Skip to main content

Alternating Mathieu Series, Hilbert–Eisenstein Series and Their Generalized Omega Functions

  • Chapter
  • First Online:
Analytic Number Theory, Approximation Theory, and Special Functions

Abstract

In this paper our aim is to generalize the complete Butzer–Flocke–Hauss (BFH) Ω-function in a natural way by using two approaches. Firstly, we introduce the generalized Omega function via alternating generalized Mathieu series by imposing Bessel function of the first kind of arbitrary order as the kernel function instead of the original cosine function in the integral definition of the Ω. We also study the following set of questions about generalized BFH Ω ν -function: (i) two different sets of bounding inequalities by certain bounds upon the kernel Bessel function; (ii) linear ordinary differential equation of which particular solution is the newly introduced Ω ν -function, and by virtue of the Čaplygin comparison theorem another set of bounding inequalities are given.In the second main part of this paper we introduce another extension of BFH Omega function as the counterpart of generalized BFH function in terms of the positive integer order Hilbert–Eisenstein (HE) series. In this study we realize by exposing basic analytical properties, recurrence identities and integral representation formulae of Hilbert–Eisenstein series. Series expansion of these generalized BFH functions is obtained in terms of Gaussian hypergeometric function and some bridges are derived between Hilbert–Eisenstein series and alternating generalized Mathieu series. Finally, we expose a Turán-type inequality for the HE series \(\mathfrak{h}_{r}(w)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  2. Baricz, Á., Jankov, D., Pogány, T.K.: Turán type inequalities for Krätzel functions. J. Math. Anal. Appl. 388(2), 716–724 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bertolino, M.: Numerical Analysis. Naučna knjiga, Beograd (1977, in Serbo–Croatian)

    Google Scholar 

  4. Butzer, P.L.: Bernoulli functions, Hilbert-type Poisson summation formulae, partial fraction expansions, and Hilbert–Eisenstein series. In: He, T.-X., Shiue, P.J.-S., Li, Z.-K. (eds.) Analysis, Combinatorics and Computing, pp. 25–91. Nova Science Publishers, New York (2002)

    Google Scholar 

  5. Butzer, P.L., Hauss, M.: Applications of sampling theory to combinatorial analysis, Stirling numbers, special functions and the Riemann zeta function. In: Higgins, J.R., Stens, R.L. (eds.) Sampling Theory in Fourier and Signal Analysis: Advanced Topics, pp. 1–37 and 266–268. Clarendon (Oxford University) Press, Oxford (1999)

    Google Scholar 

  6. Butzer, P.L., Flocke, S., Hauss, M.: Euler functions E α (z) with complex α and applications. In: Anastassiou, G.A., Rachev, S.T. (eds.) Approximation, Probability and Related Fields, pp. 127–150. Plenum Press, New York (1994)

    Chapter  Google Scholar 

  7. Butzer, P.L., Hauss, M., Leclerc, M.: Bernoulli numbers and polynomials of arbitrary complex indices. Appl. Math. Lett. 5(6), 83–88 (1992)

    Article  MathSciNet  Google Scholar 

  8. Butzer, P.L., Pogány, T.K., Srivastava, H.M.: A linear ODE for the Omega function associated with the Euler function \(E_{\alpha }\left (z\right )\) and the Bernoulli function \(B_{\alpha }\left (z\right )\). Appl. Math. Lett. 19(10), 1073–1077 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Čaplygin, S.A.: Osnovaniya novogo sposoba približennogo integrirovanniya differenciyal’nyh uravnenij. Moskva, 1919, pp. 348–368 Sobranie sočinenij I, Gostehizdat, Moskva (1948)

    Google Scholar 

  10. Čaplygin, S.A.: Približennoe integrirovanie obykvennogo differencial’nogo uravneniya pervogo poryadka, Brošura, izdannaya Komissiei osobyh artil’erijskyh opytov, Moskva, 1920, pp. 402–419 Sobranie sočinenij I, Gostehizdat, Moskva (1948)

    Google Scholar 

  11. Cauchy, A.L.: Note sur une transcendente que renferme de devéloppement de la fonction perturbatrice relative au système planétaire. Compt. Rendus XIII, 682–687 (1841). (Oeuvres (1) vi, 341–346, 1888)

    Google Scholar 

  12. Cauchy, A.L.: Note sur la substitution des anomalies excentriques aux anomalies moyennes, dans le devéloppement de la fonction perturbatrice. Compt. Rendus XIII, 850–854 (1841). (Oeuvres (1) vi, 354–359, 1888)

    Google Scholar 

  13. Cerone, P.: Special functions approximations and bounds via integral representations. In: Cerone, P., Dragomir, S. (eds.) Advances in Inequalities for Special Functions, pp. 1–35. Nova Science Publishers, New York (2008)

    Google Scholar 

  14. Cerone, P., Lenard, C.T.: On integral forms of generalized Mathieu series. JIPAM J. Inequal. Pure Appl. Math. 4(5), Article 100 1–11 (2003, electronic)

    Google Scholar 

  15. Choi, Y., Srivastava, H.M.: Mathieu series and associated sums involving the Zeta function. Comp. Math. Appl. 59, 861–867 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Eisenstein, G.: Genaue Untersuchung der unendlichen Doppelproducte, aus welchen die elliptischen Functionen als Quotienten zusammengesetzt sind, und der mit ihnen zusammenhängenden Doppelreihen (als eine neue Begründungsweise der Theorie der elliptischen Functionen, mit besonderer Berücksichtung ihrer Analogie zu der Kreisfunctionen). J. Reine Angew. Math. (Crelle’s J.) 35, 153–274 (1847). Also see: G. Eisenstein, Mathematische Werke I., Chelsea Publishing Company, New York, 1975, 357–478.

    Google Scholar 

  17. Euler, L.: Introductio in Analysin Infinitorum, Tomus Primus. Marc-Michael Bousquet & Socios, Lausanne (1748)

    Google Scholar 

  18. Freitag, E., Busam, R.: Funktionentheorie. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  19. Gegenbauer, L.: Über einige bestimmte Integrale, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Wien LXX(2), 433–443 (1875)

    Google Scholar 

  20. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic, New York (1980)

    MATH  Google Scholar 

  21. Guo, B.-N.: Note on Mathieu’s inequality. RGMIA Res. Rep. Coll. 3(3), Article 5 (2000). Available online at http://rgmia.vu.edu.au/v3n3.html.

  22. Hansen, A.P.: Ermittelung der absoluten Störungen in Ellipsen von beliebiger Excentricität und Neigung. Part 1: Welcher als Beispiel die Berechnung, Gotha (1843)

    Google Scholar 

  23. Hauss, M.: Verallgemeinerte Stirling, Bernoulli und Euler Zahlen, deren Anwendungen und schnell konvergente Reihen für Zeta Funktionen, Doctoral Dissertation, RWTH-Aachen, 209 pp. Verlag Shaker, Aachen (1995)

    Google Scholar 

  24. Hauss, M.: An Euler–Maclaurin-type formula involving conjugate Bernoulli polynomials and an application to ζ(2m + 1). Commun. Appl. Anal. 1(1), 15–32 (1997)

    MATH  MathSciNet  Google Scholar 

  25. Ifantis, E.K., Siafarikas, P.D.: Inequalities involving Bessel and modified Bessel functions. J. Math. Anal. Appl. 147, 214–227 (1990) http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/03/06/04/0006

    Google Scholar 

  26. Iwaniec, H., Kowalski, E.: Analytic Number Theory, American Mathematical Society Colloquium Publications, vol. 53. American Mathematical Society, Providence (2004) http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/03/06/04/0008

  27. Kilbas, A.A., Saxena, R.K., Trujilló, J.J.: Krätzel function as the function of hypergeometric type. Frac. Calc. Appl. Anal. 9(2), 109–131 (2006)

    MATH  Google Scholar 

  28. Knopp, K.: Theory und Application of Infinite Series. Blackie & Son, London (1928). (reprinted 1948)

    Google Scholar 

  29. Krätzel, E.: Integral transformations of Bessel type. In: Dimovski, I. (ed.) Proceedings of International Conference on Generalized Functions and Operational Calculi, Varna, 1975, pp. 148–155. Publication House of Bulgarian Academy of Sciences, Sofia (1979)

    Google Scholar 

  30. Krasikov, I.: Uniform bounds for Bessel functions. J. Appl. Anal. 12(1), 83–91 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Landau, L.: Monotonicity and bounds on Bessel functions. In: Warchall. H. (ed.) Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory(Berkeley, California: June 11–13, 1999), 147–154 (2000); Electronic Journal Differential Equations, vol. 4. Southwest Texas State University, San Marcos (2002)

    Google Scholar 

  32. Lee, B.–S., Shah, S.M.: An inequality involving Bessel functions and its derivatives. J. Math. Anal. Appl. 30, 144–156 (1970)

    Google Scholar 

  33. von Lommel, E.C.J.: Die Beugungserscheinungen geradlinig begrenzter Schirme. Abh. der Math. Phys. Classe der k. b. Akad. der Wiss. (München) 15, 529–664 (1884–1886)

    Google Scholar 

  34. Luzin, N.N.: O metode približennogo integrirovaniya akad. S. A. Čaplygina. Uspehi Matem. Nauk 6(46), 3–27 (1951)

    MATH  MathSciNet  Google Scholar 

  35. Minakshisundaram, S., Szász, O.: On absolute convergence of multiple Fourier series. Trans. Am. Math. Soc. 61(1), 36–53 (1947)

    Article  MATH  Google Scholar 

  36. Mitrinović, D.S., Pečarić, J.: Differential and Integral Inequalities. Matematički problemi i ekspozicije, vol. 13. Naučna knjiga, Beograd (1988). (in Serbo–Croatian)

    Google Scholar 

  37. Olenko, A.Ya.: Upper bound on \(\sqrt{x}J_{\nu }(x)\) and its applications. Integral Transforms Spec. Funct. 17(6), 455–467 (2006)

    Google Scholar 

  38. Pogány, T.: Further results on generalized Kapteyn-type expansions. Appl. Math. Lett. 22(2), 192–196 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  39. Pogány, T.K., Srivastava, H.M.: Some two-sided bounding inequalities for the Butzer–Flocke–Hauss Omega function. Math. Inequal. Appl. 10(3), 587–595 (2007)

    MATH  MathSciNet  Google Scholar 

  40. Pogány, T.K., Srivastava, H.M., Tomovski, Ž.: Some families of Mathieu a-series and alternating Mathieu a-series. Appl. Math. Comput. 173(1), 69–108 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  41. Pogány, T.K., Tomovski, Ž., Leškovski, D.: Two-sided bounds for the complete Butzer–Flocke–Hauss Omega function. Mat. Vesnik 65(1), 104–121 (2013)

    MathSciNet  Google Scholar 

  42. Remmert, R., Schumacher, G.: Funktionentheorie I, 5. Neu Bearbeitete Auflage. Springer, Berlin (2002)

    Book  Google Scholar 

  43. Sitnik, S.M.: Inequalities for Bessel functions. Dokl. Akad. Nauk 340(1), 29–32 (1995). (in Russian)

    MathSciNet  Google Scholar 

  44. Srivastava, H.M., Gupta, K.C., Goyal, S.P.: The H-Functions of One and Two Variables with Applications. South Asian Publishers, New Delhi (1982)

    Google Scholar 

  45. Srivastava, H.M., Pogány, T.K.: Inequalities for a unified Voigt functions in several variables. Russian J. Math. Phys. 14(2), 194–200 (2007)

    Article  MATH  Google Scholar 

  46. Tomovski, Ž., Pogány, T.K.: Integral expressions for Mathieu-type power series and for Butzer–Flocke–Hauss Ω-function. Frac. Calc. Appl. Anal. 14(4), 623–634 (2011)

    MATH  Google Scholar 

  47. Watson, G.N.: A treatise on the theory of Bessel functions. 1st edn. Cambridge University Press, Cambridge (1922)

    MATH  Google Scholar 

  48. Weil, A.: Elliptic Functions according to Eisenstein and Kronecker. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  49. Weil, A.: Number Theory: An Approach through History from Hammurapi to Legendre. Birkhäuser–Verlag, Boston (1984).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor K. Pogány .

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Hari M. Srivastava

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baricz, Á., Butzer, P.L., Pogány, T.K. (2014). Alternating Mathieu Series, Hilbert–Eisenstein Series and Their Generalized Omega Functions. In: Milovanović, G., Rassias, M. (eds) Analytic Number Theory, Approximation Theory, and Special Functions. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0258-3_30

Download citation

Publish with us

Policies and ethics