these functions did not appear in the tables of the most well-known special functions, yet the double Gamma function was cited in the exercises by Whittaker and Watson’s book and recorded also by Gradshteyn and Ryzhik’s book. In about the middle of the 1980s, these functions were revived in the study of the determinants of the Laplacians on the n-dimensional unit sphere S n. Here, in this expository paper, from the middle of the 1980s until today, we aim at giving an eclectic review for recent developments and applications of the simple and multiple Gamma functions.

Keywords

  • Entire Function
  • Zeta Function
  • Gamma Function
  • Riemann Zeta Function
  • Hurwitz Zeta Function

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-0258-3_4
  • Chapter length: 37 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-0258-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Tenth Printing, National Bureau of Standards, Applied Mathematics Series, vol. 55. National Bureau of Standards, Washington (1972); Reprinted by Dover Publications, New York (1965) (see also [99])

    Google Scholar 

  2. Adamchik, V.S.: Polygamma functions of negative order. J. Comput. Appl. Math. 100, 191–199 (1998)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Adamchik, V.S.: On the Barnes function. In: Mourrain, B. (ed.) Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation, pp. 15–20. ACM, New York (2001) (London, Ontario, 22–25 July 2001)

    Google Scholar 

  4. Adamchik, V.S.: The multiple gamma function and its application to computation of series. Ramanujan J. 9, 271–288 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Alexeiewsky, W.P.: Über eine Classe von Funktionen, die der Gammafunktion analog sind. Leipzig Weidmannsche Buchhandlung 46, 268–275 (1894)

    Google Scholar 

  6. Alzer, H.: Inequalities involving Γ(x) and Γ(1∕x). J. Comput. Appl. Math. 192, 460–480 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Alzer, H.: Sub-and superadditive property of Euler’s Gamma function. Proc. Amer. Math. Soc. 135, 3641–3648 (2007)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Apostol, T.M.: Some series involving the Riemann Zeta function. Proc. Amer. Math. Soc. 5, 239–243 (1954)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Apostol, T.M.: Introduction to Analytic Number Theory. Springer, New York (1976)

    MATH  Google Scholar 

  10. Artin, E.: The Gamma Function. Holt, Rinehart and Winston, New York (1964)

    MATH  Google Scholar 

  11. Barnes, E.W.: The theory of the G-function. Quart. J. Math. 31, 264–314 (1899)

    Google Scholar 

  12. Barnes, E.W.: The genesis of the double Gamma function. Proc. London Math. Soc. (Ser. 1) 31, 358–381 (1900)

    Google Scholar 

  13. Barnes, E.W.: The theory of the double Gamma function. Philos. Trans. Roy. Soc. London Ser. A 196, 265–388 (1901)

    CrossRef  MATH  Google Scholar 

  14. Barnes, E.W.: On the theory of the multiple Gamma functions. Trans. Cambridge Philos. Soc. 19, 374–439 (1904)

    Google Scholar 

  15. Batir, N.: Inequalities for the double Gamma function. J. Math. Anal. Appl. 351, 182–185 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  16. Batir, N., Cancan, M.: A double inequality for the double Gamma function. Internat. J. Math. Anal. 2, 329–335 (2008)

    MATH  MathSciNet  Google Scholar 

  17. Bendersky, L.: Sur la fonction Gamma généralisée, Acta Math. 61, 263–322 (1933)

    CrossRef  MathSciNet  Google Scholar 

  18. Billingham, J., King, A.C.: Uniform asymptotic expansions for the Barnes double Gamma function. Proc. Roy. Soc. London Ser. A 453, 1817–1829 (1997)

    CrossRef  MATH  MathSciNet  Google Scholar 

  19. Campbell, R.: Les Intégrals Eulériennes Et Leurs Applications. Dunod, Paris (1966)

    Google Scholar 

  20. Carrier, G.F., Krook, M., Pearson, C.E.: Functions of a Complex Variable. Hod Books, Ithaca (1983)

    MATH  Google Scholar 

  21. Cassou-Noguès, P.: Analogues p-adiques des fonctions Γ-multiples. In: Journées Arithmétiques de Luminy (International Colloquium of the CNRS, Centre University of Luminy, Luminy, 1978), pp. 43–55. Astérisque, vol. 61. Société mathématique de France, Paris (1979)

    Google Scholar 

  22. Chen, C.-P.: Inequalities associated with Barnes G-function. Exposition. Math. 29, 119–125 (2011)

    CrossRef  Google Scholar 

  23. Chen, C.-P.: Glaisher-Kinkelin constant. Integr. Transf. Spec. Funct. 23, 785–792 (2012) (iFirst)

    Google Scholar 

  24. Chen, C.-P., Srivastava, H.M.: Some inequalities and monotonicity properties associated with the Gamma and Psi functions and the Barnes G-function. Integr. Transf. Spec. Funct. 22, 1–15 (2011)

    CrossRef  MATH  MathSciNet  Google Scholar 

  25. Choi, J.: Determinant of Laplacian on S 3. Math. Japon. 40, 155–166 (1994)

    MATH  MathSciNet  Google Scholar 

  26.  Choi, J.: Explicit formulas for the Bernolli polynomials of order n. Indian J. Pure Appl. Math. 27, 667–674 (1996)

    Google Scholar 

  27.  Choi, J.: Integral and series representations for the Euler’s constant. In: Proceedings of the Seventh Conference on Real and Complex Analysis, pp. 43–55. Hiroshima University, Japan (2003)

    Google Scholar 

  28. Choi, J.: Some mathematical constants. Appl. Math. Comput. 187, 122–140 (2007)

    CrossRef  MATH  MathSciNet  Google Scholar 

  29. Choi, J.: A set of mathematical constants arising naturally in the theory of the multiple Gamma functions. Abstract and Applied Analysis, vol. 2012, Article ID 121795, p. 11 (2012)

    Google Scholar 

  30. Choi, J.: Determinants of the Laplacians on the n-dimensional unit sphere S n (n = 8, 9).

    Google Scholar 

  31. Choi, J., Cho, Y.J., Srivastava, H.M.: Series involving the Zeta function and multiple Gamma functions. Appl. Math. Comput. 159, 509–537 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  32.  Choi, J., Lee, J.: Closed-form evaluation of a class of series associated with the Riemann zeta function. In: Proceedings of the 11th International Conference on Finite or Infinite Dimensional Complex Analysis and Applications, pp. 36–53 (2003)

    Google Scholar 

  33.  Choi, J., Lee, J., Srivastava, H.M.: A generalization of Wilf’s formula. Kodai Math. J. 26, 44–48 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  34.  Choi, J., Nash, C.: Integral representations of the Kikelin’s constant A. Math. Japon. 45, 223–230 (1997)

    Google Scholar 

  35. Choi, J., Quine, J.R.: E. W. Barnes’ approach of the multiple Gamma functions. J. Korean Math. Soc. 29, 127–140 (1992)

    Google Scholar 

  36. Choi, J., Seo, T.Y.: The double Gamma function. East Asian Math. J. 13, 159–174 (1997)

    Google Scholar 

  37. Choi, J., Seo, T.Y.: Integral formulas for Euler’s constant. Commun. Korean Math. Soc. 13, 683–689 (1998)

    MATH  MathSciNet  Google Scholar 

  38. Choi, J., Seo, T.Y.: Identities involving series of the Riemann zeta function. Indian J. Pure Appl. Math. 30, 649–652 (1999)

    MATH  MathSciNet  Google Scholar 

  39.  Choi, J., Srivastava, H.M.: Sums associated with the Zeta function. J. Math. Anal. Appl. 206, 103–120 (1997)

    CrossRef  MATH  MathSciNet  Google Scholar 

  40. Choi, J., Srivastava, H.M.: Certain classes of series involving the Zeta function. J. Math. Anal. Appl. 231, 91–117 (1999)

    CrossRef  MATH  MathSciNet  Google Scholar 

  41. Choi, J., Srivastava, H.M.: An application of the theory of the double Gamma function. Kyushu J. Math. 53, 209–222 (1999)

    CrossRef  MATH  MathSciNet  Google Scholar 

  42. Choi, J., Srivastava, H.M.: Certain classes of series associated with the Zeta function and multiple Gamma functions. J. Comput. Appl. Math. 118, 87–109 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  43. Choi, J., Srivastava, H.M.: A certain class of series associated with the Zeta function. Integr. Transf. Spec. Funct. 12, 237–250 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  44. Choi, J., Srivastava, H.M.: A certain family of series associated with the Zeta and related functions. Hiroshima Math. J. 32, 417–429 (2002)

    MATH  MathSciNet  Google Scholar 

  45. Choi, J., Srivastava, H.M.: A family of log-Gamma integrals and associated results. J. Math. Anal. Appl. 303, 436–449 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  46. Choi, J., Srivastava, H.M.: Certain families of series associated with the Hurwitz-Lerch Zeta function. Appl. Math. Comput. 170, 399–409 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  47. Choi, J., Srivastava, H.M.: A note on a multiplication formula for the multiple Gamma function Γ n . Italian J. Pure Appl. Math. 23, 179–188 (2008)

    MATH  MathSciNet  Google Scholar 

  48. Choi, J., Srivastava, H.M.: Some applications of the Gamma and Polygamma functions involving convolutions of the Rayleigh functions, multiple Euler sums and log-sine integrals. Math. Nachr. 282, 1709–1723 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  49. Choi, J., Srivastava, H.M.: Integral representations for the Gamma function, the Beta function, and the double Gamma function. Integr. Transf. Spec. Funct. 20, 859–869 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  50. Choi, J., Srivastava, H.M.: Integral representations for the Euler-Mascheroni constant γ. Integr. Transf. Spec. Funct. 21, 675–690 (2010)

    Google Scholar 

  51. Choi, J., Srivastava, H.M.: Mathieu series and associated sums involving the Zeta functions. Comput. Math. Appl. 59, 861–867 (2010)

    CrossRef  MATH  MathSciNet  Google Scholar 

  52. Choi, J., Srivastava, H.M.: Asymptotic formulas for the triple Gamma function Γ 3 by means of its integral representation. Appl. Math. Comput. 218, 2631–2640 (2011)

    CrossRef  MATH  MathSciNet  Google Scholar 

  53. Choi, J., Srivastava, H.M.: The multiple Hurwitz Zeta function and the multiple Hurwitz-Euler Eta function. Taiwanese J. Math. 15, 501–522 (2011)

    MATH  MathSciNet  Google Scholar 

  54. Choi, J., Srivastava, H.M.: Some two-sided inequalities for multiple Gamma functions and related results. Appl. Math. Comput. 219, 10343–10354 (2013)

    CrossRef  MathSciNet  Google Scholar 

  55. Choi, J., Srivastava, H.M.: Series involving the Zeta functions and a family of generalized Goldbach-Euler series. Accepted for publication at Amer. Math. Monthly (2013)

    Google Scholar 

  56. Choi, J., Srivastava, H.M., Quine, J.R.: Some series involving the Zeta function. Bull. Austral. Math. Soc. 51, 383–393 (1995)

    CrossRef  MATH  MathSciNet  Google Scholar 

  57. Choi, J., Srivastava, H.M., Quine, J.R.: Some series involving the Zeta function. Bull. Austral. Math. Soc. 51, 383–393 (1995)

    CrossRef  MATH  MathSciNet  Google Scholar 

  58. Choi, J., Srivastava, H.M., Zhang, N.-Y.: Integrals involving a function associated with the Euler-Maclaurin summation formula. Appl. Math. Comput. 93, 101–116 (1998)

    CrossRef  MathSciNet  Google Scholar 

  59. Choi, J., Srivastava, H.M., Adamchik, V.S.: Multiple Gamma and related functions. Appl. Math. Comput. 134, 515–533 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  60. Conway, J.B.: Functions of One Complex Variable, 2nd edn. Springer, New York (1978)

    CrossRef  Google Scholar 

  61.  D’Hoker, E., Phong, D.H.: On determinant of Laplacians on Riemann surface. Comm. Math. Phys. 104, 537–545 (1986)

    CrossRef  MATH  MathSciNet  Google Scholar 

  62. D’Hoker, E., Phong, D.H.: Multiloop amplitudes for the bosonic polyakov string. Nucl. Phys. B 269, 204–234 (1986)

    MathSciNet  Google Scholar 

  63. Dittrich, W., Reuter, M.: Effective QCD-Lagrangian with ξ-function regularization. Phys. Lett. B 128, 321–326 (1983)

    CrossRef  Google Scholar 

  64. Dufresnoy, J., Pisot, C.: Sur la relation fonctionnelle \(f(x + 1) - f(x) =\varphi (x)\). Bull. Soc. Math. Belg. 15, 259–270 (1963)

    MATH  MathSciNet  Google Scholar 

  65. Edwards, J.: A treatise on the integral calculus with applications: Examples and problems, Vol. 1, 2. Chelsea Publishing Company, New York (1954)

    Google Scholar 

  66. Elizalde, E.: Derivative of the generalized Riemann Zeta function ζ(z, q) at \(z = -1\). J. Phys. A: Math. Gen. 18, 1637–1640 (1985)

    Google Scholar 

  67. Elizalde, E.: An asymptotic expansion for the first derivative of the generalized Riemann Zeta function. Math. Comput. 47, 347–350 (1986)

    CrossRef  MATH  MathSciNet  Google Scholar 

  68. Elizalde, E., Romeo, A.: An integral involving the generalized Zeta function. Internat. J. Math. Math. Sci. 13, 453–460 (1990)

    CrossRef  MATH  MathSciNet  Google Scholar 

  69. Elizalde, E., Odintsov, S.D., Romeo, A., Bytsenko, A.A., Zerbini, S.: Zeta Regularization Techniques with Applications. World Scientific Publishing Company, Singapore (1994)

    CrossRef  MATH  Google Scholar 

  70. Euler, L.: Comm. Acad. Petropol. 7, 156 (1734–1735)

    Google Scholar 

  71. Ferreira, C.: An asymptotic expansion of the double Gamma function. J. Approx. Theory 111, 298–314 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  72. Finch, S.R.: Mathematical Constants. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  73. Friedman, E., Ruijsenaars, S.: Shintani-Barnes Zeta and Gamma functions. Adv. Math. 187, 362–395 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  74.  Glaisher, J.W.L.: On the history of Euler’s constant. Messenger Math. 1, 25–30 (1872)

    Google Scholar 

  75. Glaisher, J.W.L.: On the product \({1}^{1} \cdot {2}^{2} \cdot {3}^{3}\cdots {n}^{n}\). Messenger Math. 7, 43–47 (1877)

    Google Scholar 

  76. Gosper, Jr., R.W.: \(\int _{n/4}^{m/6}\,\ln \,\varGamma (s)\,ds\). Fields Inst. Comm. 14, 71–76 (1997)

    Google Scholar 

  77. Gradshteyn, I.S., Ryzhik, I.M. (eds.): Tables of Integrals, Series, and Products (Corrected and Enlarged edition prepared by A. Jeffrey), 6th edn. Academic, New York (2000)

    Google Scholar 

  78. Hardy, G.H.: Divergent Series. Clarendon (Oxford University) Press, Oxford (1949); 2nd (Textually Unaltered) edn, Chelsea Publishing Company, New York (1991)

    Google Scholar 

  79. Havil, J.: Gamma (Exploring Euler’s Constant). Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  80. Hölder, O.: Über eine Transcendente Funktion, vol. 1886, pp. 514–522. Dieterichsche Verlags-Buchhandlung, Göttingen (1886)

    Google Scholar 

  81. Hölder, O.: Über eine von Abel untersuchte Transzendente und eine merkwürdige Funktionalbeziehung. In: Berichte über die Verhandlungen der Saechsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse, vol. 80, pp. 312–325 (1928)

    Google Scholar 

  82.  Kanemitsu, S., Kumagai, H., Yoshimoto, M.: Sums involving the Hurwitz zeta function. Ramanujan J. 5, 5–19 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  83. Kinkelin, V.H.: Über eine mit der Gamma Funktion verwandte Transcendente und deren Anwendung auf die Integralrechnung. J. Reine Angew. Math. 57, 122–158 (1860)

    CrossRef  MATH  Google Scholar 

  84.  Knopp, K.: Theory and Application of Infinite Series. Hafner Publishing Company, New York (1951) (2nd English edn., translated from the 2nd German edn. revised in accordance with the 4th German edn. by R.C.H. Young)

    Google Scholar 

  85. Knuth, D.E.: Euler’s constant to 1271 places. Math. Comput. 16, 275–281 (1962)

    MATH  MathSciNet  Google Scholar 

  86. Koumandos, S.: On Ruijsenaars’ asymptotic expansion of the logarithm of the double gamma function. J. Math. Anal. Appl. 341, 1125–1132 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  87. Koumandos, S., Pedersen, H.L.: Completely monotonic functions of positive order and asymptotic expansions of the logarithm of Barnes double gamma function and Euler’s gamma function. J. Math. Anal. Appl. 355, 33–40 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  88. Koumandos, S., Pedersen, H.L.: Absolutely monotonic functions related to Euler’s gamma function and Barnes’ double and triple gamma function. Monatsh. Math. 163, 51–69 (2011)

    CrossRef  MATH  MathSciNet  Google Scholar 

  89. Kumagai, H.: The determinant of the Laplacian on the n-sphere. Acta Arith. 91, 199–208 (1999)

    MATH  MathSciNet  Google Scholar 

  90. Lewin, L.: Polylogarithms and Associated Functions. Elsevier (North-Holland), New York (1981)

    MATH  Google Scholar 

  91. Matsumoto, K.: Asymptotic series for double Zeta and double Gamma functions of Barnes. RIMS Kōkyūroku 958, 162–165 (1996)

    MATH  Google Scholar 

  92. Matsumoto, K.: Asymptotic series for double Zeta, double Gamma, and Hecke L-functions. Math. Proc. Cambridge Philos. Soc. 123, 385–405 (1998); Corrigendum and Addendum: Math. Proc. Cambridge Philos. Soc. 132, 377–384 (2002)

    Google Scholar 

  93. Melzak, Z.A.: Companion to Concrete Mathematics: Mathematical Techniques and Various Applications, vol. I. Wiley, New York (1973)

    MATH  Google Scholar 

  94. Mortici, C.: New improvements of the Stirling formula. Appl. Math. Comput. 217, 699–704 (2010)

    CrossRef  MATH  MathSciNet  Google Scholar 

  95. Nielsen, N.: Handbuch der Theorie der Gammafunktion. Druck und Verlag von B.G. Teubner, Leipzig (1906); Reprinted by Chelsea Publishing Company, New York (1965)

    Google Scholar 

  96. Nishizawa, M.: On a q-analogue of the multiple Gamma functions. Lett. Math. Phys. 37, 201–209 (1996)

    CrossRef  MATH  MathSciNet  Google Scholar 

  97. Nishizawa, M.: Multiple Gamma function, its q- and elliptic analogue. Rocky Mountain J. Math. 32, 793–811 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  98. Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997)

    MATH  Google Scholar 

  99. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions [With 1 CD-ROM (Windows, Macintosh and UNIX)]. U.S. Department of Commerce, National Institute of Standards and Technology, Washington (2010); Cambridge University Press, Cambridge (2010) (see also [1])

    Google Scholar 

  100. Osgood, B., Phillips, R., Sarnak, P.: Extremals of determinants of Laplacians. J. Funct. Anal. 80, 148–211 (1988)

    CrossRef  MATH  MathSciNet  Google Scholar 

  101. Qi, F., Cui, R.-Q., Chen, C.-P., Guo, B.-N.: Some completely monotonic functions involving Polygamma functions and an application. J. Math. Anal. Appl. 310, 303–308 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  102. Qi, F., Chen, S.-X., Cheung, W.-S.: Logarithmically completely monotonic functions concerning gamma and digamma functions. Integr. Transf. Spec. Funct. 18, 435–443 (2007)

    CrossRef  MATH  MathSciNet  Google Scholar 

  103. Quine, J.R., Choi, J.: Zeta regularized products and functional determinants on spheres. Rocky Mountain J. Math. 26, 719–729 (1996)

    CrossRef  MATH  MathSciNet  Google Scholar 

  104. Quine, J.R., Heydari, S.H., Song, R.Y.: Zeta regularized products. Trans. Amer. Math. Soc. 338, 213–231 (1993)

    CrossRef  MATH  MathSciNet  Google Scholar 

  105.  Ramanujan, S.: A series for Euler’s constant γ. Messenger Math. 46, 73–80 (1916/1917)

    Google Scholar 

  106. Ruijsenaars, S.: First order analytic difference equations and integrable quantum systems. J. Math. Phys. 38, 1069–1146 (1997)

    CrossRef  MATH  MathSciNet  Google Scholar 

  107. Ruijsenaars, S.: On Barnes’ multiple zeta and gamma functions. Adv. Math. 156, 107–132 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  108.  Sarnak, P.: Determinants of Laplacians. Comm. Math. Phys. 110, 113–120 (1987)

    CrossRef  MATH  MathSciNet  Google Scholar 

  109. Shallit, J.D., Zikan, K.: A theorem of Goldbach. Amer. Math. Monthly 93, 402–403 (1986)

    CrossRef  MathSciNet  Google Scholar 

  110. Shintani, T.: A proof of the classical Kronecker limit formula. Tokyo J. Math. 3, 191–199 (1980)

    CrossRef  MATH  MathSciNet  Google Scholar 

  111. Srivastava, H.M.: A unified presentation of certain classes of series of the Riemann Zeta function. Riv. Mat. Univ. Parma Ser. 4 14, 1–23 (1988)

    Google Scholar 

  112. Srivastava, H.M.: Sums of certain series of the Riemann Zeta function. J. Math. Anal. Appl. 134, 129–140 (1988)

    CrossRef  MATH  MathSciNet  Google Scholar 

  113. Srivastava, H.M.: Some rapidly converging series for ζ(2n + 1). Proc. Amer. Math. Soc. 127, 385–396 (1999)

    CrossRef  MATH  MathSciNet  Google Scholar 

  114. Srivastava, H.M., Choi, J.: Series Associated with the Zeta and Related Functions. Kluwer Academic Publishers, Dordrecht (2001)

    CrossRef  MATH  Google Scholar 

  115. Srivastava, H.M., Choi, J.: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier Science Publishers, Amsterdam (2012)

    Google Scholar 

  116. Steiner, F.: On Selberg’s Zeta function for compact Riemann surfaces. Phys. Lett. B 188, 447–454 (1987)

    CrossRef  MathSciNet  Google Scholar 

  117. Terras, A.: Harmonic Analysis on Symmetric Spaces and Applications. vol. I, Springer, Berlin (1985)

    CrossRef  MATH  Google Scholar 

  118. Vardi, I.: Determinants of Laplacians and multiple Gamma functions. SIAM J. Math. Anal. 19, 493–507 (1988)

    CrossRef  MATH  MathSciNet  Google Scholar 

  119. Vignéras, M.-F.: L’équation fonctionnelle de la fonction zêta de Selberg du groupe moudulaire PSL(2, Z). In: Journées Arithmétiques de Luminy (International Colloquium of the CNRS, Centre University of Luminy Luminy, 1978), pp. 235–249. Astérisque, vol. 61. Société mathématique de France, Paris (1979)

    Google Scholar 

  120. Voros, A.: The Hadamard factorization of the Selberg Zeta function on a compact Riemann surface. Phys. Lett. B 180, 245–246 (1986)

    CrossRef  MathSciNet  Google Scholar 

  121. Voros, A.: Special functions, spectral functions and the Selberg Zeta function. Comm. Math. Phys. 110, 439–465 (1987)

    CrossRef  MATH  MathSciNet  Google Scholar 

  122. Wade, W.R.: An Introduction to Analysis, 3rd edn. Pearson Prentice Hall, Upper Saddle River (2004)

    Google Scholar 

  123. Walfisz, A.: Weylsche Exponentialsummen in der Neueren Zahlentheorie, pp. 114–115. B.G. Teubner, Leipzig (1963)

    Google Scholar 

  124. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions, 4th edn. Cambridge University Press, Cambridge (1963)

    Google Scholar 

  125. Wilf, H.S.: Problem 10588. Amer. Math. Monthly 104, 456 (1997)

    CrossRef  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology of the Republic of Korea (2010-0011005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junesang Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Choi, J. (2014). Multiple Gamma Functions and Their Applications. In: Milovanović, G., Rassias, M. (eds) Analytic Number Theory, Approximation Theory, and Special Functions. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0258-3_4

Download citation