Skip to main content

Topics in Special Functions III

Abstract

The authors provide a survey of recent results in special functions of classical analysis and geometric function theory, in particular, the circular and hyperbolic functions, the gamma function, the elliptic integrals, the Gaussian hypergeometric function, power series, and mean values.

Keywords

  • Hypergeometric Function
  • Quasiconformal Mapping
  • Hyperbolic Function
  • Elliptic Integral
  • Good Constant

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-0258-3_11
  • Chapter length: 49 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-0258-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1970)

    Google Scholar 

  2. Adell, J.A., Alzer, H.: A monotonicity property of Euler’s gamma function. Publ. Math. Debrecen 78, 443–448 (2011)

    MATH  MathSciNet  Google Scholar 

  3. Alzer, H.: On some inequalities for the gamma and psi functions. Math. Comput. 66, 373–389 (1997)

    MATH  MathSciNet  Google Scholar 

  4. Alzer, H.: Inequalities for the gamma function. Proc. Am. Math. Soc. 128, 141–147 (1999)

    MathSciNet  Google Scholar 

  5. Alzer, H.: Inequalities for the volume of the unit ball in \({\mathbb{R}}^{n}\). J. Math. Anal. Appl. 252, 353–363 (2000)

    MATH  MathSciNet  Google Scholar 

  6. Alzer, H.: Sharp inequalities for digamma and polygamma functions. Forum Math. 16, 181–221 (2004)

    MATH  MathSciNet  Google Scholar 

  7. Alzer, H.: Inequalities for the volume of the unit ball in \({\mathbb{R}}^{n}\) II. Mediterr. J. Math. 5, 395–413 (2008)

    MATH  MathSciNet  Google Scholar 

  8. Alzer, H.: Inequalities for the harmonic numbers. Math. Z. 267, 367–384 (2011)

    MATH  MathSciNet  Google Scholar 

  9. Alzer, H., Batir, N.: Monotonicity properties of the gamma function. Appl. Math. Lett. 20, 778–781 (2007)

    MATH  MathSciNet  Google Scholar 

  10. Alzer, H., Qiu, S.-L.: Inequalities for means in two variables. Arch. Math. (Basel) 80, 201–215 (2003)

    Google Scholar 

  11. Alzer, H., Qiu, S.-L.: Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172, 289–312 (2004)

    MATH  MathSciNet  Google Scholar 

  12. Anderson, G.D., Vuorinen, M.: Reflections on Ramanujan’s mathematical gems. Math. Newsl. 19, 87–108 (2010). Available via arXiv:1006.5092v1 [math.CV]

    Google Scholar 

  13. Anderson, G.D., Qiu, S.-L.: A monotoneity property of the gamma function. Proc. Am. Math. Soc. 125, 3355–3362 (1997)

    MATH  MathSciNet  Google Scholar 

  14. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Special functions of quasiconformal theory. Expo. Math. 7, 97–136 (1989)

    MATH  MathSciNet  Google Scholar 

  15. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Functional inequalities for hypergeometric functions and complete elliptic integrals. SIAM J. Math. Anal. 23, 512–524 (1992)

    MATH  MathSciNet  Google Scholar 

  16. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Hypergeometric functions and elliptic integrals. In: Srivastava, H.M., Owa, S. (eds.) Current Topics in Analytic Function Theory, pp. 48–85. World Scientific Publishing Co., Singapore (1992)

    Google Scholar 

  17. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Inequalities for quasiconformal mappings in space. Pacific J. Math. 160, 1–18 (1993)

    MATH  MathSciNet  Google Scholar 

  18. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997)

    MATH  Google Scholar 

  19. Anderson, G.D., Qiu, S.-L., Vamanamurthy, M.K., Vuorinen, M.: Generalized elliptic integrals and modular equations. Pacific J. Math. 192, 1–37 (2000)

    MathSciNet  Google Scholar 

  20. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Topics in special functions. In: Papers on Analysis: A Volume Dedicated to Olli Martio on the Occasion of his 60th Birthday, vol. 83, pp. 5–26. Report University of Jyväskylä (2001)

    Google Scholar 

  21. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Monotonicity rules in calculus. Am. Math. Monthly 133, 805–816 (2006)

    MathSciNet  Google Scholar 

  22. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Generalized convexity and inequalities. J. Math. Anal. Appl. 335, 1294–1308 (2007)

    MATH  MathSciNet  Google Scholar 

  23. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Topics in special functions II. Conform. Geom. Dyn. 11, 250–271 (2007)

    MATH  MathSciNet  Google Scholar 

  24. András, S., Baricz, Á.: Bounds for complete elliptic integrals of the first kind. Expo. Math. 28, 357–364 (2010)

    MATH  MathSciNet  Google Scholar 

  25. Andrews, G., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  26. Balasubramanian, R., Ponnusamy, S., Vuorinen, M.: Functional inequalities for the quotients of hypergeometric functions. J. Math. Anal. Appl. 218, 256–268 (1998)

    MATH  MathSciNet  Google Scholar 

  27. Balasubramanian, R., Naik, S., Ponnusamy, S., Vuorinen, M.: Elliott’s identity and hypergeometric functions. J. Math. Anal. Appl. 271, 232–256 (2002)

    MATH  MathSciNet  Google Scholar 

  28. Barbu, C., Pişcoran, L.-I.: On Panaitopol and Jordan type inequalities (unpublished manuscript)

    Google Scholar 

  29. Baricz, Á.: Landen-type inequalities for Bessel functions. Comput. Methods Funct. Theory 5, 373–379 (2005)

    MATH  MathSciNet  Google Scholar 

  30. Baricz, Á.: Functional inequalities involving special functions. J. Math. Anal. Appl. 319, 450–459 (2006)

    MATH  MathSciNet  Google Scholar 

  31. Baricz, Á.: Convexity of the zero-balanced Gaussian hypergeometric functions with respect to Hölder means. JIPAM. J. Inequal. Pure Appl. Math. 8, 9 (2007) (Article 40)

    Google Scholar 

  32. Baricz, Á.: Functional inequalities involving special functions II. J. Math. Anal. Appl. 327, 1202–1213 (2007)

    MATH  MathSciNet  Google Scholar 

  33. Baricz, Á.: Turán type inequalities for generalized complete elliptic integrals. Math. Z. 256, 895–911 (2007)

    MATH  MathSciNet  Google Scholar 

  34. Baricz, Á.: Functional inequalities involving Bessel and modified Bessel functions of the first kind. Expo. Math. 26, 279–293 (2008)

    MATH  MathSciNet  Google Scholar 

  35. Baricz, Á.: Jordan-type inequalities for generalized Bessel functions. JIPAM. J. Inequal. Pure Appl. Math. 9, 6 (2008) (Article 39)

    Google Scholar 

  36. Baricz, Á.: Turán type inequalities for hypergeometric functions. Proc. Am. Math. Soc. 136, 3223–3229 (2008)

    MATH  MathSciNet  Google Scholar 

  37. Baricz, Á.: Generalized Bessel functions of the first kind. Lecture Notes in Mathematics 1994. Springer, Berlin (2010)

    Google Scholar 

  38. Baricz, Á.: Landen inequalities for special functions. Proc. Am. Math. Soc. Available via arXiv:1301.5255 [math.CA] (to appear)

    Google Scholar 

  39. Baricz, Á., Sándor, J.: Extensions of the generalized Wilker inequality to Bessel functions. J. Math. Inequal. 2, 397–406 (2008)

    Google Scholar 

  40. Baricz, Á., Wu, S.-H.: Sharp Jordan type inequalities for Bessel functions. Publ. Math. Debrecen 74, 107–126 (2009)

    MATH  MathSciNet  Google Scholar 

  41. Baricz, Á., Wu, S.-H.: Sharp exponential Redheffer-type inequalities for Bessel functions. Publ. Math. Debrecen 74, 257–278 (2009)

    MATH  MathSciNet  Google Scholar 

  42. Baricz, Á., Vesti, J., Vuorinen, M.: On Kaluza’s sign criterion for reciprocal power series. Ann. Univ. Mariae Curie-Skłodowska Sect A 65, 1–16 (2011)

    MATH  MathSciNet  Google Scholar 

  43. Barnard, R.W., Richards, K.C.: On inequalities for hypergeometric analogues of the arithmetic-geometric mean. JIPAM. J. Inequal. Pure Appl. Math. 8, 5 (2007) (Article 65)

    Google Scholar 

  44. Barnard, R.W., Richards, K.C., Tiedeman, H.C.: A survey of some bounds for Gauss’ hypergeometric function and related bivariate means. J. Math. Inequal. 4, 45–52 (2010)

    MathSciNet  Google Scholar 

  45. Batir, N.: On some properties of digamma and polygamma functions. J. Math. Anal. Appl. 328, 452–465 (2007)

    MATH  MathSciNet  Google Scholar 

  46. Batir, N.: On some properties of the gamma function. Expo. Math. 26, 187–196 (2008)

    MATH  MathSciNet  Google Scholar 

  47. Batir, N.: Sharp inequalities for factorial n. Proyecciones 27, 97–102 (2008)

    Google Scholar 

  48. Batir, N.: Improving Stirling’s formula. Math. Commun. 16, 105–114 (2011)

    MATH  MathSciNet  Google Scholar 

  49. Becker, M., Stark, E.L.: On a hierarchy of quolynomial inequalities for tanx. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 602–633, 133–138 (1978)

    Google Scholar 

  50. Berg, C., Pedersen, H.L.: A completely monotone function related to the gamma function. J. Comput. Appl. Math. 133, 219–230 (2001)

    Google Scholar 

  51. Berg, C., Pedersen, H.L.: Pick functions related to the gamma function. Rocky Mountain J. Math. 32, 507–525 (2002)

    Google Scholar 

  52. Berg, C., Pedersen, H.L.: A one-parameter family of Pick functions defined by the gamma function and related to the volume of the unit ball in n-space. Proc. Am. Math. Soc. 139, 2121–2132 (2011)

    MATH  MathSciNet  Google Scholar 

  53. Berg, C., Pedersen, H.L.: A completely monotonic function used in an inequality of Alzer. Comput. Methods Funct. Theory 12, 329–341 (2012)

    MATH  MathSciNet  Google Scholar 

  54. Berndt, B.C.: Ramanujan’s Notebooks, Part II. Springer, New York (1987)

    Google Scholar 

  55. Bhayo, B.A., Vuorinen, M.: On generalized complete elliptic integrals and modular functions. Proc. Edinburgh Math. Soc. 55, 591–611 (2012)

    MATH  MathSciNet  Google Scholar 

  56. Bhayo, B.A., Vuorinen, M.: On generalized trigonometric functions with two parameters. J. Approx. Theory 164, 1415–1426 (2012)

    Google Scholar 

  57. Bhayo, B.A., Vuorinen, M.: Inequalities for eigenfunctions of the p-Laplacian. Issues Anal. 2(20), 14–37 (2013)

    Google Scholar 

  58. Biernacki, M., Krzyż, J.: On the monotonicity of certain functionals in the theory of analytic functions. Ann. Univ. M. Curie-Skłodowska 2, 134–145 (1995)

    Google Scholar 

  59. Biezuner, R.J., Ercole, G., Martins, E.M.: Computing the sin p function via the inverse power method. Comput. Methods Appl. Math. 2, 129–140 (2012)

    MathSciNet  Google Scholar 

  60. Böhm, J., Hertel, E.: Polyedergeometrie in n-Dimensionalen Räumen Konstanter Krümmung. Birkhäuser, Basel (1981)

    MATH  Google Scholar 

  61. Borwein, J.M., Borwein, P.B., Garvan, F.: Hypergeometric analogues of the arithmetic-geometric mean iteration. Constr. Approx. 9, 509–523 (1993)

    MATH  MathSciNet  Google Scholar 

  62. Brenner, J.L., Carlson, B.C.: Homogeneous mean values: weights and asymptotics. J. Math. Anal. Appl. 123, 265–280 (1987)

    MATH  MathSciNet  Google Scholar 

  63. Burnside, W.: A rapidly convergent series for logN! . Messenger Math. 46, 157–159 (1917)

    Google Scholar 

  64. Byrd, P.F., Friedman, M.D.: Handbook of Elliptic Integrals for Engineers and Scientists, 2nd edn. Die Grundlehren der mathematischen Wissenschaften, vol. 67. Springer, Berlin (1971)

    Google Scholar 

  65. Carlson, B.C.: A hypergeometric mean value. Proc. Am. Math. Soc. 16, 759–766 (1965)

    MATH  Google Scholar 

  66. Carlson, B.C.: Some Inequalities for hypergeometric functions. Proc. Am. Math. Soc. 16, 32–39 (1966)

    Google Scholar 

  67. Carlson, B.C.: Inequalities for a symmetric elliptic integral. Proc. Am. Math. Soc. 25, 698–703 (1970)

    MATH  Google Scholar 

  68. Carlson, B.C., Tobey, M.D.: A property of the hypergeometric mean value. Proc. Am. Math. Soc. 19, 255–262 (1968)

    MATH  MathSciNet  Google Scholar 

  69. Chen, C.-P.: Inequalities for the Euler-Mascheroni constant. Appl. Math. Lett. 23, 161–164 (2010)

    MathSciNet  Google Scholar 

  70. Chen, C.-P.: Sharpness of Negoi’s inequality for the Euler-Mascheroni constant. Bull. Math. Anal. Appl. 3, 134–141 (2011)

    Google Scholar 

  71. Chen, C.-P., Cheung, W.-S.: Sharp Cusa and Becker-Stark inequalities. J. Inequal. Appl. 2011, 6 (2011) (Article 136)

    Google Scholar 

  72. Chen, C.-P., Cheung, W.-S.: Sharpness of Wilker and Huygens type inequalities. J. Inequal. Appl. 2012, 11 (2012) (Article 72)

    Google Scholar 

  73. Chen, C.-P., Cheung, W.-S., Wang, W.-S.: On Shafer and Carlson inequalities. J. Inequal. Appl. 2011, 10 (2011) (Article ID 840206)

    Google Scholar 

  74. Chen, C.-P., Debnath, L.: Sharpness and generalization of Jordan’s inequality and its application. Appl. Math. Lett. 25, 594–599 (2012)

    MATH  MathSciNet  Google Scholar 

  75. Chen, C.-P., Mortici, C.: Generalization and sharpness of Carlson’s inequality for the inverse cosine function (unpublished manuscript)

    Google Scholar 

  76. Chen, C.-P., Zhao, J.-W., Qi, F.: Three inequalities involving hyperbolically trigonometric functions. RGMIA Res. Rep. Coll. 6(3), 437–443 (2003) (Article 4)

    Google Scholar 

  77. Chlebus, E.: A recursive scheme for improving the original rate of convergence to the Euler-Mascheroni constant. Am. Math. Monthly 118, 268–274 (2011)

    MATH  MathSciNet  Google Scholar 

  78. Chu, Y.-M., Wang, M.-K.: Inequalities between arithmetic-geometric, Gini, and Toader Means. Abstr. Appl. Anal. 2012, 11 (2012) (Article ID 830585)

    Google Scholar 

  79. Chu, Y.-M., Wang, M.-K.: Optimal Lehmer mean bounds for the Toader mean. Results Math. 61, 223–229 (2012)

    MATH  MathSciNet  Google Scholar 

  80. Chu, Y.-M., Wang, G.-D., Zhang, X.-H., Qiu, S.-L.: Generalized convexity and inequalities involving special functions. J. Math. Anal. Appl. 336, 768–776 (2007)

    MATH  MathSciNet  Google Scholar 

  81. Chu, Y.-M., Wang, M.-K., Qiu, Y.-F.: On Alzer and Qiu’s conjecture for complete elliptic integral and inverse hyperbolic tangent function. Abstr. Appl. Anal. 2011, 7 (2011) (Article ID 697547)

    Google Scholar 

  82. Chu, Y.-M., Wang, M.-K., Qiu, S.-L., Jiang, Y.-P.: Bounds for complete elliptic integrals of the second kind with applications. Comput. Math. Appl. 63, 1177–1184 (2012)

    MATH  MathSciNet  Google Scholar 

  83. Chu, Y.-M., Wang, M.-K., Qiu, S.-L.: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122, 41–51 (2012)

    MATH  MathSciNet  Google Scholar 

  84. DeTemple, D.W.: Convergence to Euler’s constant. Am. Math. Monthly 100, 468–470 (1993)

    MATH  MathSciNet  Google Scholar 

  85. Elbert, Á., Laforgia, A.: On some properties of the gamma function. Proc. Am. Math. Soc. 128, 2667–2673 (2000)

    MATH  MathSciNet  Google Scholar 

  86. Elliott, E.B.: A formula including Legendre’s \(\mathcal{E}\mathcal{K}^{\prime} + \mathcal{K}\mathcal{E}^{\prime}-\mathcal{K}\mathcal{K}^{\prime} = \frac{1} {2}\pi\). Messenger Math. 33, 31–40 (1904)

    Google Scholar 

  87. Fink, A.M.: Two inequalities. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 6, 49–50 (1995)

    MathSciNet  Google Scholar 

  88. Ge, H.-F.: New sharp bounds for the Bernoulli numbers and refinement of Becker-Stark inequalities. J. Appl. Math. 2012, 7 (2012) (Article ID 137507)

    Google Scholar 

  89. Guo, B.-N., Chen, R.-J., Qi, F.: A class of completely monotonic functions involving the polygamma functions. J. Math. Anal. Approx. Theory 1, 124–134 (2006)

    MATH  MathSciNet  Google Scholar 

  90. Guo, B.-N., Qi, F.: Some bounds for the complete elliptic integrals of the first and second kinds. Math. Inequal. Appl. 14, 323–334 (2011)

    MATH  MathSciNet  Google Scholar 

  91. Hästö, P.A.: A monotonicity property of ratios of symmetric homogeneous means. JIPAM. J. Inequal. Pure Appl. Math. 3, 23 (2002) (Article 71)

    Google Scholar 

  92. Hästö, P.A.: A new weighted metric: the relative metric I. J. Math. Anal. Appl. 274, 38–58 (2002)

    MATH  MathSciNet  Google Scholar 

  93. Hästö, P.A.: A new weighted metric: the relative metric II. J. Math. Anal. Appl. 301, 336–353 (2005)

    MATH  MathSciNet  Google Scholar 

  94. Heikkala, V., Lindén, H., Vamanamurthy, M. K., Vuorinen, M.: Generalized elliptic integrals and the Legendre M -function. J. Math. Anal. Appl. 338, 223–243 (2008)

    MATH  MathSciNet  Google Scholar 

  95. Heikkala, V., Vamanamurthy, M. K., Vuorinen, M.: Generalized elliptic integrals. Comput. Methods Funct. Theory 9, 75–109 (2009)

    MATH  MathSciNet  Google Scholar 

  96. Hua, Y.: Refinements and sharpness of some new Huygens type inequalities. J. Math. Inequal. 6, 493–500 (2012)

    MATH  MathSciNet  Google Scholar 

  97. Huo, Z.-H., Niu, D.-W., Cao, J., Qi, F.: A generalization of Jordan’s inequality and an application. Hacet. J. Math. Stat. 40, 53–61 (2011)

    MATH  MathSciNet  Google Scholar 

  98. Huygens, C.: Oeuvres Completes. Société Hollondaise des Science, Haga (1888–1940)

    Google Scholar 

  99. Ibrahim, A., Dragomir, S.S.: Power series inequalities via Buzano’s result and applications. Integral Transforms Spec. Funct. 22, 867–878 (2011)

    MATH  MathSciNet  Google Scholar 

  100. Ibrahim, A., Dragomir, S.S., Cerone, P., Darus, M.: Inequalities for power series with positive coefficients. J. Inequal. Spec. Funct. 3, 1–15 (2012)

    MathSciNet  Google Scholar 

  101. Ibrahim, A., Dragomir, Darus, M.: Some inequalities for power series with applications. Integral Transforms Spec. Funct. iFirst, 1–13 (2012)

    Google Scholar 

  102. Ivády, P.: A note on a gamma function inequality. J. Math. Inequal. 3, 227–236 (2009)

    MathSciNet  Google Scholar 

  103. Kalmykov, S.I., Karp, D.B.: Log-concavity for series in reciprocal gamma functions and applications. Integral Transforms Spec. Funct. Available via arXiv:1206.4814v1 [math.CA] (2013)

    Google Scholar 

  104. Kalmykov, S.I., Karp, D.B.: Log-convexity and log-concavity for series in gamma ratios and applications. J. Math. Anal. Appl. 406, 400–418 (2013)

    MathSciNet  Google Scholar 

  105. Kaluza, T.: Über die Koeffizienten reziproker Potenzreihen. Math. Z. 28, 161–170 (1928)

    MATH  MathSciNet  Google Scholar 

  106. Karatsuba, E.A.: On the asymptotic representation of the Euler gamma function by Ramanujan. J. Comput. Appl. Math. 135, 225–240 (2001)

    MATH  MathSciNet  Google Scholar 

  107. Karatsuba, E.A., Vuorinen, M.: On hypergeometric functions and generalizations of Legendre’s relation. J. Math. Anal. Appl. 260, 623–640 (2001)

    MATH  MathSciNet  Google Scholar 

  108. Karp, D., Sitnik, S.M.: Inequalities and monotonicity of ratios for generalized hypergeometric function. J. Approx. Theory 161, 337–352 (2009)

    MATH  MathSciNet  Google Scholar 

  109. Klén, R., Visuri, M., Vuorinen, M.: On Jordan type inequalities for hyperbolic functions. J. Inequal. Appl. 2010, 14 (2010) (Article ID 362548)

    Google Scholar 

  110. Klén, R., Manojlovic, V., Simić, S., Vuorinen, M.: Bernoulli inequality and hypergeometric functions. Proc. Am. Math. Soc. 142, 559–573 (2014)

    MATH  Google Scholar 

  111. Klén, R., Manojlović, V., Vuorinen, M.: Distortion of normalized quasiconformal mappings. Available via arXiv:0808.1219 [math.CV]

    Google Scholar 

  112. Klén, R., Vuorinen, M., Zhang, X.-H.: Inequalities for the generalized trigonometric and hyperbolic functions. J. Math. Anal. Appl. 409, 521–529 (2014)

    MathSciNet  Google Scholar 

  113. Kouba, O.: New bounds for the identric mean of two arguments. JIPAM. J. Inequal. Pure Appl. Math. 9 (2008) (Article 71)

    Google Scholar 

  114. Kouba, O.: Bounds for the ratios of differences of power means in two arguments. Math. Inequal. Appl. Available via arXiv:1006.1460v1 [math.CA] (to appear)

    Google Scholar 

  115. Koumandos, S., Pedersen, H.L.: On the asymptotic expansion of the logarithm of Barnes triple gamma function. Math. Scand. 105, 287–306 (2009)

    MATH  MathSciNet  Google Scholar 

  116. Kuo, M.-K.: Refinements of Jordan’s inequality. J. Inequal. Appl. 2011(130), 6 (2011)

    Google Scholar 

  117. Lazarević, I.: Neke nejednakosti sa hiperbolickim funkc̆ijama. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 170, 41–48 (1966)

    Google Scholar 

  118. Lehto, O., Virtanen, K.I.: Quasiconformal Mappings in the Plane, 2nd edn. Die Grundlehren der mathematischen Wissenschaften, Band 126. Springer, New York (1973)

    Google Scholar 

  119. Lindqvist, P.: Some remarkable sine and cosine functions. Ric. Mat. 44, 269–290 (1995)

    MATH  MathSciNet  Google Scholar 

  120. Li, J.-L., Li, Y.-L.: On the strengthened Jordan’s inequality. J. Inequal. Appl. 2007, 8 (2007) (Article ID 74328)

    Google Scholar 

  121. Lv, Y.-P., Wang, G.-D., Chu, Y.-M.: A note on Jordan type inequalities for hyperbolic functions. Appl. Math. Lett. 25, 505–508 (2012)

    MATH  MathSciNet  Google Scholar 

  122. Ma, X.-Y., Qiu, S.-L., Zhong, G.-H., Chu, Y.-M.: Some inequalities for the generalized linear distortion function. Appl. Math. J. Chinese Univ. Ser. B 27, 87–93 (2012)

    MATH  MathSciNet  Google Scholar 

  123. Ma, X.-Y., Qiu, S.-L., Zhong, G.-H., Chu, Y.-M.: The Hölder continuity and submultiplicative properties of the modular function. Appl. Math. J. Chinese Univ. Ser. A 27, 481–487 (2012)

    MathSciNet  Google Scholar 

  124. Mahmoud, M., Alghamdi, M.A., Agarwal, R.P.: New upper bounds of n! . J. Inequal. Appl. 2012, 9 (2012) (Article 27)

    Google Scholar 

  125. Miller, K.S., Samko, S.G.: Completely monotonic functions. Integral Transforms Spec. Funct. 12, 389–402 (2001)

    MATH  MathSciNet  Google Scholar 

  126. Mitrinović, D.S.: Analytic Inequalities. Springer, Berlin (1970)

    MATH  Google Scholar 

  127. Mori, A.: On an absolute constant in the theory of quasiconformal mappings. J. Math. Soc. Jpn. 8, 156–166 (1956)

    MATH  Google Scholar 

  128. Mortici, C.: Monotonicity properties of the volume of the unit ball in \({\mathbb{R}}^{n}\). Optim. Lett. 4, 457–464 (2010)

    MATH  MathSciNet  Google Scholar 

  129. Mortici, C.: New approximations of the gamma function in terms of the digamma function. Appl. Math. Lett. 23, 97–100 (2010)

    MATH  MathSciNet  Google Scholar 

  130. Mortici, C.: On new sequences converging towards the Euler-Mascheroni constant. Comput. Math. Appl. 59, 2610–2614 (2010)

    MATH  MathSciNet  Google Scholar 

  131. Mortici, C.: Very accurate estimates of the polygamma functions. Asymptot. Anal. 68, 125–134 (2010)

    MATH  MathSciNet  Google Scholar 

  132. Mortici, C.: Ramanujan’s estimate for the gamma function via monotonicity arguments. Ramanujan J. 25, 149–154 (2011)

    MATH  MathSciNet  Google Scholar 

  133. Mortici, C.: Gamma function by x x−1. Carpathian J. Math. (to appear)

    Google Scholar 

  134. Negoi, T.: A faster convergence to Euler’s constant. Math. Gaz. 83, 487–489 (1999)

    MATH  Google Scholar 

  135. Neuman, E.: Inequalities and bounds for generalized complete elliptic integrals. J. Math. Anal. Appl. 373, 203–213 (2011)

    MATH  MathSciNet  Google Scholar 

  136. Neuman, E.: A note on a certain bivariate mean. J. Math. Inequal. 6, 637–643 (2012)

    MATH  MathSciNet  Google Scholar 

  137. Neuman, E.: Inequalities involving hyperbolic functions and trigonometric functions. Bull. Int. Math. Virt. Instit. 2, 87–92 (2012)

    Google Scholar 

  138. Neuman, E.: On Wilker and Huygens type inequalities. Math. Inequal. Appl. 15, 271–279 (2012)

    MATH  MathSciNet  Google Scholar 

  139. Neuman, E., Sándor, J.: On the Schwab-Borchardt mean. Math. Pannon. 14, 253–266 (2003)

    MATH  Google Scholar 

  140. Neuman, E., Sándor, J.: On the Schwab-Borchardt mean II. Math. Pannon. 17, 49–59 (2006)

    MATH  MathSciNet  Google Scholar 

  141. Neuman, E., Sándor, J.: On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities. Math. Inequal. Appl. 13, 715–723 (2010)

    MathSciNet  Google Scholar 

  142. Neuman, E., Sándor, J.: Optimal inequalities for hyperbolic and trigonometric functions. Bull. Math. Anal. Appl. 3, 177–181 (2011)

    MathSciNet  Google Scholar 

  143. Niu, D.-W., Huo, Z.-H., Cao, J., Qi, F.: A general refinement of Jordan’s inequality and a refinement of L. Yang’s inequality. Integral Transforms Spec. Funct. 19, 157–164 (2008)

    MATH  MathSciNet  Google Scholar 

  144. Niu, D.-W., Cao, J., Qi, F.: Generalizations of Jordan’s inequality and concerned relations. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 72, 85–98 (2010)

    MATH  MathSciNet  Google Scholar 

  145. Pan, W.-H., Zhu, L.: Generalizations of Shafer-Fink-type inequalities for the arc sine function. J. Inequal. Appl. 2009, 6 (2009) (Article ID 705317)

    Google Scholar 

  146. Pinelis, I.: L’Hospital rules for monotonicity and the Wilker-Anglesio inequality. Am. Math. Monthly 111, 905–909 (2004)

    MATH  MathSciNet  Google Scholar 

  147. Ponnusamy, S., Vuorinen, M.: Asymptotic expansions and inequalities for hypergeometric functions. Mathematika 44, 278–301 (1997)

    MATH  MathSciNet  Google Scholar 

  148. Qi, F.: The extended mean values: definition, properties, monotonicities, comparison, convexities, generalizations, and applications. RGMIA Res. Rep. Coll. 5, 19 (2001)

    Google Scholar 

  149. Qi, F., Guo, B.-N.: Monotonicity and logarithmic convexity relating to the volume of the unit ball. Optim. Lett. 7, 1139–1153 (2013)

    MATH  MathSciNet  Google Scholar 

  150. Qi, F., Niu, D.-W., Guo, B.-N.: Refinements, generalizations, and applications of Jordan’s inequality and related problems. J. Inequal. Appl. 2009, 52 (2009) (Article ID 271923)

    Google Scholar 

  151. Qiu, S.-L., Shen, J.-M.: On two problems concerning means. J. Hangzhou Inst. Electronic Engg. 17, 1–7 (1997)

    Google Scholar 

  152. Qiu, S.-L., Vuorinen, M.: Landen inequalities for hypergeometric functions. Nagoya Math. J. 154, 31–56 (1999)

    MATH  MathSciNet  Google Scholar 

  153. Qiu, S.-L., Vuorinen, M.: Duplication inequalities for the ratios of hypergeometric functions. Forum Math. 12, 109–133 (2000)

    MATH  MathSciNet  Google Scholar 

  154. Qiu, S.-L., Vuorinen, M.: Some properties of the gamma and psi functions, with applications. Math Comput. 74, 723–742 (2004)

    MathSciNet  Google Scholar 

  155. Qiu, S.-L., Qiu, Y.-F., Wang, M.-K., Chu, Y.-M.: Hölder mean inequalities for the generalized Grötzsch ring and Hersch-Pfluger functions. Math. Inequal. Appl. 15, 237–245 (2012)

    MATH  MathSciNet  Google Scholar 

  156. Ramanujan, S.: The Lost Notebook and Other Unpublished Papers, with an Introduction by George E. Andrews. Narosa Publishing House, New Delhi (1988)

    MATH  Google Scholar 

  157. Redheffer, R.: Problem 5642. Am. Math. Monthly 76, 422 (1969)

    MathSciNet  Google Scholar 

  158. Richards, K.C.: Sharp power mean bounds for the Gaussian hypergeometric function. J. Math. Anal. Appl. 308, 303–313 (2005)

    MATH  MathSciNet  Google Scholar 

  159. Sándor, J.: Sur la fonction gamma. Publ. Centre Rech. Math. Pures (I) 21, 4–7 (1989)

    Google Scholar 

  160. Sándor, J.: On certain inequalities for means III. Arch. Math. (Basel) 76, 34–40 (2001)

    Google Scholar 

  161. Sándor, J.: Über zwei Mittel von Seiffert. Wurzel 36, 104–107 (2002)

    Google Scholar 

  162. Sándor, J.: On some new Wilker and Huygens type trigonometric-hyperbolic inequalities. Proc. Jangjeon Math. Soc. 15, 145–153 (2012)

    MathSciNet  Google Scholar 

  163. Sándor, J.: On Huygens’ inequalities and the theory of means. Int. J. Math. Math. Sci. 2012, 9 (2012) (Article ID 597490)

    Google Scholar 

  164. Sándor, J.: Two sharp inequalities for trigonometric and hyperbolic functions. Math. Inequal. Appl. 15, 409–413 (2012)

    MATH  MathSciNet  Google Scholar 

  165. Sándor, J.: Trigonometric and hyperbolic inequalities. Available via arXiv:1105.0859v1 [math.CA]

    Google Scholar 

  166. Shafer, R.E.: Problem E 1867. Am. Math. Monthly 73, 309–310 (1966)

    MathSciNet  Google Scholar 

  167. Shafer, R.E.: On quadratic approximation. SIAM J. Numer. Anal. 11, 447–460 (1974)

    MATH  MathSciNet  Google Scholar 

  168. Shafer, R.E.: Analytic inequalities obtained by quadratic approximation. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 577–598, 96–97 (1977)

    MathSciNet  Google Scholar 

  169. Shafer, R.E., Grinstein, L.S., Marsh, D.C.B., Konhauser, J.D.E.: Problems and solutions: an inequality for the inverse tangent: E 1867. Am. Math. Monthly 74, 726–727 (1967)

    MathSciNet  Google Scholar 

  170. Simić, S., Vuorinen, M.: On quotients and differences of hypergeometric functions. J. Inequal. Appl. 2011, 10 (2011) (Article 141)

    Google Scholar 

  171. Simić, S., Vuorinen, M.: Landen inequalities for zero-balanced hypergeometric functions. Abstr. Appl. Anal. 2012, 11 (2012) (Article ID 932061)

    Google Scholar 

  172. Stolarsky, K.B.: Generalizations of the logarithmic mean. Math. Mag. 48, 87–92 (1975)

    MATH  MathSciNet  Google Scholar 

  173. Takeuchi, S.: Generalized Jacobian elliptic functions and their application to bifurcation problems associated with p-Laplacian. J. Math. Anal. Appl. 385, 24–35 (2012)

    MATH  MathSciNet  Google Scholar 

  174. Toader, Gh.: Some mean values related to the arithmetic-geometric mean. J. Math. Anal. Appl. 218, 358–368 (1998)

    MATH  MathSciNet  Google Scholar 

  175. Trif, T.: Note on certain inequalities for means in two variables. JIPAM. J. Ineq. Pure Appl. Math. 6 (2005) (Article 43)

    Google Scholar 

  176. Vuorinen, M.: Hypergeometric functions in geometric function theory. In: Srinivasa Rao, K., Jagannathan, R., Vanden Berghe, G., Van der Jeugt, J. (eds.) Special Functions and Differential Equations, pp. 119–126. Proceedings of a workshop held at The Institute of Mathematical Sciences, Madras, India, Jan 13–24, 1997. Allied Publishers (1998)

    Google Scholar 

  177. Vuorinen, M., Zhang, X.-H.: On exterior moduli of quadrilaterals and special functions. J. Fixed Point Theory Appl. 13, 215–230 (2013)

    Google Scholar 

  178. Wang, M.-K., Chu, Y.-M.: Asymptotical bounds for complete elliptic integrals of the second kind. J. Math. Anal. Appl. 402, 119–126 (2013)

    MATH  MathSciNet  Google Scholar 

  179. Wang, G.-D., Qiu, S.-L., Zhang, X.-H., Chu, Y.-M.: Approximate convexity and concavity of generalized Grötzsch ring function. Appl. Math. J. Chinese Univ. Ser. B 21, 203–206 (2006)

    MATH  MathSciNet  Google Scholar 

  180. Wang, G.-D., Zhang, X.-H., Qiu, S.-L., Chu, Y.-M.: The bounds of the solutions to generalized modular equations. J. Math. Anal. Appl. 321, 589–594 (2006)

    MATH  MathSciNet  Google Scholar 

  181. Wang, G.-D., Zhang, X.-H., Chu, Y.-M.: Inequalities for the generalized elliptic integrals and modular functions. J. Math. Anal. Appl. 331, 1275–1283 (2007)

    MATH  MathSciNet  Google Scholar 

  182. Wang, G.-D., Zhang, X.-H., Chu, Y.-M.: A Hölder mean inequality for the Hersch-Pfluger distortion function. Sci. Sin. Math. 40, 783–786 (2010)

    Google Scholar 

  183. Wang, G.-D., Zhang, X.-H., Chu, Y.-M.: A power mean inequality for the Grötzsch ring function. Math. Inequal. Appl. 14, 833–837 (2011)

    MATH  MathSciNet  Google Scholar 

  184. Wang, G.-D., Zhang, X.-H., Jiang, Y.-P.: Concavity with respect to Hölder means involving the generalized Grötzsch function. J. Math. Anal. Appl. 379, 200–204 (2011)

    MATH  MathSciNet  Google Scholar 

  185. Wang, M.-K., Chu, Y.-M., Qiu, S.-L., Jiang, Y.-P.: Bounds for the perimeter of an ellipse. J. Approx. Theory 164, 928–937 (2012)

    Google Scholar 

  186. Wang, G.-D., Zhang, X.-H., Jiang, Y.-P.: Hölder concavity and inequalities for Jacobian elliptic functions. Integral Transforms Spec. Funct. 23, 337–345 (2012)

    MATH  MathSciNet  Google Scholar 

  187. Wang, G.-D., Zhang, X.-H., Chu, Y.-M.: A power mean inequality involving the complete elliptic integrals. Rocky Mountain J. Math. (to appear)

    Google Scholar 

  188. Wang, M.-K., Chu, Y.-M., Jiang, Y.-P.: Ramanujan’s cubic transformation inequalities for zero-balanced hypergeometric functions. Available via arXiv:1210.6126v1 [math.CA]

    Google Scholar 

  189. Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1941)

    Google Scholar 

  190. Wilker, J.B.: Problem E 3306. Am. Math. Monthly 96, 55 (1989)

    MathSciNet  Google Scholar 

  191. Wilker, J.B., Sumner, J.S., Jagers, A.A., Vowe, M., Anglesio, J.: Problems and solutions: solutions of elementary problems: E 3306. Am. Math. Monthly 98, 264–267 (1991)

    MathSciNet  Google Scholar 

  192. Williams, J.P.: Solutions of advanced problems: a delightful inequality 5642. Am. Math. Monthly 76, 1153–1154 (1969)

    Google Scholar 

  193. Wu, S.-H.: Generalization and sharpness of the power means inequality and their applications. J. Math. Anal. Appl. 312, 637–652 (2005)

    MATH  MathSciNet  Google Scholar 

  194. Wu, S.-H., Baricz, Á.: Generalizations of Mitrinović, Adamović and Lazarević’s inequalities and their applications. Publ. Math. Debrecen 75, 447–458 (2009)

    MATH  MathSciNet  Google Scholar 

  195. Wu, S.-H., Debnath, L.: Jordan-type inequalities for differentiable functions and their applications. Appl. Math. Lett. 21, 803–809 (2008)

    MATH  MathSciNet  Google Scholar 

  196. Wu, S.-H., Debnath, L.: Inequalities for differences of power means in two variables. Anal. Math. 37, 151–159 (2011)

    MATH  MathSciNet  Google Scholar 

  197. Wu, S.-H., Srivastava, H.M.: A weighted and exponential generalization of Wilker’s inequality and its applications. Integral Transforms Spec. Funct. 18, 529–535 (2007)

    MATH  MathSciNet  Google Scholar 

  198. Wu, S.-H., Srivastava, H.M.: A further refinement of a Jordan type inequality and its application. Appl. Math. Comput. 197, 914–923 (2008)

    MATH  MathSciNet  Google Scholar 

  199. Yang, S.-J.: Absolutely (completely) monotonic functions and Jordan-type inequalities. Appl. Math. Lett. 25, 571–574 (2012)

    MATH  MathSciNet  Google Scholar 

  200. Yang, Z.-H.: New sharp bounds for identric mean in terms of logarithmic mean and arithmetic mean. J. Math. Inequal. 6, 533–543 (2012)

    MATH  MathSciNet  Google Scholar 

  201. Yee, A.J.: Large computations. Available at http://www.numberworld.org/nagisa_runs/computations.html (2010)

  202. Yin, L.: Several inequalities for the volume of the unit ball in \({\mathbb{R}}^{n}\). Bull. Malays. Math. Sci. Soc. (2) (to appear)

    Google Scholar 

  203. Zhang, X.-H., Wang, G.-D., Chu, Y.-M., Qiu, S.-L.: Monotonicity and inequalities for the generalized η-distortion function. (Chinese) Chinese Ann. Math. Ser. A 28, 183–190 (2007) (translation in Chinese J. Contemp. Math. 28, 141–148, 2007)

    Google Scholar 

  204. Zhang, X.-H., Wang, G.-D., Chu, Y.-M.: Some inequalities for the generalized Grötzsch function. Proc. Edinb. Math. Soc. (2) 51, 265–272 (2008)

    Google Scholar 

  205. Zhang, X.-H., Wang, G.-D., Chu, Y.-M.: Convexity with respect to Hölder mean involving zero-balanced hypergeometric functions. J. Math. Anal. Appl. 353, 256–259 (2009)

    MATH  MathSciNet  Google Scholar 

  206. Zhang, X.-H., Wang, G.-D., Chu, Y.-M.: Remarks on generalized elliptic integrals. Proc. Roy. Soc. Edinburgh Sect. A 139, 417–426 (2009)

    MATH  MathSciNet  Google Scholar 

  207. Zhao, J.-L., Guo, B.-N., Qi, F.: A refinement of a double inequality for the gamma function. Publ. Math. Debrecen 50, 1–10 (2011)

    Google Scholar 

  208. Zhao, T.-H., Chu, Y.-M., Liu, B.-Y.: Some best possible inequalities concerning certain bivariate means. Available via arXiv:1210.4219v1 [math.CA]

    Google Scholar 

  209. Zhou, L.-M., Qiu, S.-L., Wang, F.: Inequalities for the generalized elliptic integrals with respect to Hölder means. J. Math. Anal. Appl. 386, 641–646 (2012)

    MATH  MathSciNet  Google Scholar 

  210. Zhu, L.: A general form of Jordan’s inequalities and its applications. Math. Inequal. Appl. 11, 655–665 (2008)

    MATH  MathSciNet  Google Scholar 

  211. Zhu, L.: A general refinement of Jordan-type inequality. Comput. Math. Appl. 55, 2498–2505 (2008)

    MATH  MathSciNet  Google Scholar 

  212. Zhu, L.: New inequalities of Shafer-Fink type for arc hyperbolic sine. J. Inequal. Appl. 2008, 5 (2008) (Article ID 368275)

    Google Scholar 

  213. Zhu, L.: On a quadratic estimate of Shafer. J. Math. Inequal. 2, 571–574 (2008)

    MATH  MathSciNet  Google Scholar 

  214. Zhu, L.: A source of inequalities for circular functions. Comput. Math. Appl. 58, 1998–2004 (2009)

    MATH  MathSciNet  Google Scholar 

  215. Zhu, L.: Generalized Lazarević’s inequality and its applications: Part II. J. Inequal. Appl. 2009, 4 (2009) (Article ID 379142)

    Google Scholar 

  216. Zhu, L.: Sharpening Redheffer-type inequalities for circular functions. Appl. Math. Lett. 22, 743–748 (2009)

    MATH  MathSciNet  Google Scholar 

  217. Zhu, L.: Some new inequalities of the Huygens type. Comput. Math. Appl. 58, 1180–1182 (2009)

    MATH  MathSciNet  Google Scholar 

  218. Zhu, L.: Some new Wilker-type inequalities for circular and hyperbolic functions. Abstr. Appl. Anal. 2009, 9 (2009) (Article ID 485842)

    Google Scholar 

  219. Zhu, L.: A general form of Jordan-type double inequality for the generalized and normalized Bessel functions. Appl. Math. Comput. 215, 3802–3810 (2010)

    MATH  MathSciNet  Google Scholar 

  220. Zhu, L.: Jordan type inequalities involving the Bessel and modified Bessel functions. Comput. Math. Appl. 59, 724–736 (2010)

    MATH  MathSciNet  Google Scholar 

  221. Zhu, L.: An extended Jordan’s inequality in exponential type. Appl. Math. Lett. 24, 1870–1873 (2011)

    MATH  MathSciNet  Google Scholar 

  222. Zhu, L.: Extension of Redheffer type inequalities to modified Bessel functions. Appl. Math. Comput. 217, 8504–8506 (2011)

    MATH  MathSciNet  Google Scholar 

  223. Zhu, L., Hua, J.-K.: Sharpening the Becker-Stark inequalities. J. Inequal. Appl. 2010, 4 (2010) (Article ID 931275)

    Google Scholar 

  224. Zhu, L., Sun, J.-J.: Six new Redheffer-type inequalities for circular and hyperbolic functions. Comput. Math. Appl. 56, 522–529 (2008)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Á. Baricz, C. Berg, E. A. Karatsuba, C. Mortici, E. Neuman, H. L. Pedersen, S. Ponnusamy, and G. Tee for careful reading of this paper and for many corrections and suggestions. The research of Matti Vuorinen was supported by the Academy of Finland, Project 2600066611. Xiaohui Zhang is indebted to the Finnish National Graduate School of Mathematics and its Applications for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Zhang .

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Hari M. Srivastava

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anderson, G.D., Vuorinen, M., Zhang, X. (2014). Topics in Special Functions III. In: Milovanović, G., Rassias, M. (eds) Analytic Number Theory, Approximation Theory, and Special Functions. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0258-3_11

Download citation