Skip to main content

Numerical Integration of Highly Oscillating Functions

  • Chapter
  • First Online:

Abstract

Some specific nonstandard methods for numerical integration of highly oscillating functions, mainly based on some contour integration methods and applications of some kinds of Gaussian quadratures, including complex oscillatory weights, are presented in this survey. In particular, Filon-type quadratures for weighted Fourier integrals, exponential-fitting quadrature rules, Gaussian-type quadratures with respect to some complex oscillatory weights, methods for irregular oscillators, as well as two methods for integrals involving highly oscillating Bessel functions are considered. Some numerical examples are included.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aptekarev, A.I., Assche, W.V.: Scalar and matrix Riemann–Hilbert approach to the strong asymptotics of Pade approximants and complex orthogonal polynomials with varying weight. J. Approx. Theory. 129, 129–166 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen, R: Numerical approximations to integrals with a highly oscillatory Bessel kernel. Appl. Numer. Math. 62, 636–648 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)

    MATH  Google Scholar 

  4. Chung, K.C., Evans, G.A., Webster, J.R.: A method to generate generalized quadrature rules for oscillatory integrals. Appl. Numer. Math. 34, 85–93 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cvetković, A.S., Milovanović, G.V.: The Mathematica Package “OrthogonalPolynomials”. Facta Univ. Ser. Math. Inform. 19, 17–36 (2004)

    MATH  Google Scholar 

  6. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, Inc. San Diego (1984)

    MATH  Google Scholar 

  7. Ehrenmark, U.T.: On the error term of the Filon quadrature formulae. BIT 27, 85–97 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Einarsson, B.: Numerical calculation of Fourier integrals with cubic splines. BIT 8, 279–286 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  9. Evans, G.A.: Two robust methods for irregular oscillatory integrals over a finite range. Appl. Numer. Math. 14, 383–395 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Evans, G.A.: An expansion method for irregular oscillatory integrals. Internat. J. Comput. Math. 63, 137–148 (1997)

    Article  MATH  Google Scholar 

  11. Evans, G.A., Webster, J.R.: A high order, progressive method for the evaluation of irregular oscillatory integrals. Appl. Numer. Math. 23, 205–218 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Filon, L.N.G.: On a quadrature formula for trigonometric integrals. Proc. Roy. Soc. Edinburgh 49, 38–47 (1928)

    Google Scholar 

  13. Flinn, E.A.: A modification of Filon’s method of numerical integration. J. Assoc. Comput. Mach. 7, 181–184 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gautschi, W.: Construction of Gauss–Christoffel quadrature formulas. Math. Comput. 22, 251–270 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gautschi, W.: A survey of Gauss–Christoffel quadrature formulae. In: Butzer, P.L., Fehér, F. (eds.) E.B. Christoffel–The Influence of His Work on Mathematics and the Physical Sciences pp. 72–147. Birkhäuser, Basel (1981)

    Google Scholar 

  16. Goldberg, R.R., Varga, R.S.: Moebius inversion of Fourier transforms. Duke Math. J. 23, 553–559 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Sixth edition, Academic Press, London (2000)

    MATH  Google Scholar 

  18. Hascelik, A.I.: Suitable Gauss and Filon–type methods for oscillatory integrals with an algebraic singularity. Appl. Numer. Math. 59, 101–118 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Håvie, T.: Remarks on an expansion for integrals of rapidly oscillating functions. BIT 13, 16–29 (1973)

    Article  MATH  Google Scholar 

  20. Huybrechs, D., Vandewalle, S.: On the evaluation of highly oscillatory integrals by analytic continuation. SIAM J. Numer. Anal. 44, 1026–1048 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Iserles, A.: On the numerical quadrature of highly–oscillating integrals I: Fourier transforms. IMA J. Numer. Anal. 24, 365–391 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Iserles, A., Nørsett, S.P.: On quadrature methods for highly oscillatory integrals and their implementation. BIT 44, 755–772 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Iserles, A.: On the numerical quadrature of highly–oscillating integrals II: Irregular oscillators. IMA J. Numer. Anal. 25, 25–44 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Iserles, A., Nørsett, S.P.: Efficient quadrature of highly–oscillatory integrals using derivatives. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461, 1383–1399 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ixaru, L.Gr.: Operations on oscillatory functions. Comput. Phys. Comm. 105, 1–19 (1997)

    Google Scholar 

  26. Ixaru, L.Gr., Paternoster, B.: A Gauss quadrature rule for oscillatory integrands. Comput. Phys. Comm. 133, 177–188 (2001)

    Google Scholar 

  27. Kim, K.J., Cools, R., Ixaru, L.Gr.: Quadrature rules using first derivatives for oscillatory integrands. J. Comput. Appl. Math. 140, 479–497 (2002)

    Google Scholar 

  28. Kim, K.J., Cools, R., Ixaru, L.Gr.: Extended quadrature rules for oscillatory integrands. Appl. Numer. Math. 46, 59–73 (2003)

    Google Scholar 

  29. Ledoux, V., Van Daele, M.: Interpolatory quadrature rules for oscillatory integrals. J. Sci. Comput. 53, 586–607 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. Levin, D.: Procedures for computing one and two dimensional integrals of functions with rapid irregular oscillations. Math. Comp. 38 (158), 531–538 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  31. Levin, D.: Fast integration of rapidly oscillatory functions. J. Comput. Appl. Math. 67, 95–101 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  32. Levin, D.: Analysis of a collocation method for integrating rapidly oscillatory functions. J. Comput. Appl. Math. 78, 131–138 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  33. Li, J., Wang, X., Wang, T., Xiao, S.: An improved Levin quadrature method for highly oscillatory integrals. Appl. Numer. Math. 60, 833–842 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lyness, J.N.: The calculation of Fourier coefficients. SIAM J. Numer. Anal. 4, 301–315 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  35. Lyness, J.N.: The calculation of Fourier coefficients by the Mobius inversion of the Poisson summation formula. Pt. I: Functions whose early derivatives are continuous. Math. Comp. 24, 101–135 (1970)

    MATH  MathSciNet  Google Scholar 

  36. Luke, Y.L.: On the computation of oscillatory integrals. Proc. Camb. Phil. Soc. 50, 269–277 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  37. Mastroianni, G., Milovanović, G.V.: Interpolation Processes – Basic Theory and Applications. Springer Monographs in Mathematics, Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  38. Miklosko, J.: Numerical integration with weight functions coskx, sinkx on [0, 2πt], t = 1, 2, . Apl. Mat. 14, 179–194 (1969)

    Google Scholar 

  39. Milovanović, G.V.: Numerical calculation of integrals involving oscillatory and singular kernels and some applications of quadratures. Comput. Math. Appl. 36, 19–39 (1998)

    Article  MATH  Google Scholar 

  40. Milovanović, G.V., Cvetković, A.S.: Orthogonal polynomials and Gaussian quadrature rules related to oscillatory weight functions. J. Comput. Appl. Math. 179, 263–287 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  41. Milovanović, G.V., Cvetković, A.S.: Orthogonal polynomials related to the oscillatory–Chebyshev weight function. Bull. Cl. Sci. Math. Nat. Sci. Math. 30, 47–60 (2005)

    Article  Google Scholar 

  42. Milovanović, G.V., Cvetković, A.S., Marjanović, Z.M.: Orthogonal polynomials for the oscillatory–Gegenbauer weight. Publ. Inst. Math. (Beograd) (N.S.) 84(98), 49–60 (2008)

    Google Scholar 

  43. Milovanović, G.V., Cvetković, A.S., Stanić, M.P.: Gaussian quadratures for oscillatory integrands. Appl. Math. Letters 20, 853–860 (2007)

    Article  MATH  Google Scholar 

  44. Milovanović, G.V., Cvetković, A.S., Stanić, M.P.: Two conjectures for integrals with oscillatory integrands. FACTA UNIVERSITATIS Ser. Math. Inform. 22(1), 77–90 (2007)

    MATH  Google Scholar 

  45. Milovanović, G.V., Cvetković, A.S., Stanić, M.P.: Orthogonal polynomials for modified Gegenbauer weight and corresponding quadratures. Appl. Math. Letters 22, 1189–1194 (2009)

    Article  MATH  Google Scholar 

  46. Olver, S.: Moment–free numerical integration of highly oscillatory functions. IMA J. Numer. Anal. 26, 213–227 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  47. Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. In: Classics in Applied Mathematics. vol. 30, SIAM, Philadelphia, PA (2000)

    Google Scholar 

  48. Paternoster, B.: Present state–of–the–art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70th birthday. Comput. Phys. Comm. 183, 2499–2512 (2012)

    Google Scholar 

  49. Piessens, R.: Gaussian quadrature formulas for the integration of oscillating functions. Z. Angew. Math. Mech. 50, 698–700 (1970)

    Article  MATH  Google Scholar 

  50. Piessens, R.: Gaussian quadrature formulas for the evaluation of Fourier–cosine coefficients. Z. Angew. Math. Mech. 52, 56–58 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  51. Piessens, R.: Automatic computation of Bessel function integrals. Comput. Phys. Commun. 25, 289–295 (1982)

    Article  Google Scholar 

  52. Piessens, R., Branders, M.: Modified Clewshaw–Curtis method for the computation of Bessel function integrals. BIT. 23, 370–381 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  53. Piessens, R., Haegemans, A.: Numerical calculation of Fourier–transform integrals, Electron. Lett. 9, 108–109 (1973)

    Article  Google Scholar 

  54. Puoskari, M.: A method for computing Bessel function integrals. J. Comput. Phys. 75, 334–344 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  55. Sauter, T.: Computation of irregularly oscillating integrals. Appl. Numer. Math. 35, 245–264 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  56. Shampine, L.F.: Integrating oscillatory functions in Matlab. Int. J. Comput. Math. 88 (11), 2348–2358 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  57. Shampine, L.F.: Integrating oscillatory functions in Matlab, II. Electron. Trans. Numer. Anal. 39, 403–413 (2012)

    MathSciNet  Google Scholar 

  58. Stanić, M.P., Cvetković, A.S.: Orthogonal polynomials with respect to modified Jacobi weight and corresponding quadrature rules of Gaussian type. Numer. Math. Theor. Meth. Appl. 4 (4), 478–488 (2011)

    MATH  Google Scholar 

  59. Stein, E.: Harmonic Analysis: Real–Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton, NJ (1993)

    MATH  Google Scholar 

  60. Stetter, H.J.: Numerical approximation of Fourier transforms. Numer. Math. 8, 235–249 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  61. Tuck, E.O.: A simple Filon–trapezoidal rule. Math. Comp. 21, 239–241 (1967)

    MATH  Google Scholar 

  62. Van Daele, M., Vanden Berghe, G., Vande Vyver, H.: Exponentially fitted quadrature rules of Gauss type for oscillatory integrands. Appl. Numer. Math. 53, 509–526 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  63. van de Vooren, A.I., van Linde, H.J.: Numerical calculation of integrals with strongly oscillating integrand. Math. Comp. 20, 232–245 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  64. Watson, G.N.: A Treatise of the Theory of Bessel Functions. Cambridge University Press, cambridge (1922)

    Google Scholar 

  65. Xiang, S.: Numerical analysis on fast integration of highly oscillatory functions. BIT 47, 469–482 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  66. Xiang, S., Gui, W.: On generalized quadrature rules for fast oscillatory integrals. Appl. Math. Comput. 197, 60–75 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  67. Xiang, S., Gui, W., Moa P.: Numerical quadrature for Bessel transformations. Appl. Numer. Math. 58, 1247–1261 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  68. Zamfirescu, I.: An extension of Gauss’s method for the calculation of improper integrals. Acad. R.P. Romîne Stud. Cerc. Mat. 14, 615–631 (1963) (in Romanian).

    Google Scholar 

Download references

Acknowledgements

The authors were supported in part by the Serbian Ministry of Education, Science and Technological Development (grant number #174015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija P. Stanić .

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Hari M. Srivastava

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Milovanović, G.V., Stanić, M.P. (2014). Numerical Integration of Highly Oscillating Functions. In: Milovanović, G., Rassias, M. (eds) Analytic Number Theory, Approximation Theory, and Special Functions. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0258-3_23

Download citation

Publish with us

Policies and ethics