Skip to main content

On the Value-Distribution of Logarithmic Derivatives of Dirichlet L-Functions

Abstract

We shall prove an unconditional basic result related to the value- distributions of {(L′∕L)(s, χ)} χ and of {(ζ′∕ζ)(s + )} τ , where χ runs over Dirichlet characters with prime conductors and τ runs over R. The result asserts that the expected density function common for these distributions are in fact the density function in an appropriate sense. Under the generalized Riemann hypothesis, stronger results have been proved in our previous articles, but our present result is unconditional.

Keywords

  • Probability Measure
  • Prime Number
  • Weak Convergence
  • Riemann Zeta Function
  • Base Field

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-0258-3_3
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-0258-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)

References

  1. Bohr, H.: Über die Funktion ζ′∕ζ(s). J. Reine Angew. Math. 141, 217–234 (1912)

    MATH  Google Scholar 

  2. Bohr, H., Jessen, B.: Über die Werteverteilung der Riemannschen Zetafunktion I, II. Acta Math. 54, 1–35 (1930); 58, 1–55 (1932)

    Google Scholar 

  3. Ihara, Y.: On “M-functions” closely related to the distribution of L′∕L-values. Publ. Res. Inst. Math. Sci. 44, 893–954 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Ihara, Y.: On certain arithmetic functions \(\tilde{M}(s;z_{1},z_{2})\) associated with global fields: Analytic properties. Publ. Res. Inst. Math. Sci. 47, 257–305 (2011)

    Google Scholar 

  5. Ihara, Y., Matsumoto, K.: On the value-distribution of log L and L′∕L. In: Steuding, R., Steuding, J. (eds.) New Directions in Value-Distribution Theory of Zeta and L-Functions. Würzburg Conference (Oct 2008), pp. 85–97. Shaker, Maastricht (2009)

    Google Scholar 

  6. Ihara, Y., Matsumoto, K.: On L-functions over function fields: Power-means of error-terms and distribution of L′∕L-values. In: Nakamura, H., et al. (eds.) Algebraic Number Theory and Related Topics 2008, vol. B19, pp. 221–247. RIMS Kokyuroku Bessatsu, Kyoto (2010)

    Google Scholar 

  7. Ihara, Y., Matsumoto, K.: On certain mean values and the value-distribution of logarithms of Dirichlet L-functions. Quart. J. Math. (Oxford) 62, 637–677 (2011)

    Google Scholar 

  8. Ihara, Y., Matsumoto, K.: On log L and L′∕L for L-functions and the associated “M-functions”: Connections in optimal cases. Moscow Math. J. 11, 73–111 (2011)

    MATH  MathSciNet  Google Scholar 

  9. Ihara, Y., Murty, V.K., Shimura, M.: On the logarithmic derivatives of Dirichlet L-functions at s = 1. Acta Arith. 137, 253–276 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. Jessen, B., Wintner, A.: Distribution functions and the Riemann zeta function. Trans. Amer. Math. Soc. 38, 48–88 (1935)

    CrossRef  MathSciNet  Google Scholar 

  11. Kershner, R., Wintner, A.: On the asymptotic distribution of ζ′∕ζ(s) in the critical strip. Amer. J. Math. 59, 673–678 (1937)

    CrossRef  MathSciNet  Google Scholar 

  12. Matsumoto, K.: Asymptotic probability measures of zeta-functions of algebraic number fields. J. Number Theory 40, 187–210 (1992)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Montgomery, H.L.: Topics in Multiplicative Number Theory. Lecture Notes in Mathematics, vol. 227. Springer, Berlin (1971)

    Google Scholar 

  14. van Kampen, E.R., Wintner, A.: Convolutions of distributions on convex curves and the Riemann zeta function. Amer. J. Math. 59, 175–204 (1937)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohji Matsumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ihara, Y., Matsumoto, K. (2014). On the Value-Distribution of Logarithmic Derivatives of Dirichlet L-Functions. In: Milovanović, G., Rassias, M. (eds) Analytic Number Theory, Approximation Theory, and Special Functions. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0258-3_3

Download citation