Skip to main content

On Especial Cases of Boas-Buck-Type Polynomial Sequences

Abstract

After a slight modification, the Kontorovich-Lebedev transform is an automorphism in the vector space of polynomials. The action of this transformation over special cases of Boas-Buck-type polynomial sequences is under analysis.

Keywords

  • Hypergeometric Function
  • Modify Bessel Function
  • Differential Relation
  • Generalize Hypergeometric Function
  • Polynomial Sequence

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ben Cheikh, Y., Chaggara, H.: Connection coefficients between Boas-Buck polynomial sets. J. Math. Anal. Appl. 319, 665–689 (2006)

    Google Scholar 

  2. Ben Cheikh, Y., Lamiri, I., Ouni, A.: On Askey-scheme and d-orthogonality, I: A characterization theorem. J. Comput. Appl. Math. 233(3), 621–629 (2009)

    MATH  MathSciNet  Google Scholar 

  3. Boas, Jr., R.P., Buck, R.C.: Polynomials defined by generating relations. Amer. Math. Monthly 63, 626–632 (1956)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Boas, R.P., Buck, R.C.: Polynomial Expansions of Analytic Functions. Springer, Berlin (1964)

    CrossRef  MATH  Google Scholar 

  5. Brafman, F.: Generating functions of Jacobi and related polynomials. Proc. Amer. Math. Soc. 2, 942–949 (1951)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Chaunday, T.X.: An extension of hypergeometric functions (I). Quart. J. Math. Oxford 14, 55–78 (1943)

    CrossRef  Google Scholar 

  7. Comtet, L.: Advanced Combinatorics - The Art of Finite and Infinite Expansions. D. Reidel Publishing Co., Dordrecht (1974)

    MATH  Google Scholar 

  8. Digital Library of Mathematical Functions, 2011-07-01. National Institute of Standards and Technology from http://dlmf.nist.gov/24.

  9. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. I, II, III. McGraw-Hill, New York (1953)

    Google Scholar 

  10. Loureiro, A.F., Yakubovich, S.: The Kontorovich-Lebedev transform as a map between d-orthogonal polynomials. arXiv:1206.4899

    Google Scholar 

  11. Loureiro, A.F., Yakubovich, S.: Central factorials under the Kontorovich-Lebedev transform of polynomials. Integr. Transf. Spec. Funct. 24(3), 217–238 (2013)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Luke, Y.L.: Special Functions and Their Approximations, vol. I. Academic, New York (1969)

    MATH  Google Scholar 

  13. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integral Transforms: Special Functions, vol. II. Gordon and Breach, New York (1986)

    Google Scholar 

  14. Titchmarsh, E.C.: An Introduction to the Theory of Fourier Integrals. Clarendon, Oxford (1937)

    Google Scholar 

  15. Yakubovich, S.B.: A remark on the inversion formula for Wimp’s integral transformation with respect to the index. (Russian) Differentsial’nye Uravneniya 21(6), 1097–1098 (1985)

    Google Scholar 

  16. Yakubovich, S.B.: Index Transforms. World Scientific Publishing Company, Singapore (1996)

    CrossRef  MATH  Google Scholar 

  17. Yakubovich, S.: Encyclopedia of Mathematics. http://www.encyclopediaofmath.org/index.php?title=Kontorovich-Lebedev_transform&oldid=22663

  18. Yakubovich, S.B., Luchko, Y.F.: The Hypergeometric Approach to Integral Transforms and Convolutions. Mathematics and Applications, vol. 287. Kluwer Academic, Dordrecht (1994)

    Google Scholar 

Download references

Acknowledgements

Work of AFL was supported by Fundação para a Ciência e a Tecnologia via the grant SFRH/BPD/63114/2009. Research was partially funded by the European Regional Development Fund through the programme COMPETE and by the Portuguese Government through the FCT (Fundação para a Ciência e a Tecnologia) under the project PEst-C/MAT/UI0144/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana F. Loureiro .

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Hari M. Srivastava

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Loureiro, A.F., Yakubovich, S. (2014). On Especial Cases of Boas-Buck-Type Polynomial Sequences. In: Milovanović, G., Rassias, M. (eds) Analytic Number Theory, Approximation Theory, and Special Functions. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0258-3_26

Download citation